
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2010, Article ID 307209, 19 pages
doi:10.1155/2010/307209

Research Article
Constraint Consensus Methods for Finding Interior
Feasible Points in Second-Order Cones

Anna Weigandt,1 Kaitlyn Tuthill,2 and Shafiu Jibrin3

1 Department of Mathematics, Illinois State University, Normal, IL 61790-4520, USA
2 Department of Mathematics, Saint Michael’s College, Colchester, VT 05439, USA
3 Department of Mathematics and Statistics, Northern Arizona University, Flagstaff,
AZ 86011-5717, USA

Correspondence should be addressed to Shafiu Jibrin, shafiu.jibrin@nau.edu

Received 29 August 2010; Revised 17 November 2010; Accepted 17 December 2010

Academic Editor: Tak-Wah Lam

Copyright q 2010 Anna Weigandt et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Optimization problems with second-order cone constraints (SOCs) can be solved efficiently by
interior point methods. In order for some of these methods to get started or to converge faster, it is
important to have an initial feasible point or near-feasible point. In this paper, we study and apply
Chinneck’sOriginal constraint consensus method andDBmax constraint consensus method to find
near-feasible points for systems of SOCs. We also develop and implement a new backtracking-like
line search technique on these methods that attempts to increase the length of the consensus vector,
at each iteration, with the goal of finding interior feasible points. Our numerical results indicate
that the new methods are effective in finding interior feasible points for SOCs.

1. Introduction

We consider a system of second-order cone inequalities as follows:

cTi x + di − ‖Aix + bi‖ ≥ 0
(
i = 1, 2, . . . , q

)
, (1.1)

where x ∈ R
n, Ai is an mi × n matrix, bi is a vector in R

mi , ci is a vector in R
n, and di is

a scalar. The norm is the standard Euclidean norm. We assume the interior of the feasible
region S = {x ∈ R

n | cTi x + di − ‖Aix + bi‖ ≥ 0, i = 1, . . . , q} is nonempty.
Second-order cones (SOCs) are important to study because there exist many

optimization problems where the constraints can be written in this form. For instance, SOCs
can be used to easily represent problems dealing with norms, hyperbolic constraints, and

2 Journal of Applied Mathematics

robust linear programming. There are also a huge number of real world applications in areas
such as antenna array weight design, grasping force optimization, and portfolio optimization
(see [1] for more information on these and other applications). Furthermore, there exist
efficient interior point methods for solving optimization problemswith SOC constraints, such
as the primal-dual interior-point method. Because of these applications and the success of
interior point methods when applied to SOCs, there exists a need to be able to efficiently find
a near-feasible or feasible point for a system of SOCs [1–4]. One approach to feasibility is
given in [5].

In this paper, we will describe two of Chinneck’s constraint consensus algorithms and
apply them to SOCs to find near-feasible points. These are the Original constraint consensus
method and DBmax constraint consensus method. One could of course add a small value
to the final consensus vector of these methods to make it enter the interior of the feasible
region [6]. However, this would not work if the final consensus vector is far away from
the boundary. We propose a different approach, one which increases the step size of the
consensus vector at each iteration using a backtracking technique. The goal is to find interior
feasible points and to reduce the number of iterations and amount of time. The technique
works by extending the consensus vector by a given value and then backtracking until
it is as close as possible to the feasible region at a point where the number of satisfied
constraints does not decrease. Finally, we investigate the effectiveness of the modification
on applied to Original and DBmax methods by testing them upon randomly generated
problems. The results show that the backtracking technique is effective at finding interior
feasible points. It also greatly reduces the number of necessary iterations and time of the
methods.

We also study how our work for SOCs apply to the special case of convex quadratic
constraints (CQCs). More information on the importance of CQCs in the field of optimization
can be found in [7, 8]. Our results for CQCs show that backtracking also significantly reduces
the number of necessary iterations and time of the Original method. It also was able to find
interior feasible points on many of the test problems. However, backtracking does not work
well with theDBmaxmethod in the case of CQCs.We note that in both constraint types (SOCS
or CQCs), DBmax method outperforms the Original method, as expected.

2. The Constraint Consensus Methods Applied to Second-Order Cones

In this section, we study and apply Chinneck’s Original constraint consensus and DBmax
constraint consensus methods to SOCs in order to find near-feasible points of the system
(1.1).

