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Image analysis by topological gradient approach is a technique based upon the historic
application of the topological asymptotic expansion to crack localization problem from boundary
measurements. This paper aims at reviewing this methodology through various applications
in image processing; in particular image restoration with edge detection, classification and
segmentation problems for both grey level and color images is presented in this work. The
numerical experiments show the efficiency of the topological gradient approach for modelling and
solving different image analysis problems. However, the topological gradient approach presents a
major drawback: the identified edges are not connected and then the results obtained particularly
for the segmentation problem can be degraded. To overcome this inconvenience, we propose an
alternative solution by combining the topological gradient approach with the watershed technique.
The numerical results obtained using the coupled method are very interesting.

1. Introduction

The goal of topological optimization is to find the optimal decomposition of a given domain
in two parts: the optimal design and its complementary. Similarly in image processing, the
goal is to split an image in several parts, in particular, in image restoration the detection of
edges makes this operation straightforward.

The goal of this work is to show how it is possible to solve some image analysis
problems using topological optimization tools. Let us recall that the basic and first idea
is based on the work of Amstutz et al. [1] in which the authors propose a solution
for crack detection problem using the topological gradient approach. Then, this approach
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was extended to different problems in image processing like restoration, classification,
segmentation, inpainting, and tomography application [2–6]. This paper presents an
overview of the applications of the topological gradient approach to major image processing
problems with an illustration of both inconveniences and advantages of this technique in
image analysis.

Let v be a given noisy image defined in a domain Ω ⊂ �2 and u the restored image. We
recall that a classical way to restore the image u is to solve the following partial differential
equations (PDE) problems

−div(c∇u) + u = v in Ω,

∂nu = 0 on ∂Ω,
(1.1)

where c is a small positive constant and n denotes the outward unit normal to ∂Ω. This
method is well known to give poor results: it blurs important structures like edges and in
order to improve this method, nonlinear isotropic and anisotropic methods were introduced.
In our topological optimization approach, c takes only two values: c0 in the smooth part of
the image and a small value ρ on edges. Then classical nonlinear diffusive approaches could
be seen as a relaxation of our method that increases the instability of the restoration process.
The basic principle of the topological gradient approach is presented briefly in Section 2.
The other sections are presented as follows The restoration problem with edge detection is
presented in Section 3. Section 4 deals with the classification problem. In Section 5, we present
the application of the topological gradient approach to tomography problem. Section 6 is
devoted to the segmentation problem; we present in this section the major drawback of the
topological gradient approach and propose an alternative to this inconvenience. We end this
paper with some concluding remarks. Several numerical tests are also presented for all the
applications studied.

2. Topological Gradient Approach: Basic Principle

Let Ω be an open bounded domain of �2 , and let, j(Ω) = J(uΩ) be a cost function to be
minimized, where uΩ is the solution to a PDE problem defined in Ω. For a small ρ ≥ 0, let
Ωρ = Ω \ σρ be the perturbed domain by the insertion of a crack σρ = x0 + ρσ(n), where
x0 ∈ Ω, σ(n) is a straight crack and n a unit vector normal to the crack. The topological
sensitivity theory provides an asymptotic expansion of j when ρ tends to zero. It takes the
general form

j
(
Ωρ

) − j(Ω) = f
(
ρ
)
G(x0) + ◦(f(ρ)), (2.1)

where f(ρ) is an explicit positive function going to zero with ρ and G(x0) is called the
topological gradient at point x0. It is clear that to minimize the criterion j, we have to
insert small holes at points where G is negative. Using this gradient type information, it
is possible to build fast algorithms. In most applications, a satisfying approximation of the
optimal solution is reached at the first iteration of the optimization process. A topological
sensitivity framework allowing to obtain such an expansion for general cost functions has
been proposed in the work of Masmoudi [1, 7].
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Figure 1: (a) Initial 512×512 Lena image, (b) restored image using the linear diffusion method, (c) restored
image using a nonlinear diffusion method, and (d) restored image using the topological gradient method.

