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ABSTRACT. A generalization of the commuting mapping concept is introduced.

Properties of this "weakened commutativity" are derived and used to obtain

results which generalize a theorem by Park and Bae, a theorem by Hadzic, and

others.
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I. INTRODUCTION.

The following generalization of the Banach Contraction Theorem was proved

in [I].
THEOREM I.I. A continuous self map of a complete metric space (X,d) has a

fixed point iff there exists rE (0,I) and a mapping g’X+X which commutes with

f (gf=fg) and satisfies- g(X)Cf(X) and d(g(x),g(y)) <_ rd(f(x),f(y)) for x,y

in X. In fact, f and g have a unique common fixed point.

The intent of the article [I ] was to depict commuting mappings as a tool

for generalization. A variety of extensions, generalizations, and applications

of Theorem I.I. which incorporated the commuting map concept followed; e.g.,

[2-],[3 ],[4],[6] [19]. One of the more powerful of these is the following

result by Park and Bae [4] which generalizes a theorem by Meir and Keeler [5].
THEOREM 1.2. If f is a continuous self map of a complete metric space X

and g is an ( ,6 )-f-contraction which commutes with f, then f and g have a unique

common fixed point in X.

Definition I.I. Let f andg be self maps of a metric space (X,d). g is
an (,)-f-contraction iff for any E 0 there is a >0 such that

(i) <_ d(f(x),f(y))< + implies d(g(x),g(y))< , and
(ii) g(x)=g(y)when f(x)=f(y)
The purpose of this paper is to propose a generalization of the commuting

mapping concept. Sessa [6] generalized commuting maps by calling self maps f and

g of a metric space (X,d) a weakly commuting pair iff d(fg(x),gf(x)) < d(f(x),g(x))
for x in X. Of course, commuting pairs are weakly commuting, but the converse is

false (See [6]). Baskaran and Subrahmanyam [7] and Rhoades et el. [6] obtained



nice fixed point results using this concept. However, since elementary functions

as similar as f(x)=x3 and g(x)=2x3 are not weakly commutative, it is desirable

to introduce a less restrictive concept a concept we shall call compatibility.

In section 2. we define and develop properties of compatible functions, and

we provide examples to illustrate the extent to which the commutativity requirement

has been weakened. In section 3. we demonstrate the utility of this concept in

the context of metric fixed point theory by replacing the commutativity hypothesis

in Theorem 1.2. by compatibility. We further extend Theorem 1.2. by defining

( , )-contractibility for four functions.

In this paper, R,R+, and N shall denote the real numbers, the positive

real numbers, and the positive integers respectively, with their usual topologies.

2. COMPATIBLE MAPPINGS.

Any pair f and g of self maps of a set commute on the set of common fixed

points" xE X" f(x)=g(x)=x }. The following definition will require that f

and g commute on the potentially larger set x X" f(x)-g(x)
Definition 2.1. Self mappings f and g of a metric space (X,d) are compatible

if,f limnd(gf(Xn),fg(Xn)):O whenever xn is a sequence in X such that limnf(Xn )=

limng(Xn)=t for some tE X.

Clearly, any weakly commuting pair are compatible. On the other hand, the

functions f(x)=x3 and g(x)=2x3 are compatible since If(x)-g(x)l=Ixl3O iff

Ifg(x)-gf(x) 61x190, but as noted above they are not a weakly commuting pair.

(In this instance X can be taken as R.)
EXAMPLE 2.1. Let f(x)=x3 and g(x):2-x with X=R. ,f(Xmn)-g(Xn),i niXn_llixn2 + Xn + 21 /0 iff xn/l and limnlfg(xn)-gf(xn)I=l 61Xn-l12=o if

/I Thus f and g are compatible but are not a weakly commuting pair; e.g.,xn
let x=O.

EXAMPLE 2.2. Let f(x)=2-x2 and g(x)=x2 with X=R. As in Example 2.1, it

is easy to show that f and g are compatible but not weakly commutative.