The first constraint consensus method, hereby, called Original was developed by
Chinneck in [3] (see Algorithm 1). The method starts from an infeasible point x0. The
method associates each constraint fi(x) ≥ 0 with a feasibility vector fvi (i = 1, 2, . . . , q).
In the case of our SOCs, fi = cTi x + di − ‖Aix + bi‖. The feasibility vector is defined by
fvi = v∇fi(x0)/‖∇fi(x0)‖2, where v = max{0,−fi(x0)} is the constraint violation at x0 and
∇fi(x0) is the gradient of fi(x) ≥ 0 at point x0. We assume that ∇fi(x) exists. Note that if
fi(x) is linear, x0+fvi extends from x0 to its orthogonal projection on the constraint fi(x) ≥ 0.
The length of the feasibility vector ‖fvi‖ = v/‖∇fi(x0)‖ is called the feasibility distance. We
define x0 to be near feasible with respect to fi(x) ≥ 0 if ‖fvi‖ < α, where α is a preassigned
feasibility tolerance. We say that x0 is feasible with respect to fi(x) ≥ 0 if fi(x0) ≥ 0 and is an
interior feasible point if fi(x0) > 0.

Journal of Applied Mathematics 3

INPUTS: set of q constraints (1.1), an initial point x, a feasibility distance tolerance α,
a movement tolerance β, maximum number of iterations μ.
while steps < μ do

NINF = 0, for all j : nj = 0, sj = 0
for every constraint i do

if constraint i is violated then
Calculate feasibility vector fvi and feasibility distance ‖fvi‖
if ‖fvi‖ > α then

NINF = NINF + 1
for every variable xj do

nj ← nj + 1, sj ← sj + fvij

If NINF = 0 then
exit successfully

for every variable xj : do
if nj /= 0 then

tj = sj/nj

else
tj = 0

if ‖t‖ ≤ β then
exit unsuccessfully

x = x + t, steps = steps + 1

Algorithm 1: Original constraint consensus algorithm.

The feasibility vectors are then combined to create a single consensus vector which
reflects the movements suggested by all the feasibility vectors. The consensus vector, t, is
created by averaging the nonzero components of the feasibility vectors. Each component of t
is given by tj = sj/nj (the average of the jth components of the violated feasibility vectors)
with sj being the sum of the jth components of the feasibility vectors for each constraint that
is violated at the point x0, and nj being the number of constraints that are violated (not near
feasible) at point x0. The consensus vector is then added to x0 to get a new iterate x1, and the
algorithm is repeated until the number of violated constraints (NINF) at the current iterate is
zero. The algorithm will also stop looping if the consensus vector becomes too short and not
enough progress towards the feasible region is beingmade quickly enough—if themovement
tolerance β is reached.

Ibrahim et al. gave several modifications of the Original method in [9]. While the
Originalmethod treats all eligible feasibility vectors equally, the variations they develop place
emphasis on feasibility vectors that have a stronger influence on the consensus vector. They
generate two different types of improved constraint consensus algorithms. They generally
found a direction-based algorithm, called DBmax, to be the most successful among all the
variations, see Algorithm 2.

DBmax looks at the jth component of every valid feasibility vector and takes the
maximum value for the sign with the most votes, which then becomes the jth entry of the
consensus vector. If there are equal number of positive and negative jth components, tj
becomes the average of the most positive and most negative jth component of the valid
feasibility vectors. Let s+j be the value of the most positive jth component of the feasibility
vectors, s−j be the value of the most negative jth component of the feasibility vectors, n+

j be
the number of violated constraints that vote for a positive movement for the variable xj , and
n−j be the number of violated constraints that vote for a negative movement for the variable
xj .

4 Journal of Applied Mathematics

INPUTS: set of q constraints (1.1), an initial point x, a feasibility distance tolerance α,
a movement tolerance β, maximum number of iterations μ.
while steps < μ do

NINF = 0, for all j : n+
j = 0, n−j = 0, s+j = 0, s−j = 0

for every constraint i do
if constraint i is violated then

Calculate feasibility vector fvi and feasibility distance ‖fvi‖
if ‖fvi‖ > α then

NINF = NINF + 1
for every variable xj do

if fvij > 0 then
n+
j ← n+

j + 1
if fvij > s+j then

s+j ← fvij

else if fvij < 0 then
n−j ← n−j + 1
if fvij < s−j then

s−j ← fvij

if NINF = 0 then
exit successfully

for every variable xj : do
if n+ = n− then

tj = (s+j + s−j)/2
else if n+

j > n−j then
tj = s+j

else
tj = s−j

if ‖t‖ ≤ β then
exit unsuccessfully

x = x + t, steps = steps + 1

Algorithm 2: DBmax constraint consensus algorithm.

For a more specific example, we consider a system of 3 SOCs in R
2, pictured in

Figure 1. We will refer to this system when demonstrating concepts throughout this paper.

Example 2.1. A system of q = 3 second-order cones (SOCs) with n = 2 variables:
(1) cT1x + d1 − ‖A1x + b1‖ ≥ 0,
(2) cT2x + d2 − ‖A2x + b2‖ ≥ 0,
(3) cT3x + d3 − ‖A3x + b3‖ ≥ 0,

where

A1 =

[
6 −7
2 3

]

, b1 =

[
−7
1

]

, c1 =

[
5
8

]

, d1 = 8,

A2 =

[−4 3

3 −8

]

, b2 =

[−2
−3

]

, c2 =

[
4

−8

]

, d2 = 8,

A3 =

[−2 −2
2 −4

]

, b3 =

[−9
−10

]

, c3 =

[
3

−4

]

, d3 = 6.

