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ABSTRACT. Let Df(z) be the Ruscheweyh derivative defined by using the Hadamard

product of f(z) and z/(l z) I+. Certain new classes and are introduced

by virtue of the Ruscheweyh derivative. The object of the present paper is to

establish several interesting properties of S and Further, some results for

integral operator J (f) of f(z) are shown.
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I. INTRODUCTION. Let denote the class of functions of the form

n+l
f(z) Y- an+ z (a I) (l.l)

n=O

which are analytic in the unit disk 0 {z: Izl < I}. Let denote the subclass of

of consisting of univalent functions in the unit disk A function f(z)

belonging to is said to be starlike with respect to the origin in the unit disk

U if it satisfies

Re {zf’(z} > 0 (1.2)
f(z)

for all z . We denote by the class of all starlike functions with respect to

the origin in the unit disk . A function f(z) belonging to is said to be
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convex in the unit disk if it satisfies

zf"(z)} > 0 (1.3)Re {I + "(z)

for all z U. we denote by the class of all convex functions in the unit disk
,

We note that f(z) if and only if zf’(z) Se and that

K S’c- S.

Let f.(z) (j 1,2) in A be given by

n+l I).f.(z) l an+ jz (a
j3 n=O

Then the Hadamard product (or convolution product) fl*f2(z) of fl(z) and f2(z)
is defined by

n+l (1.5)fl *f2(z) n=OZ an+l,lan+l,2 z

By the Hadamard product, we define

Daf(z) z *f(z) (a >- l) (1.6)
(1 z) 1+

for f(z) A The symbol Def(z) was introduced by Ruscheweyh [I], and is called

the Ruscheweyh derivative of f(z).

To derive our results, we have to recall here the following lemmas.

LEMMA ([2]). Let #(z) and g(z) be analytic in the unit disk and

satisfy #(0) g(O) O, #’(0) # O, g’(O) O. Suppose that for each (II I)

and 6 (161 I), we have

(z)* + 6z
-z g(z) 0 (0 < [z[ < ,) (.7)

Then for each function F(z) analytic in the unit disk and satisfying Re {F(z)}

> 0 (z U), we have

,(z) > o (z U ). (t.8)Re "*g(z)"

where C(z) F.g(z).

LEMMA 2 ([3]). Let w(z) be regular in the unit disk U with w(0) O. Then,

if lw(z)l attains its maximum value on the circle Izl r (0 < r < I) at a point

z0, we can write

ZoW’ (zO) mW(Zo),

where m is real and m > I.

LEMMA 3 ([4]). For a real number a (a >-I), we have

z(Daf(z)) (a + l)Da+If(z) -aDaf(z). (1.9)
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REMARK. Note that (1.9) holds true for =-I.

LEMMA 4 ([5]) Let (u,v) be a complex function, : CC(C is the

complex plane) and let u u + iu2, v v! + iv2. Suppose that satisfies the

following conditions

(i) (u,v) is continuous in D;

(ii) (!,o)D and Re{(l,O)} > 0;

(iii) Re{(iu2, vl)} < 0 for all (iu2,v I) D and such that v
2< (! + u2)/2"

2Let p(z) + pl z + p2 z + be regular in the unit disk such that (p(z),

p’()) D fo= al . If Re{(p(z), zp’(z))} > 0 (z [!), then Re p(z) > 0

for z .
2. PROPERTIES OF Df(z). Applying Lemma I, we prove

THEOREM I. Let f(z) be in the class * and satisfy the condition

D f(z) 0 (0 < z < I) for a __>- I. Then Df(z) is also in the class *
PROOF. We note that

Z

I+ *(zf’ (z))
z(Df(z)) De(zf’(z)) (I z)

Def(z) Def(z) z *f(z)
( z)

(2.1)

Setting 6 =-I, #(z) z/(l z) l+e, g(z) f(z), and F(z) zf’(z)/f(z) in Lemma

1, we have

Re z(Df(z))’} > 0 (z U), (2.2)
Def(z)

which implies D
a
f(z) .

THEOREM 2. Let f(z) be in the class and satisfy the condition De(zf’(z)) 0

(0 < Izl < I) for e >__-I. Then Def(z) is also in the class

PROOF. Since f(z) if and only if zf’(z) , Theorem derives z(Def(z))
De(zf’(z)) $ Hence we have Def(z)

3. THE CLASSES AND In view of Theorems and 2, we can introduce the follow-

ing classes;

and

D
eS" (f(z) E A: f(z). e => -1}

K {f(z) i A: f(z) ( K,:

Now, we derive:

THEOREM 3. For >_ O, we have +I
PROOF For f(z)

e+l’
we define the function w(z) by

z(Def(z))’ + w(z) (w(z) 1).
w(z)Def(z)
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Then, with Lemma 3, we have

z(Def(z))’ + e}D f(z)

Def(z) e + Def(z)

(I + e) + (I
(I + e)(l w(z))

Differentiating both sides of (3.2) logarithmically, it follows that

e+l
zD f(z))’ + w(z) 2zw’(z)
e+1 w(z) + (I w(z)){(l + e) + (! e)w(z)}"

D f(z)

Suppose that for z0
(w(zO) + 1).