EXAMPLE 2.3. Let f(x)=cosh(x) and g(x)=sinh(x) with X=R. Then

If(x)-g(x)l=e-x 0 iff x-. But f(x),g(x) /+ as x/ + i.e.,

f and g do not converge to an element t of X. Thus the condition of compatibility

is satisfied vacuously, but f and g do not commute.

The following observation provides a criterion for identifying compatible

functions.

PROPOSITION 2.1. Let f,g’(X,d) (X,d) be continuous, and let F={ x X"
f(x)=g(x)=x }. Then f and g are compatible if any one of the following conditions
is satisfied.

(a) If f(Xn),g(xn) /t (X), then t F.
(b) d(f(Xn),g(Xn) +0 implies D(f(Xn),F +0.
(c) F compact and d(f(Xn),g(Xn)) +0 implies D(Xn,F) +0.

(D(x,F)=inf d(x,y)" y F} .)

PROOF. Suppose that limnf(Xn)=limng(Xn)=t for some t X. (2.1)
If (a).holds, f(t)=g(t)=t. Then the continuity of f and g on F imply
fg(xn) /f(t)=t and gf(xn) g(t):t, so that d(fg(Xn),gf(Xn)) 0 as desired.
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If (b) holds, the compatibility of f and g follow easily from (a) and (2.1) upon

noting that F is closed since f and g are continuous. So to comDlete the

proof, suppose that F is compact and that (2.1) and (c) hold. Then d(f(Xn),
F) +0 Since F is compact there is a subsequence x kg(Xn)) 0 and D(xn,

of xn which converges to some element c of F. Then f(Xkn) f(c)=c n

by the continuity of f and the definition of F. Consequently, (2.1) implies

that c=t F, so f and g are compatible by (a).
EXAMPLE 2.4. Let f(x) x4+ax2 (a> I) and g(x)=x2 with X=R. Then

If(Xn)-g(Xn)l= Xn21Xn2 +(a-l) I0 iff xn 0( F), so that f and g are

compatible by Proposition 2.1(c). But f and g are not weakly commutative; let

a=2,x=l.

COROLLARY 2.1. Suppose that f and g are continuous self maps of R such

that f-g is strictly increasing. If f and g have a common fixed point, then

f and g are compatible.

PROOF. Immediate, since f(Xn),g(x t implies that F={ t }.

EXAMPLE 2.5. If f(x)=x3+ax and (x)=mx with X=R and a>m, then

f(O)=g(O)=O and f-g is increasing, so f and g are compatible by Corollary 2.1.

EXAMPLE 2.6. If f(x)=eX-I and g(x)=x2 (X=R), f and g are compatible

since f(O)=g(O)=O and f-g is increasing.

It is easy to show that if gi,fi:R/ R and the pairs fi,g are compatible

for i=1,2 n, and if G(Xl’X2 Xn)=(gl(Xl) gn(Xn) and F(x Xn)=

(fl(Xl) fn(Xn)), then F and G are compatible on (Rn,d) where d is the

Euclidean metric. Thus the above examples show that G(x,y)=(eX-l,7y) and

F(x,y)=(x2,y3+8y) are compatible on (R2,d).
The following result will be useful in section 3.

PROPOSITION 2.2. Let f,g:(X,d) (X,d) be compatible.

I. If f(t)=g(t), then fg(t)=gf(t).
2. Suppose that limnf(Xn) limng(Xn) t for some t in X.

(a) If f is continuous at t, limngf(Xn)=f(t).
(b) If f and g are continuous at t, then f(t)=g(t) and fg(t)=gf(t).

PROOF. Suppose that f(t)=g(t), and let Xn=t for n in N. Then f(Xn),
g(Xn)/f(t), so that d(fg(t),gf(t))=d(fg(Xn),gf(Xn))/O by compatibility.
Consequently d(fg(t),gf(t))=O and fg(t)=gf(t), proving I.