(2.1)

Journal of Applied Mathematics 5

10

8

6

4

2

0
−2
−4
−6
−8
−10

1086420−2−4−6−8−10

Figure 1: The feasible region S for Example 2.1.

We define the function

f(x) = cTx + d − ‖Ax + b‖. (2.2)

Note that f(x) = 0 gives the boundary of the cone, f(x) is nonnegative inside the feasible
region of the cone and negative outside of the cone. We can see in Figure 2, an example of the
contours of f(x) for Cone (1) of Example 2.1.

The following theorem is well known. An elementary proof can be given using the
triangle inequality as shown. It will be used to discuss the convergence of the Original and
DBmax methods.

Theorem 2.2. f(x) is concave over R
n.

Proof. For convenience, we will consider two separate functions, f1(x) = cTx + d and f2(x) =
−‖Ax + b‖. The sum of two concave functions is also concave, so it suffices to show that f1(x)
and f2(x) are both concave. f1(x) is linear, so it is concave. In order to show f2(x) is concave
in R

n, it suffices to prove that f2(tx+(1− t)y) ≥ tf2(x)+(1− t)f2(y) for 0 ≤ t ≤ 1 and x, y ∈ R
n.

By the triangle inequality, we have that

∥∥t(Ax + b) + (1 − t)(Ay + b
)∥∥ ≤ ‖t(Ax + b)‖ + ∥∥(1 − t)(Ay + b

)∥∥

⇐⇒ ∥∥tAx + tb + (1 − t)Ay + (1 − t)b∥∥ ≤ t‖(Ax + b)‖ + (1 − t)∥∥(Ay + b
)∥∥

⇐⇒ ∥∥A
(
tx + (1 − t)y) + tb + (1 − t)b∥∥ ≤ t‖(Ax + b)‖ + (1 − t)∥∥(Ay + b

)∥∥

⇐⇒ ∥∥A
(
tx + (1 − t)y) + b

∥∥ ≤ t‖(Ax + b)‖ + (1 − t)∥∥(Ay + b
)∥∥

⇐⇒ −∥∥A(
tx + (1 − t)y) + b

∥∥ ≥ −t‖(Ax + b)‖ − (1 − t)∥∥(Ay + b
)∥∥.

(2.3)

This means that f2(tx + (1 − t)y) ≥ tf2(x) + (1 − t)f2(y), so f2(x) is concave. The sum of
two concave functions is also concave, so f1(x) + f2(x) is concave. Therefore f(x) is also
concave.

6 Journal of Applied Mathematics

−10 −5 0 5 10

10

8

6

4

2

0

−2
−4
−6
−8
−10

(a)

−10
−5

0
5

10

−10
−5

0
5

10

−200
−150
−100
−50

0

50

100

(b)

Figure 2: The contours and graph of f(x) for cone (1) of Example 2.1.

Projection algorithms such as the Original and DBmax constraint consensus methods
have been proven to converge, when the functions fi(x) are concave [3, 10, 11]. So,
Theorem 2.2 guarantees convergence in the case of SOCs. Theorem 2.2 shows that the feasible
region S of our system (1.1) is convex.

The main task in adapting the consensus methods to SOCs is computing the gradient
∇f(x) of f(x) = cTx + d − ‖Ax + b‖. It is given by

∇f(x) = c − AT (Ax + b)
‖Ax + b‖ . (2.4)

When calculating the gradient, there exist two potential problems. First of all, there
are times when the gradient may fail to exist. When Ax + b = 0 the gradient is undefined.
For example, in our first cone, the solution to Ax + b = 0 is x = (0.4375,−0.625). As shown in

Journal of Applied Mathematics 7

Gradient is undefined

10

8

6

4

2

0

−2
−4
−6
−8
−10

1086420−2−4−6−8−10

(0.4375,−0.625)

Figure 3: The gradient for cone (1) of Example 2.1 is undefined at the indicated point.

Figure 3, this point happens to be within the feasible region of our cone. This will not always
be the case, but the probability of picking a solution to Ax + b = 0 within our algorithm is
very slim. Another potential problem is when the gradient is zero, the feasibility vector will
be undefined. If ∇f(x) = 0 or undefined at an iteration, the algorithm fails and one should
pick a different starting point. For cone (1) our example there does not exist a point where
the gradient is zero, as shown below

∇f(x) = 0,

c − AT (Ax + b)
‖Ax + b‖ =

[
0

0

]

,

⎡

⎢⎢⎢⎢⎢⎢
⎣

36x2 − 40x1 + 40
√
(2x1 + 3x2 + 1)2 + (7x2 − 6x1 + 7)2

+ 5

8 − 58x2 − 36x1 + 52
√
(2x1 + 3x2 + 1)2 + (7x2 − 6x1 + 7)2

⎤

⎥⎥⎥⎥⎥⎥
⎦

=

[
0

0

]

.