Then it follows from Lemma 2 that

(3.2)

(3.3)

(3.4)

z0w’ (z0) row(z0)
i60

where m is real and m >= I. Setting w(z0) e we obtain

z0(D
e+l

f(z0))’
Re{

De+ f z0
+ w(z0)

,}+Re{
w(z0)

2mw(z0)
(1 w(z0)){(1 + ) + (i a)W(Zo)))

m(1 cos8O) < O,
(3.5)

M

where M {e(l cosS0) + (I -e)sin280}2 + {a + (I -)cosS0}2sin280
This contradicts the hypothesis that f(z) @ e+l" Therefore, w(z) 6as to satisfy

that I(,.)I <, fora zU. uha

Re z(Def(z))’’} Re {I + w(z.Def(z) I" w(’z > 0, (3.6)

which implies f(z) S
THEOREM 4. For e > O, we have

S*e {id},

where id is the identity function f(z) z.

PROOF. Note that Dez z for all , and that
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Re {} > 0 (zf_U)
D z

for all a. Consequently, we conclude that id a for all .
For the converse, we assume that the function f(z) belonging to Is in the

class S . Then we have

D f(z) Z

n=O

r(n + + I) n+1 *
n!r( + I) an+IZ " S

for all a > 0. It is well known that

lan+ll < n +

for f(z) S*. This implies

or

r(n + = + I) < n +1n!r( + I) an+l

llan+ll < (n + l)!r(a + I)
r(n + a + I)

for all = > 0. Therefore, we have f(z) z.

By virtue of Theorem 3, we prove:

THEOREM 5. For _> 0, we have Ka+ K.
PROOF. By Theorem 3, it follows that

(n> I)

(n > 1),

(n > 1)

(3.7)

(3.8)

f(z) Ka+l Da+If(z) K

z(Da+if(z)) S*
Da+l(zf (z)) S*
zf’ (z) E Sa+I

====zf’ (z) (5 S
=== ma(zf (z)) S*
.z(Dafz)) S

This asserts the result of the theorem.

THEOREM 6. FOR a > O, we have
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Ka {id},

where id is the identity function f(z) z.

The proof of Theorem 6 is similar to that of Theorem 4.

Furthermore, an application of Lemma 4 to the classes and gives:

THEOREM 7. Let f(z) be in the class * with a >-I. Then

8-I

Re {I Df(z)) > (ze !z 28
(3.9)

where < 8 < 3/2.

PROOF. We define the function p(z) by

Daf(z)}A p(z) + (A- I) (3.1o)

where A + I/2(8-I). Differentiating (3.10) logarithmically, we have

z(Daf(z)) zp’ (z)

Daf(z) 8- p(z) + (A- I)

*Since f(z) a’ it follows that

+ i. (3.11)

Re Zg’(z) + I} > 0 (z U). (3.12)
8- p(z) + (A- I)

Let p(z) u u + iu
2
and zp’(z) v v + iv2, and define the function (u,v) by

V
(u,v) 8- u + (A- I) + I. (3.13)

Then #(u,v) is continuous in D (C-{I-A})xC, and together with (I,0) D and

Re{#(l,0)} > 0. Moreover, for all (iu2, Vl) D such that v < -(I + u22)/2,
we can show that

v
Re {. .} +

u
2
+ (A- I)

2
-I

(A- I)(1 + u2)
< + < 0, (3.14)
8- 2{u22 + (A- "2)

Re {dp(iu2,vl)} 8-

for < 8 < 3/2. Hence the function #(u,v) satisfies the conditions in Lemma 4. It

follows from this fact that Re p(z) > 0 for z , that is,

Re AIDaf(z)l -(A- I)} > 0 (z ). (3.15)
z

This completes the assertion of Theorem 7.

Taking 8 3/2 in Theorem 7, we have:

COROLLARY I. Let f(z) be in the class * with e > -I. Then
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I/2
af()

(3.16)

COROLLARY 2. Let f(z) be in the class with a > -I. Then

Re "i[Daf[z))’# B-I > 2B (z -E. U), (3.17)

where < < 3/2.

