AN HYPERVALUATION OF A RING ONTO A TOTALLY ORDERED NON-CANCELLATIVE SEMIGROUP WITHOUT ZERO DIVISORS

JOHN PAPADOPOULOS

41-43 Ioulianou str., Athens 104 34 GREECE

(Received April 17, 1985)

ABSTRACT. In this paper we answer to a question posed by Marc KRANSER: It it possible to have a totally ordered noncancellative semigroup without zero divisors, and a ring hypervaluated by this semigroup? We were able to give a positive answer and provide an example.

KEY WORDS AND PHRASES. Hypervaluation, Valuation, Totally ordered semigroup, Ring 1980 AMS SUBJECT CLASSIFICATION CODE: 16A34 or 16A45.

1. PRELIMINARIES

In what follows,all semigroups are supposed to have a unit element 1 and a zero (absorbent) element 0, such that a.0=0.a=0 for all elements a in the semigroup. In any semigroup we can adjoint a zero element if it does not already have one, without changing its structure. We remark that in each semigroup 1 and 0 are unique.

DEFINITION 1. We say that a semigroup S is ordered if it is supplied with an order < such that:

1. For a,b,c in S, $a < b \Longrightarrow ca \le cb$ and $ac \le bc$.

2. 0<1 (hence $0=0c \le 1c = c$ for all c in S)

If the order is total S is called totally ordered.

DEFINITION 2. An hypervaluation on a ring R is a function from R onto a totally ordered semigroup S, satisfying the following conditions: For all a,b in R.

|a| = 0 ⇒ a=0
|a| = |-a|
|ab| = |a| |b|
|a+b| ≤ Max {|a|, |b|}

Notice that if the semigroup S does not have any zero divisors then the ring R does not have any either. For if $a, b \in R$ with $a \neq 0, b \neq 0$, and ab=0, then 0=|0|=|ab|=|a||b|, while $|a|\neq 0$ and $|b|\neq 0$. But this is impossible since S is assumed with no zero divisors. Also we easily see that a cancellative semigroup has no zero divisors, however the converse is not true in general as we shall see in what follows.

2. CONSTRUCTION OF A NON-CANCELLATIVE, TOTALLY ORDERED SEMIGROUP WITHOUT ZERO DIVISORS

We begin with an arbitrary given totally ordered semigroup $(S_1, \cdot, \cdot) = \{0_1, a, b, ...\}$ where 0_1 its absorbent (zero) element. Consider now the set $S_2 = S_1 \cup \{0_2\}$ that we get if we adjoint a new element 0_2 to the set S_1 . Define an operation * on S_2 by setting a*b=a.b if a,b are in S_1 , and $0_2*a=a*0_2=0_2$ for all a in S_2 . In particular $0_2*0_1=0_1*0_2=$ $=0_2$. We observe then that:

- $(S_2, *)$ is a semigroup and 0_2 is its zero (absorbent) element (self evident) - $(S_2, *)$ has no zero divisors. Indeed if $a, b \in S_2$ with $a \neq 0_2$ $b \neq 0_2$ then $a, b \in S_1$ and by definition $a*b=ab \in S_1$ and hence $ab \neq 0_2$.

- (S₂, *) is non cancellative. Indeed we can take a,b in S₁ with $a \neq b$. Then $0_1 * a = 0_1 a = 0_1 = 0_1 b = 0_1 * b$. Thus $0_1 * a = 0_1 * b$ but $a \neq b$.

- Finally we define a total order ϵ on S_2 by setting $a \epsilon \mathcal{I}_2$ for all a in S_1 , and for a,b, in $S_1, a \epsilon b \iff a > b$. It is obvious that this is well defined, and that $(S_2, *, \epsilon)$ becomes a totally ordered semigroup.

3. A PROPOSITION

Notation: In what follows, we will denote by S_1 an arbitrary given totally ordered semigroup, and by S_2 the corresponding totally ordered non cancellative semigroup without zero divisors, obtained from S_1 , by adjoining a new absorbent element 0_2 , as it was done in section 2.

PROPOSITION: Let I be a two sided ideal of a (not necessarilly commutative) integral domain R. If R/I can be hypervaluated by S_1 , then R can be hypervaluated by S_2 .

PROOF: Let $|\ldots|$: $R/I \rightarrow S_1 = \{0_1, a, b, \ldots\}$ be a valuation from R/I onto S_1 . We define the function $|| = || : R \rightarrow S_2$ by setting: For a in R, $||a|| = 0_2$ if a=0 and ||a|| = |a+I| if $a \neq 0$. This implies that if a is in I, with $a \neq 0$, then $||a|| = 0_1$.

We see that $\|\cdot \cdot \cdot\|$ thus defined, satisfies the four properties of hypervaluation: Indeed properties (1) and (2) of definition 2 are obviously satisfied. That (3) holds for all a,b in R is immediate if at least one of them equals to zero. So we may assume $a\neq 0, b\neq 0$, and thus $ab\neq 0$ since R is an integral domain. Then $\||ab\|| = |ab+1| = |(a+1)(b+1)| =$ = |a+1||b+1| = ||a|| + ||b||.