(2.5)

The only possible solution to this system happens to be x1 = 0.4375 and x2 = −0.625, which
is where the gradient is undefined. This means that there is no solution to ∇f(x) = 0 for this
particular example.

We know from Theorem 2.2 that f(x) is concave. A nice result is that if f(x) is strictly
concave, then the only potential place for the gradient to be zero occurs inside of the feasible
region, as shown in Theorem 2.3.

8 Journal of Applied Mathematics

80

60

40

20

0

−20

−40

−60

−80
0 0.5 1 1.5 2 2.5 3

Figure 4: g(γ) on the interval [0, 3] for cone (1) of Example 2.1 at xk = (−7, 6).

Theorem 2.3. Suppose f(x) is strictly concave. If ∇f(x) = 0, then x is inside of the feasible region
of f(x) ≥ 0.

Proof. If the gradient is zero, f(x)must be at a critical point. Since f(x) is strictly concave, the
only potential critical point will be the maximum of f(x). Since f(x) < 0 outside the feasible
region and f(x) ≥ 0 inside the feasible region, it follows that the maximum of f(x)must also
be nonnegative. Therefore the gradient can only be zero inside of the feasible region.

As a consequence of this result, for strictly concave constraints, the gradient will only
be zero inside of the feasible region, and so the feasibility vector exists at all iterates of our
algorithms.

Let g(γ) = f(xk + γsk), where sk is the feasibility vector at xk. Figure 4 is an example of
g(γ). The graph of g(γ) is a slice of the graph of f(x). It follows from Theorem 2.2 that g(γ)
is concave in γ over R.

The following results show that in each iteration of the algorithm, we move closer to
the boundary of the feasible region.

Theorem 2.4. Suppose the line {xk + γsk | γ ∈ R} intersects the boundary of {x | f(x) ≥ 0} at γ∗.
Then g(γ) is nondecreasing over [0, γ∗].

Proof. g(γ) is negative over [0, γ∗) and is zero at γ∗. Since g(γ) is concave over R, then g(γ) is
increasing over [0, γ∗].

For concave f(x), approximations of the feasibility vector will most often fall short
of reaching the boundary of f(x) ≥ 0. As such the consensus vector will also fall short of
the boundary. It may be desirable to increase the length of the consensus vector as much as
possible towards the boundary. From Figure 5, we can see that for all points that lie outside
of the feasible region of the cone, the direction of the gradient points is the direction of the
boundary. However, this is not the case for all SOCs. As seen in Figure 6, some iterates may
not have a gradient that points directly at the feasible region. Hence, there is a limit to how
much to increase the length of the consensus vector in general. This point is noted when we
discuss the backtracking technique later.

Journal of Applied Mathematics 9

−10 −5 0 5 10

10

8

6

4

2

0

−2
−4
−6
−8
−10

Figure 5: The gradient vector field of f(x) for cone (1) of Example 2.1.

−50 0 50
−40

−30

−20

−10

0

10

20

30

40

Figure 6:Gradient field of cone (2) of Example 2.1. Many starting points do not have a gradient that points
directly at the feasible region.

3. The Case of Convex Quadratic Constraints

In this section, we study how the discussions in the previous section apply to the special case
of convex quadratic constraints (CQCs). This study will be limited to results that are different
and relevant to CQCs.

We consider a system of CQCs:

cTi x + di − (Aix + bi)
T (Aix + bi) ≥ 0

(
i = 1, 2, . . . , q

)
, (3.1)

where x ∈ R
n,Ai is anmi ×nmatrix, bi is a vector in R

mi , ci is a vector in R
n, and di is a scalar.

10 Journal of Applied Mathematics

For ease of presentation, consider the single CQC

cTx + d − (Ax + b)T (Ax + b) ≥ 0. (3.2)

It is nice to note that a CQC is also SOC. To see this, note that

cTx + d − (Ax + b)T (Ax + b) ≥ 0⇐⇒ xTPx + 2qTx + r ≤ 0, (3.3)

where

P = ATA,

q = ATb − 1
2
c,

r = bTb − d.

(3.4)

For simplicity and without a loss of generalization, we assume that P is positive definite. So,
P 1/2 exists and is invertible. Then, the CQC (3.2) is equivalent to

∥∥∥P 1/2x + P−1/2q
∥∥∥
2 −

(
qTP−1q − r

)
≤ 0. (3.5)

This is equivalent to the SOC

(
qTP−1q − r

)1/2 −
∥∥∥P 1/2x + P−1/2q

∥∥∥ ≥ 0. (3.6)

The above result implies that all our results on concavity and convergence on SOCs also
extend to the CQC system (3.1). It suffices to compute the gradient∇f(x) and HessianHf(x)
of f(x) = cTx + d − (Ax + b)T (Ax + b). They are given by

∇f(x) = c − 2ATAx − 2ATb,

Hf(x) = −2ATA.
(3.7)

The feasibility vector does not exist when the gradient is zero. Note that the gradient∇f(x) =
0 is given by the solution to the linear system

2ATAx = c − 2ATb. (3.8)

To use as an illustration, consider the following example.