PROOF. Note that

f(z) Ks ====> Df(z) K

==== z(Def( z))’ S*
D(zf (z)) E S*

which implies
<==== zf’ (z) E S*,

D(zf’(z)) (Df(z)),.

Therefore, we have the corollary with the aid of Theorem 7.

4. INTEGRAL OPERATOR J (f). We define the integral operator J (f) byc c

j (f) c + z.j tc_if(t)dt (c >-1) (4.1)
z 0

for f(z) A The operator J (f) when c N {i, 2, 3, was studied by

Bernardi [6]. In particular, the operator Jl (f) was studied by Libera [7] and

Livingston [8].

THEOREM 8. Let f(z) be in the class $ with = > 0. Then J(f) is also in

$,the class .
PROOF. Define the function w(z) by

z(DJ(f))’ + w(z)
-w(z) (w(z) I). (4.2)

DJ(f)
Then, by taking the differentiation of both sides logarithmically, we have

2(DJ(f))" + z(DJ(f)) z(DJ(f))
z(DaJa(f) )’ DJ(f)

2zw’ (z) (4.3)(I + w(z))(l w(z))

Since

z(z(Def(z))’) z2(D=f(z)) + z(Def(z)) ’, (4.4)

we can see that

z2(DC*f(z)) ((, + l)z(DC*+If(z)) (c, + l)z(Daf(z)) (4.5)
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by Lemma 3. Furthermore, it follows from the definition of J(f) that

Daf(z) D
a+l

Ja( f)- (4.6)

By using (4.5) and (4.6), we have

2 Dajaz (f))" (a + l)z(Sa+IJa(f) )’ (a + l)z(Daja(f))

(a + l)z(Daf(z)) (a + 1)z(DaJa(f)) ’. (4.7)

With the aid of Lemma 3, we have

z(DaJe(f)) (a + l)Daf(z) -aDaJe(f). (4.8)

Consequently, from (4.3), we obtain

<a +, l)z(.Daf(z))
a a

(f)z(D Ja(f))’ D Ja
(a + l)Daf(z), 2zw’(z)

(1 + w(z))(1 w(z))’ (4.9)

or

z(DaJa(f))
Since (4.8) implies

(a +_l)Daf(z)_ [z(Daf(z)) z(DaJa (f))’
Daf(z) DaJa(f)

(a + l)Daf(z +
aD Ja (f)

z DaJa (f) )’ z DaJ(f) )’

it follows from (4.10) that

2zw’ (z) (4 I0)(I + w(z))(l w(z))"

( + a) + (
+ w(z) (4.11)

z(Daf(z))’ + w(z) 2zw’(z)
w(z) + (l w(z)){(l + a) + (I a)w(z)}" (4.12)

Daf(z)

By assuming

I <z)l I-<zo)l
Izl lzol

for z0 U and using the same technique as in the proof of Theorem 3, we can show that

z(DaJ (f))’
Re {. a

Re {I + w(z)} > 0 (z U). (4 13)
Daja f

w(z)

Thus we conclude that Ja(f) is in the class

COROLLARY 3. Let f(z) be in the class Sa with a > O. Then, for p N
,

(Zp+iFp(a+l a+l ,I a+2 ..... a+2; z))*f(z)

where p+IFp(a ,..., ap+ 81 ,..., 8p;Z) denotes the generalized hypergeometric

function.
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PROOF. It is easy to see that

Ja (f)
a + t-I E tn+l) d tan+
z 0 n=0

n+l+ zE In + + an+l
n=0

(z2F l(a+l ,I ;a+2;z))*f(z) (4.14)

for f(z) . Therefore, by Theorem 8, we have

(Z2Fl(+l l;+2;z))*f(z) *
Repeating the same manner, we conclude that ,,

f(z) Sa (z2Fl(a+l, l’a+2"z))*f(z) Sa

(z3F2(a+l,a+l,1;a+2,a+2"z))*f(z) Sa

.(Zp+iFp(a+l,...,a+l,l’a+2,-.-,a+2;z))*f(z) a.

Finally, we prove

withTHEOREM 9. Let f(z) be in the class a
in the class

PROOF. In view of Theorem 5, we can see that

f(z) Ka
z(Daf(z))’

D(zf’ (z))

*<-_-- f’ (z) .
J.(zf’(z)) S

Da(j(zf’)) S*.
<=F z(DJa(f) )’ S

Then J=(f) is also

W=2DaJ (f) K

which completes the proof of Theorem 9.

COROLLARY 4. Let f(z) be in the class with >= O. Then, for P N,
(Zp+iF (+I ..., +I I;+2 a+2;z))*f(z) K a where p+IFp(aI, ;B ...,8 ;z)

p ’=p+l p
denotes the generalized hypergeometrlc function.
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