To prove 2(a), note that if g(xn)/t, fg(Xn)/f(t) by the continuity of f.
But if f(Xn)+t also, since d(gf(Xn),f(t)) d(gf(Xn),fg(Xn))+d(fg(Xn),f(t)),
the compatibility of f and g require that d(gf(Xn),f(t))O; i.e., gf(Xn)+f(t ).

We prove 2(b) by noting that gf(Xn)/f(t) by 2(a) and the continuity of f,
whereas gf(Xn)/g(t) by the continuity of g. Thus f(t)=g(t) by uniqueness of
limit, and therefore gf(t)=fg(t) by part I. /

3. COMMON FIXED POINTS FOR ( a CONTRACTIONS.
Definition 3.1. A pair of self maps A and B of a metric space (X,d) are

( , )-S,T-contractions relative to maps S,T:X X iff A(X)CT(X), B(X)CS(X),
andthere is a function R+ R+ such that ()> for all and for x,y X-
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(i) < d(Sx,Ty) < a () implies d(Ax,By) < and

(ii) Ax=By whenever Sx=Ty.

Note that if A and B are (c ,6 )-S,T-contractions, then d(Ax,By)<d(Sx,Ty)
for all x,y, strict inequality holding when Sx#Ty. Also observe that in the

above definition the pairs A,S and B,T are evaluated at the same points so

that order is significant. Consequently, even though A and B are ( ,6 )-S,T-
contractions, the pair B,A may not be as Example 3.1 will reveal.

Definition 3.2. Let A,B,S,T be self mappings of a set X such that A(X)C
T(X) and B(X)CS(X). For xo X, any sequence Yn defined by Y2n_l=TX2n_l
AX2n_2 and Y2n=SX2n=BX2n_l for n N will be called an S,T-iteration of xo
under A and B.

The above definition ensures us that for nonempty sets X S,T-iterations will

exist since A(X) CT(X) and B(X)CS(X), although the sequences Yn certainly

need not be unique.

LEMIIA 3.1. Let S and T be self maps of a metric space (X,d) and let the

pair A,B be ( , )-S,T-contractions. If xo X and Yn is an S,T-iteration

of xo under A and B, then

(a) for each O, < d(yp,yq) < () implies d(yp+l,Yq+l)
when p and q are of opposite parity,

(b) d(Yn,Yn+I) O, and

(c) Yn is a Cauchy sequence.

PROOF. To prove (a), let O. Since A and B are ( ,6 )-S,T-contractions,
< d(Sx,Ty)< 6 () implies d(Ax,By)< (3.1)

Now suppose that

_
d(yp,yq)< a (c) and that p and q are of opposite

parity, say p=2n and q=2m-l. Then d(yp+l’Yq+l) d(Y2n+l’Y2m d(AX2n’BX2m-I
and d(yp,yq) d(Y2n,Y2m_l) d(SX2n,TX2m_l). By the above assumption we thus

have < d(SX2n,TX2m_l) < (), so that (3.1)yields d(AX2n,BX2m_l)
d(yp+l,Yq+I) < , as desired.

To see that (b) is true, remember that d(Ax,By) < d(Sx,Ty) for all x,y by

the hypothesis on A,B,S and T. So if m is even, say m=2n, d(Ym,Ym+I)
d(Y2n,Y2n+l d(BX2n_l,AX2n < d(TX2n_l,SX2n d(Y2n_l,Y2n) d(Ym_l,Ym). Similarly,

d(Ym,Ym+I) < d(Ym_ l,ym if m is odd. Thus the sequence d(Ym,Ym+I) is nonin-

creasing and converges to the greatest lower bound of its range which we denote by r.