Example 3.1. A convex quadratic constraint (CQC)with n = 2 variables.

Journal of Applied Mathematics 11

f1(x) := cT1x + d1 − (A1x + b1)
T (A1x + b1) ≥ 0, where

A1 =

[−5 1

6 −10

]

, b1 =

[
0

−2

]

, c1 =

[−8
6

]

, d1 = 8. (3.9)

For Example 3.1, the linear system (3.8) is

[
122 −130
−130 202

][
x1

x2

]

=

[
16

−34

]

(3.10)

with the solution x1 = −27/176 and x2 = −47/176, which is in the feasible region. See Figure 7.

Since the Hessian Hf(x) = −2ATA, f(x) is strictly convex if ATA is positive definite.
So, similar to Theorem 2.3, if ATA is positive definite, then the gradient can only be zero at
a point inside the feasible region. This means, in this case, the feasibility vector exists at all
iterates of the consensus algorithms.

4. New Variation of the Constraint Consensus Methods

In this section, we propose a modification to the Original and DBmax constraint consensus
methods. It extends the length of the consensus vector at each iteration of the methods with
the goal of finding a point in the interior of the feasible region S of our system (1.1).

The Backtracking Line Search Technique (Algorithm 3) is a step in the constraint consen-
sus methods (Algorithms 1 and 2) that attempts to extend the length the consensus vector t
to a closer near-feasible point. It goes to a point where the number of satisfied constraints
does not decrease. The backtracking technique seeks to provide rapid convergence by
inexpensively testing to see if we can increase the size of the consensus vector. Starting
by computing the consensus vector in the usual way (either using the Original method or
DBmax), it tests to see if it can successfully increase the size of the consensus vector, in the
hope of getting closer to the feasible region in less iterations and time. The technique has the
added benefit that it is possible for the final point to be actually in the interior instead of being
a near-feasible point.

The Backtracking Line Search Technique uses the concept of a binary word.

Definition 4.1. Define δ(x) = δ1(x), . . . , δq(x) to be the binary word for the set of constraints
(1.1) or (3.1), given by

δi(x) =

⎧
⎨

⎩

0, if x is fi(x) ≥ 0 (ith constraint is satisfied at x),

1, otherwise.
(4.1)

If δ(x) = [0 · · · 0], then x is a feasible point. We can easily check the feasibility of x by
taking the sum of the components of the binary word. When the sum is 0, we know that x is
feasible and we can allow the algorithm to exit. We can define an equivalence relation on R

n,
where x1 is related to x2 if the binary word of x1 is the same as the binary word of x2. The
equivalence classes form a partition of R

n.

12 Journal of Applied Mathematics

INPUTS: set of q constraints (1.1) or (3.1), a point x, the consensus vector t
Compute the binary word b at x
count = 0
while count < 3 do

α = 1 + 0.5count

xtemp = x + α ∗ t
Compute the binary word bcomp at xtemp
if (bcomp) ≤ sum(b) then

x = xtemp; Exit Function
else

count = count+1
if count = loop then

x = x + t

Algorithm 3: Backtracking line search technique.

−1.5 −1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Figure 7: The solution for the system (3.10) over f1(x) ≥ 0 of Example 3.1 is given by the intersection of
the two lines at x = (−27/176,−47/176).

We start by computing the consensus vector t. Then we scale the consensus vector by
an initial scalar factor. We add this consensus vector to x. Using this new point, we count the
number of constraints that are violated with the binary word. We consider the new consensus
vector to be successful if the resulting point violates the same number or fewer constraints
than the previous point did. If this is not the case, the algorithm backtracks and tries a
smaller increase in the consensus vector. If the point still has not found an improvement
in the number of satisfied constraints after backtracking three times, then it returns to the
starting consensus vector. In our tests, we scale the consensus vector by 2, 1.5, 1.25, and if
none of those are satisfactory then we return to a step size of 1. Algorithm 3 could easily be
varied to use other step sizes, based on the type of constraint or problem.

In Figure 8, we can see a comparison of the Original method and Original method
with backtracking applied to Example 2.1. Given the same initial starting point of (−8,6),
the Original method with backtracking reached feasibility in fewer iterations and less time.
Furthermore, the final point obtained by using the Original method with backtracking was
actually feasible for all three constraints, as opposed to being near feasible. The final point
obtained by the Original method was only feasible for the second constraint, and within a
feasibility distance tolerance 0.01 for the other two constraints.