Finally (4) is also satisfied. For if $a,b, \in R$, if at least one of them equals to zero the proof is immediate. Suppose now $a,b\neq 0$. Then we could have a+b=0 or $a+b\neq 0$. If a+b=0 then $||a+b|| = 0 \le ||a||$, $||b|| \le \tan \{||a||, ||b||\}$. If $a+b\neq 0$ then ||a|| = |a+I|, ||b|| = |b+I| and $||a+b|| = |a+b+I| = |(a+I)+(b+I)| \le \max \{|a+I|, |b-I|\} = \max \{||a||, ||b||\}$. This completes the proof.

4. COFFIS THEOREM FOR HYPERVALUABILITY OF A RING

DEFINITION 3. Let R be a ring. For any element a in R we call the set of left annihilators of a to be the set $\{x \in R | x.a=0\}$ and we denote this set by $A_1(a)$. In an analogous way we define the set of right annihilators of a denoted by $A_r(a)$.

THEOREM 1: (Coffi - Nikestia): Let R be a ring with a unit element 1. R can be hypervaluated by a totally ordered semigroup S if and only if it satisfies the following conditional:

- 1. For all a ε R, $A_1(a) = A_r(a)$ and we denote this set by A(a).
- 2. For all a, b ε R, A(a.b)=A(b.a)
- 3. The class C={A(a), A ϵ R} is totally ordered by inclusion.

In particular, R posesses an hypervaluation |...| such that $|a| \rightarrow A(a)$ is a one-to-one correspondence between S and C.

We remark that Coffi in his construction supposes the semigroup to be commutative. The ring R is not supposed to be necessarilly commutative, but with an identity element 1. The details can be found in Coffi [l]. The idea is the following: For each a in R, its "value" |a| is A(a). So $|...|: R \rightarrow C=S$. Moreover S is totally ordered by the total order defined as follows: For a, b in R $|a| \leq |b|$ if A(a) \supseteq A(b).

5. OUR MAIN THEOREM

THEOREM: There exists a totally ordered non cancellative semigroup S without zero divisors, and a ring R that can be hypervaluated by this semigroup.

PROOF: We choose an integral domain R (not necessarily commutative) such that R/I (for some two-sided ideal I of R)be a ring satisfying the conditions of Coffi's theorem. Then by Coffi's theorem R/I can be hypervaluated by a totally ordered semigroup S_1 .

From S_1 we obtain a totally ordered, non cancellative semigroup S_2 without zero divisors, as we did in section 2.

By our Proposition 1, we can hypervaluate R by S_2 that has the desired properties. This concludes the proof of our theorem.

6. A CONCRETE EXAMPLE

We provide in this paragrapha concrete example of a Ring hypervaluated by a totally ordered, non cancellative semigroup S_2 without zero divisors.

Let Z be the ring of integers and (16) the ideal in Z generated by 16. It suffices to show that the ring Z/(16) satisfies the conditions of Coffi's theorem and thus can be hypervaluated by a totally ordered semigroup S_1 . Because then, by our Proposition of section 3,Z can be hypervaluated by a semigroup S_2 , having the desired properties. Indeed since Z/(16) is commutative, conditions 1 and 2 are obviously satisfied. Now if $a,b,x \in Z$ and $\overline{a},\overline{b},\overline{x} \in Z/(16)$ their corresponding equivalence classes, \overline{x} is then an annihilator of \overline{a} in Z/(16) if and only if $x.a \in (16)$ i.e. iff 16 divides xa. Let (a,b) denote the least common multiple of two elements a,b in Z.

Thus: If (a, 16) = 1 then $A(\overline{a}) = \{\overline{16}\} = \{\overline{0}\}$

- If (a, 16)=2 then $A(\bar{a})=\{\bar{8}, \bar{16}\}$
- If (a, 16) = 4 then $A(\overline{a}) = \{\overline{4}, \overline{8}, \overline{12}, \overline{16}\}$
- If (a, 16)=8 then $A(\overline{a})=\{\overline{2}, \overline{4}, \overline{6}, \overline{8}, \overline{10}, \overline{12}, \overline{14}, \overline{16}\}$

If in general (a,16)=(b,16) then $A(\overline{a})=A(\overline{b})$, if (a,16)>(b,16) then $A(\overline{a})\supset A(\overline{b})$.

Condition 3 of Coffi's theorem is also therefore satisfied.

REFERENCES

 COFFI-NIKESTIA J.B. "Valuation des anneau avec diviseurs de zero au moyen des demigroupes totalement ordonnes. Proprietes des anneaux valuables". <u>Compte-Rendus</u>, <u>Acad.Sci.Paris 254 III,1962</u>.