Now r_> O; in fact, r O. Otherwise, part (a) implies d(Ym+l,Ym+2) < r whenever

r < d(Ym,Ym+I) < 6 (r) since m and m+l are certainly of opposite parity. But

since d(Ym,Ym+I) converges to r, there is a k such that d(Yk,Yk+l) < (r)
so that d(Yk+l,Yk+2) < r- which contradicts the designation of r.

To prove part (c) of the Lemma, let 2 be given. With r (E) E

part (a) of the Lemma asserts that

d(yp+l,Yq+l) whenever d(yp,yq) < + r and p and q are of (3.2)

opposite parity.

Assume without loss of generality that r e By part (b) of the Lemma we can

choose n e N such thato
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d(Ym,Ym+l) r/6 for m __> no (3.3)

We now let q p __> no and show that d(yp,yq) thereby proving that Yn
is indeed Cauchy. So suppose that

d(yp,yq) __> 2 (3.4)

In order to show that (3.4) yields a contradiction, we first want an m p such

that

+ r/3 < d(yp,ym) < + r with p and m of opposite parity. (3.5)

To this end let k be the smallest integer greater than p such that

d(yp,yk) + r/2. k exists by (3.4) since r Moreover,

d(yp,Yk) + (2r)/3 (3.6)

For otherwise, c + (2r)/3 d(yp,Yk_l) + d(Yk_l,Yk)
< d(yp,Yk_ I) + r/6

since k-I __> p _> no, and therefore

+ r/2 d(yp,Yk_l )" (3.7)

Since k-I __> p, (3.7) implies p < k-l. But then (3.7) contradicts the choice of k.

We thus have

+ r/2 d(yp,Yk) + (2r)/3 (3.8)

Thus, if p and k are of opposite parity we can let k=m in (3.8) to obtain

(3.5). If p and k are of like parity, p and k+l are of opposite parity.

Moreover, since d(Yk,Yk+I) < r/6 by (3.3), the triangle inequality and (3.8) imply

+ r/3 d(yp,Yk+ I) + (5r)/6 (3.9)

In this instance let m=k+l.

In any event, by (3.8) and (3.9) we can choose m such that p and m are of

opposite parity and (3.5) holds. But then p,m_> no,(3.3) and (3.5) imply

+ r/3 d(yp,ym) d(yp,yp+l) + d(yp+l,Ym+I) + d(Ym+l,ym)
r/6 + d(yp+l,ym+l + r/6

< r/3 + e, by (3.2) and (3.5).

This is the anticipated contradiction./

The following lemma highlights the role of compatibility in producing common

fixed points.

LEMMA 3.2 Let S and T be self maps of a metric space (X,d) and let A and

B be (,6)-S,T-contractions such that the pairs A,S and B,T are compatible.

If there exists z X such that Az=Sz and Bz=Tz, then c=Tz is the unique common

fixed point of A,B,S and T.

PROOF. The definition of ( ,6 )-S,T-contractions implies d(Ax,By) < d(Sx,Ty)

if SxTy. Thus if SzTz, the hypothesis yields the contradiction d(Az,Bz)

d(Sz,Tz) d(Az,Bz). We conclude that Sz=Tz=Az=Bz.

Now let c=Tz and suppose that cTc. Since T and B are compatible and

Tz=Bz, TBz=BTz by Proposition 2.2.1.. But then d(c,Tc)=d(Az,TBz)=d(Az,BTz)
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< d(Sz,TTz)=d(c,Tc), so that c must equal Tc. Similarly, c-Sc. Since A and

S are compatible and Az=Sz=c, Proposition 2.2.1 implies

Ac A(Sz) S(Az) Sc (3.0)
Likewise, Bc=Tc. Then (3.10) yields: Ac Sc Tc Bc c. c is unique. For
if e were another common fixed point of A,B,S,T, we would have the contradiction:

d(c,e) d(Ac,Be) < d(Sc,Te) d(c,e)./
We can now state and prove our first main result.