Journal of Applied Mathematics 13

Final point
(0.0775,−0.8696)

Original method
Constraint violation
Cone 1: −0.091
Cone 3: −0.0629
Iterations: 13

−10 −5 0 5 10

10

8

6

4

2

0

−2
−4
−6
−8
−10

Starting point
(−8,6)

(a)

−10 −5 0 5 10

10

8

6

4

2

0

−2
−4
−6
−8
−10

Final point
(3.1536,−0.5379)

Original with backtracking
No final constraint violation
Iterations: 6

Starting point
(−8,6)

(b)

Figure 8: Comparison of Originalmethod and Original method with backtracking applied to Example 2.1.

5. Numerical Experiments

In this section, we use numerical experiments to test theOriginalmethod andDBmaxmethod
with and without the backtracking line search technique on random test problems.

For each SOC test problem, we first generate integer values q, mi = m, and n uniformly
in the intervals [1, 50], [1, 10], and [2, 10], respectively. Then, a random point is chosen with
the values of each entry being in uniform in [−10, 10]. After this, q SOCs are generated using
m and n, where each entry of A, b, c, and d is uniform in the interval [−10, 10]. We check
to ensure that all the q SOCs are satisfied at the random point. Table 1 lists the SOC test
problems. The CQC test problems are generated like the SOC test problems. However, the q
CQCs are generated so that each is satisfied at the origin and the entries of b are uniform in
[−0.5, 0.5]. The CQC test problems are given in Table 1.

14 Journal of Applied Mathematics

Table 1: Test problems.

Problem SOCs CQCs
n mi = m q n mi = m q

1 10 9 7 9 7 7
2 6 2 48 3 9 15
3 3 8 15 7 3 25
4 8 1 37 4 9 28
5 7 3 27 10 4 8
6 3 7 50 2 10 41
7 3 8 5 5 8 47
8 9 7 7 8 4 34
9 7 5 20 6 6 17
10 10 7 37 2 8 44
11 9 2 36 8 2 19
12 10 4 42 2 4 16
13 5 3 36 2 6 3
14 3 10 6 10 9 46
15 9 8 6 5 5 10
16 8 7 1 5 7 2
17 6 6 5 7 9 25
18 10 9 43 7 10 48
19 8 9 30 8 2 41
20 10 5 42 10 3 41
21 7 9 37 7 1 32
22 6 2 37 3 3 48
23 9 2 47 2 9 24
24 4 9 10 2 4 1
25 10 7 26 4 2 25

For each test problem and method, we chose a random infeasible point x0 as our
starting point with entries uniform in [−100, 100]. We set our feasibility distance tolerance to
be α = 0.01 and our movement tolerance to be β = 0.001. We chose our maximum number of
iterations to be μ = 500. All codes were written in MATLAB c© 7.9.0 and ran on Dell OptiPlex
GX280.

5.1. Second-Order Cones

Tables 3 and 4 give the results for the SOC test problems. If the number (Iter) of iterations is
500, it means themethod did not converge. The last column showswhether or not themethod
converged to an interior feasible point. Table 2 gives the success rate over all the 25 problems
in finding an interior feasible point and average time per problem (where converged). Both
the Original method and DBmax method failed in Problem 6 and Problem 13.

As expected, on average the DBmax method took fewer iterations and less time than
theOriginalmethod. Also, note thatDBmax found an interior feasible point in Problem 24. It is
interesting to note that the backtracking technique showed general improvement in iterations
and processing time in the methods over all the test problems, where there was convergence.

Journal of Applied Mathematics 15

Table 2: Success rates and average times on SOCs.

Algorithm Success rate % Average time (sec)
Original 0 0.131
Original (Backtrack) 64 0.075
DBmax 4 0.055
DBmax (Backtrack) 84 0.033

Table 3: SOCs: comparison of Originalmethod and Originalmethod with backtracking.

Problem Original Originalwith backtracking
Iter Time (sec) Interior feas Pt? Iter Time (sec) Interior feas Pt?

1 34 0.055 N 4 0.023 Y
2 83 0.194 N 33 0.162 N
3 121 0.094 N 51 0.086 Y
4 53 0.117 N 14 0.059 Y
5 98 0.135 N 30 0.085 N
6 500 1.195 N 500 2.506 N
7 40 0.013 N 4 0.003 Y
8 81 0.034 N 24 0.021 N
9 78 0.082 N 32 0.071 N
10 42 0.080 N 15 0.059 Y
11 140 0.252 N 61 0.228 N
12 127 0.269 N 60 0.258 N
13 500 0.870 N 500 1.842 N
14 7 0.003 N 3 0.003 Y
15 23 0.009 N 4 0.003 Y
16 5 0.001 N 3 0.001 Y
17 12 0.004 N 3 0.002 Y
18 85 0.189 N 5 0.025 Y
19 95 0.148 N 10 0.033 Y
20 66 0.139 N 22 0.096 Y
21 43 0.083 N 32 0.126 Y
22 339 0.610 N 10 0.040 Y
23 197 0.448 N 69 0.327 N
24 10 0.006 N 4 0.005 Y
25 27 0.037 N 7 0.020 Y

On average the Original method with backtracking took less time than the Original
method. Similarly, the DBmax method with backtracking took less time than the DBmax
method. The Original method with backtracking has a strict feasibility success rate of 64%
while the DBmax with backtracking has a success of 84%.