THEOREM 3.1. Let S and T be self maps of a metric space (X,d) and let A
and B be (,)-S,T- contractions such that the pairs A,S and B,T are compatible.

Let xoE X and let Yn by any S,T-iteration of x under A and B. If Yn
has a cluster point z in X, then Yn converges to z, and Tz is the unique
common fixed point of A,B,S and T provided these functions are continuous at z.

PROOF. By Lemma 3.1, Yn is Cauchy and therefore converges to the cluster
point z. Then AX2n,SX2n,BX2n_l,TX2n_l +z (See Definition 3.2). Since A and

S are compatible and also continuous at z, Az=Sz by Proposition 2.2.2.b..

Similarly, Bz=Tz, and the conclusion follows from Lemma 3.2../
The next result follows immediately upon noting that under the given hypothesis,

any S,T-iteration of any point under A and B converges to a cluster point since

(X,d) is complete.

COROLLARY 3.1. Let S and T be continuous self maps of a complete metric

space (X,d) and let A and B be (E , )-S,T-contractions such that the pairs

A,S and B,T are compatible. If A and B are continuous, then A,B,S and T

have a unique common fixed point.

Observe that Theorem 1.2. by Park and Bae is a consequence of Corollary 3.1. with

f=S=T and g=A=B. This follows upon noting that since g is an ( ,5 )-f-
contraction, d(g(x),g(y)) < d(f(x),f(y)) for all x,y so that the stated continuity

of f ensures the continuity of g.

The following example of ( , )-contractions pertains to most of the preceding

and as such should be instructive.

EXAMPLE 3.1. Let X [I,) and d(x,y) Ix-yl. Let Sx--(x4+l)/2, Ax=x2

Bx=x and Tx=(x2+l)/2 for x in X. Then A,B,S, and T are continuous self

maps of the complete metric space (X,d). Since A1 Sl and (S-A)x (x2-I)2/2
is increasing on X, A and S are compatible on X by Corollary 2.1. which is

clearly validon any connected subset of R. However, A and S are not even weakly

commutative; consider x=2 for example. On the other hand, B and T are compatible

since BT=TB.

To see that the hypothesis of Corollary 3.1. is satisfied, we have yet to show

that A and B are ( , )-S,T-contractions. To this end let >0o We want

a function "R+ /R+ such that < ISx-Tyl I(x4-y2)/21< () implies
2IAx-Byl x -Yl < - Remembering that x,y__> I, it is easy to show that

i(x4-y2)/21 __> implies that x2+y (I + C2 + I). But then l(x4-y2)/21< 6 ()
(x2+y) -Iimplies that Ix2-yl < 2 (E so that2 ()(I + /2 +-I) -I

Ix2-yl if () (I + v’2 + I)/2. Now so defined for all 0 is

a continuous mapping from R+ into R+ such that (E) so that property (i)
of Definition 3.1. is satisfied. To confirm property (ii) note that
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ISx Ty I(x4 y2)/21 IAx Byll(x2+ y)/2 I, (3.11)

which requires that Ax=By when Sx=Ty since x,y I.

REMARK 3.1. With A,B,S,T defined as in Example 3.1., the pair A,B are ( ,6

-S,T-contractions, whereas the pair B,A are not since IBx-Ayl Ix-y21 3 and

ISx-Tyl I(x4-y2)/21 3/2 with x=l and y=2.

In Example 3.1. the function 6 is continuous. Our next result tells us that

if we merely require that be lower semicontinuous, A and B in Corollary 3.1.

need not be continuous.

THEOREM 3.2. Let S and T be continuous self maps of a complete metric

space (X,d) and let A and B be ( ,6 )-S,T-contractions such that the pairs

A,S and B,T are compatible. If a is lower semicontinuous, then A,B,S and T
have a unique common fixed point.