5.2. Convex Quadratic Constraints

Tables 6 and 7 give the results for the CQC test problems. Table 5 gives the success rate over
all the 25 problems in finding an interior feasible point and average time per problem (where
converged). Again, as expected, on average theDBmaxmethod took less number of iterations
and less time than the Original method.

16 Journal of Applied Mathematics

Table 4: SOCs: comparison of DBmaxmethod and DBmaxmethod with backtracking.

Problem DBmax DBmaxwith backtracking
Iter Time (sec) Interior feas Pt? Iter Time (sec) Interior feas Pt?

1 16 0.014 N 5 0.014 Y
2 145 0.332 N 16 0.100 Y
3 101 0.077 N 30 0.061 Y
4 14 0.030 N 5 0.025 Y
5 25 0.035 N 6 0.021 Y
6 500 1.196 N 500 3.313 N
7 6 0.002 N 7 0.005 Y
8 52 0.022 N 8 0.008 Y
9 13 0.014 N 18 0.040 Y
10 20 0.038 N 8 0.038 Y
11 35 0.063 N 8 0.036 Y
12 87 0.179 N 17 0.091 Y
13 500 0.866 N 500 2.408 N
14 3 0.001 N 3 0.003 Y
15 5 0.002 N 4 0.003 Y
16 5 0.001 N 3 0.001 Y
17 14 0.004 N 4 0.003 Y
18 37 0.082 N 9 0.055 N
19 35 0.054 N 9 0.039 N
20 87 0.181 N 12 0.065 Y
21 8 0.016 N 7 0.036 Y
22 5 0.010 N 5 0.023 Y
23 31 0.072 N 10 0.057 Y
24 4 0.003 Y 4 0.007 Y
25 20 0.027 N 7 0.024 Y

Table 5: Success rates and average times on CQCs.

Algorithm Success rate % Average time (sec)
Original 0 0.110
Original (Backtrack) 44 0.061
DBmax 0 0.041
DBmax (Backtrack) 36 0.114

As can be seen from the tables, applying the backtracking technique to the Original
method dramatically reduces the number of iterations and time. In addition, the Original
method with backtracking has a strict feasibility success rate of 44%. With DBmax, the
backtracking technique did not work well. There is significant increase in both iterations and
time to reach feasibility and 11 out of the 25 problems diverged. This is most likely due to the
fact that the consensus vector in DBmax is already long. This means that an extension of the
consensus vector might move it too far and bring it right over the feasible region. We suspect
that this is due to the nature of the CQC constraints, which tend to form bounded feasible
regions.

Journal of Applied Mathematics 17

Table 6: CQCs: comparison of the Originalmethod and Originalmethod with backtracking.

Problem Original Originalwith backtracking
Iter Time (sec) Interior feas Pt? Iter Time (sec) Interior feas Pt?

1 55 0.050 N 19 0.028 N
2 16 0.022 N 7 0.016 Y
3 51 0.129 N 16 0.060 Y
4 18 0.049 N 6 0.028 N
5 158 0.127 N 53 0.070 N
6 16 0.060 N 9 0.056 Y
7 25 0.109 N 6 0.042 N
8 48 0.151 N 14 0.072 N
9 31 0.051 N 11 0.032 Y
10 15 0.061 N 8 0.052 Y
11 130 0.236 N 42 0.121 N
12 19 0.028 N 6 0.015 Y
13 14 0.005 N 8 0.005 Y
14 32 0.143 N 8 0.057 N
15 24 0.024 N 7 0.011 N
16 21 0.005 N 11 0.005 Y
17 28 0.068 N 7 0.027 N
18 26 0.119 N 6 0.043 N
19 86 0.325 N 29 0.181 N
20 77 0.291 N 30 0.183 N
21 135 0.451 N 50 0.286 N
22 24 0.115 N 8 0.059 N
23 17 0.042 N 8 0.031 Y
24 15 0.002 N 14 0.003 Y
25 39 0.101 N 12 0.050 Y

6. Conclusion

We study the Chinneck’s Original constraint consensus and DBmax methods as they apply
to second-order cones (SOCs) and the special case of convex quadratic constraints (CQCs)
to find near-feasible points. We also present a new backtracking line search technique that
increases the size of the consensus vector with the goal of finding interior feasible points.

Given a set of SOCs, we adapt the Original and DBmax constraint consensus methods
to find near-feasible points. These methods alone rarely can find an interior feasible point
with SOCs. We develop a backtracking line search technique to find interior feasible points.
We test the methods both with and without the backtracking technique over a variety of test
problems and compare them with the time and number of iterations it takes to converge.

Before applying backtracking, the method known to reach feasibility in the least
amount of time, with the fewest number of iterations was consistently DBmax. The Original
with backtracking method is still not as fast as DBmax. However, the Original with
backtracking reaches feasibility in fewer number of iterations than DBmax and is able to find
interior feasible points in most of the test problems. The Original with backtracking method
works well with SOCs and with CQCs. But, while DBmax with backtracking method works

18 Journal of Applied Mathematics

Table 7: CQCs: comparison of DBmaxmethod and DBmaxmethod with backtracking.

Problem DBmax DBmaxwith backtracking
Iter Time (sec) Interior feas Pt? Iter Time (sec) Interior feas Pt?

1 25 0.017 N 96 0.110 N
2 11 0.015 N 253 0.601 N
3 21 0.049 N 58 0.231 Y
4 13 0.035 N 500 2.071 N
5 36 0.028 N 45 0.060 Y
6 11 0.042 N 27 0.170 N
7 14 0.060 N 500 3.467 N
8 18 0.057 N 500 2.537 N
9 16 0.026 N 500 1.317 N
10 11 0.044 N 27 0.181 N
11 31 0.054 N 31 0.095 Y
12 13 0.019 N 25 0.061 N
13 12 0.004 N 23 0.012 Y
14 16 0.069 N 500 3.521 N
15 11 0.011 N 21 0.034 Y
16 21 0.005 N 24 0.009 Y
17 15 0.035 N 500 1.895 N
18 14 0.062 N 500 3.572 N
19 23 0.084 N 500 3.083 N
20 27 0.100 N 500 3.049 N
21 28 0.089 N 29 0.199 Y
22 12 0.057 N 500 3.711 N
23 12 0.030 N 27 0.103 Y
24 15 0.002 N 14 0.004 Y
25 13 0.032 N 500 2.001 N

very well with SOCs, it does not work well with CQCs. It might be that with CQCs, the
consensus vector in the backtracking step is increased too far.

Overall and considering both SOCs and CQCs, we find the backtracking line search to
be most successful in reducing time and iterations needed to reach the feasible region when
applied to the Original consensus method. As mentioned before, DBmax with backtracking
method is not successful with CQCs. In the future it would be interesting to try more
variations of the backtracking line search technique. We could compare the effectiveness
of different initial step sizes and reductions in the backtracking technique, especially with
DBmax when applied to CQCs. It would also be nice to investigate the effect of the
backtracking technique on the other variants of the Original method given in [9].

Acknowledgment

The work of A. Weigandt and K. Tuthill was supported by the Department of Mathematics
and Statistics at Northern Arizona University under the REU program of the National Science
Foundation in Summer 2010.

Journal of Applied Mathematics 19

References

[1] M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, “Applications of second-order cone
programming,” Linear Algebra and Its Applications, vol. 284, no. 1–3, pp. 193–228, 1998.

[2] F. Alizadeh and D. Goldfarb, “Second-order cone programming,” Mathematical Programming, vol. 95,
no. 1, pp. 3–51, 2003.

[3] J. W. Chinneck, “The constraint consensus method for finding approximately feasible points in
nonlinear programs,” Informs Journal on Computing, vol. 16, no. 3, pp. 255–265, 2004.

[4] Y. Nesterov and A. Nemirovsky, “Interior-Point polynomial methods in convex programming,” in
Studies in Applied Mathematics, vol. 13, SIAM, Philadelphia, Pa, USA, 1994.

[5] R. J. Caron, T. Traynor, and S. Jibrin, “Feasibility and constraint analysis of sets of linear matrix
inequalities,” Informs Journal on Computing, vol. 22, no. 1, pp. 144–153, 2010.

[6] J. W. Chinneck, Private communication with S. Jibrin, 2010.
[7] D. den Hertog, Interior Point Approach to Linear, Quadratic and Convex Programming, vol. 277 of

Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994.
[8] R. J. Vanderbei, Linear Programming: Foundations and Extensions, Kluwer Academic Publishers, Boston,

Mass, USA, Second edition, 2001.
[9] W. Ibrahim and J. W. Chinneck, “Improving solver success in reaching feasibility for sets of nonlinear

constraints,” Computers & Operations Research, vol. 35, no. 5, pp. 1394–1411, 2008.
[10] Y. Censor and S. A. Zenios, Parallel Optimization: Theory, Algorithms, and Applications, Numerical

Mathematics and Scientific Computation, Oxford University Press, New York, NY, USA, 1997.
[11] D. Butnariu, Y. Censor, and S. Reich, Inherently Parallel Algorithms in Feasibility and Optimization

and Their Applications, vol. 8 of Studies in Computational Mathematics, North-Holland Publishing,
Amsterdam, The Netherlands, 2001.