PROOF. Let xo X and let Yn be an S,T-iteration of xo under A and B.
Since (X,d) is complete and since Yn is Cauchy by Lemma 3.1., Yn converges
to some element z of X. Then AX2n, SX2n,BX2n_l,TX2n_l /z (Definition 3.2.).
Since S and T are continuous and the pairs A,S and B,T are compatible,

Proposition 2.2. and the indicated continuities yield:

T2X2n_l BTX2n_l Tz and S2X2n ASX2n Sz (3.12)

We assert that Sz=Tz. For suppose that d(Sz,Tz) z for some > O.

Since 6:R+ R+ is lower semicontinuous and 6 () > by definition, there is

a neighborhood N( of such that (t) for t N( ). We can thus choose

to such that 0 < t E < ,6 (t) By (3.12), d(S2X2n,T2o o X2n-l ’ and we can

,T2 ) (to,6 (to)) for n > no Thentherefore choose no such that d(S2X2n X2n_l
the definition of 6 (Definition 3.1) implies that d(ASX2n,BTX2n_l < to for

n_>no But then (3.12) implies that d(Sz,Tz) < to < d(Sz,Tz), the anti-

cipated contradiction.

Now Sz=Tz implies that Az=Bz by Definition 3.1.. Moreover, Az=Tz since

limnd(Sz,T2X2n_l d(Sz,Tz) O. By the above wed(Az,Tz) imnd(Az,BTX2n_
have Az=Bz=Sz=Tz, so that Tz is the unique common fixed point of A,B,S, and

T by Lemma 3.2.. /

COROLLARY 3.2. Let S and T be self maps of a complete metric space (X,d),

and let A,B’X S(X)i’)T(X). Suppose that S and T are continuous and that the

pairs A,S and B,T are compatible. If there exists r (O,l) such that

d(Ax,By) < r d(Sx,Ty) for x,y X, (3.13)

Then A,B,S, and T have a unique common fixed point.

PROOF. Define 6 by 6 () =/r. Then 6 is a continuous self map of R+

such that 6 () > Iso, d(Sx,Ty) < 6 () implies d(Ax,By) < r(/r) =
Thus A and B are , 6)-S,T-contractions and the hypothesis of Theorem 3.2. is

satisfied. /

Corollary 3.2. clearly generalizes Fisher’s Theorem 2. in [15]. Moreover, the

corollary below generalizes Theorem I. of [20] by substituting compatibility for

commutat v ty.



778 G. JUNGCK

COROLLARY 3.3. Let S and T be continuous self maps of a complete metric

space (X,d). Let Ai" be a family of maps Ai.X+ S(X)-.T(X) compatible

with both S and T and let be any indexing set. If there exists r (0,I)

such that

d(Aix,Ajy) ! r d(Sx,Ty) for all x,y X and ij, (3.14)

then there is a unique point c X such that c Sc Tc A for all I.

PROOF. Let i,j (ij). By Corollary 3.2 there is a unique point c X

such that c Aic Ajc Sc Tc. Now if k z (i#k), there is a unique point

d X such that d Aid Akd Sd Td. Then (3.14) implies"

d(c,d) d(AiC,Akd) < r d(Sc,Td) d(c,d).

Since r < I, c must equal d and the conclusion follows. /

REMARK 3.2.. The functions in Example 3.1. show that the concept of ( ,
-S,T-contractions does indeed generalize the relation (3.13) of Corollary 3.2.,

since in (3.11)we have !SI-TwI IAI-BylI(I+y)/2)I where (l+y)/2 converges

to as y approaches from the right; i.e., there exists no r c (0,I) such

that IAx-By <_ r ISx-Tyl for all x,y>_ I.

4. RETROSPECT.

The preceding results suggest theobvious general question, "To what extent

can other fixed point theorems involving commuting maps be strengthened by sub-

stituting "compatibility" hypotheses for "commutativity" ?". We however close

with more specific

QUESTION 4.1. To what extent is the hypothesis that 6 be lower semi-con-

tinuous necessary in Theorem 3.2.?
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