We recall that a classical way to restore an image u from its noisy version v defined in
a domain �2 is to solve the following PDE problem

−div(c∇u) + u = v in Ω,

∂nu = 0 on ∂Ω,
(2.2)

where c is a small positive constant, called the conductivity, ∂n denotes the normal derivative
and n is the outward unit normal to ∂Ω. The idea of the topological gradient approach is to
consider only two values for the conductivity c: c0 in the smooth part of the image and 0
(or rather undefined) in its complementary (the edges). For this reason, classical nonlinear
diffusive approaches, where c takes all the values of ]0, c0[, could be seen as a relaxation of
our method. By enlarging the set of admissible solutions, relaxation increases the instability
of the restoration process, and this could explain why our method is so efficient with respect
to the algorithm cost.

3. Application to Image Restoration

The goal of this section is to use the topological gradient approach as a tool for detecting
edges for image restoration [5, 6]. In fact, an image can be viewed as a piecewise smooth
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function and edges can be considered as a set of singularities. The basic idea consists then in
applying the topological gradient approach used for crack detection [1]. More precisely, let
Ωρ be the perturbed domain obtained by the insertion of a crack σρ. The perturbed solution
uρ ∈ H1(Ωρ) satisfies

−div
(
c∇uρ

)
+ uρ = v in Ωρ,

∂nuρ = 0 on ∂Ωρ.
(3.1)

The variational formulation of problem (3.1) is given by

find uρ ∈ H1(Ωρ

)

such that aρ
(
uρ,w

)
= lρ(w) ∀w ∈ H1(Ωρ

)
,

(3.2)

where aρ is the bilinear form, defined on H1(Ωρ) ×H1(Ωρ) by

aρ(u,w) =
∫

Ωρ

(c∇u∇w + uw)dx, (3.3)

and lρ is the linear form defined on L2(Ωρ) by

lρ(w) =
∫

Ωρ

vw dx. (3.4)

Edge detection is equivalent to look for a subdomain of Ω where the energy is small.
So, our goal is to minimize the energy norm outside edges

j
(
ρ
)
= Jρ

(
uρ

)
=
∫

Ωρ

∥
∥∇uρ

∥
∥2
. (3.5)

The variation of the cost function j(ρ) = Jρ(uρ) induced by the insertion of the small crack σρ
is given by the topological gradient theory [1]:

j
(
ρ
) − j(0) = ρ2G(x0, n) + ◦

(
ρ2
)
, (3.6)

with

G(x0, n) = −cπ(∇u0(x0) · n)(∇v0(x0) · n)

− π |∇u0(x0) · n|2,
(3.7)
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where u0 is the solution of the direct problem (3.1) such that ρ = 0 and v0 is the solution of
the following adjoint problems

−div(c∇v0) + v0 = −∂uJ(u) in Ω,

∂nv0 = 0 on ∂Ω.
(3.8)

We note here that the solutions u0 and v0 are calculated in the initial domain without cracks,
in the sense that the crack size is equal to zero. Then, the topological gradient can be rewritten
in the following ways

G(x, n) = 〈M(x)n, n〉, (3.9)

where M(x) is the symmetric matrix given by

M(x) = −cπ∇u0(x)∇v0(x)T +∇v0(x)∇u0(x)T

2
− π∇u0(x)∇u0(x)T . (3.10)

We can deduce that G(x, n) is minimal when the normal n is the eigenvector associated to the
smallest (i.e., most negative) eigenvalue of the matrix M(x). In the following, this eigenvalue
will be considered as the topological gradient. Our algorithm consists in inserting small
heterogeneities in regions where the topological gradient is smaller than a given threshold
α < 0. These regions are the edges ωρ of the image. The algorithm is as follows.

Restoration Algorithm

(i) Initialization: c = c0.

(ii) Calculation of u0 and v0 the solutions of the direct (3.1) and adjoint (3.8) problems
respectively.

(iii) Computation of the 2 × 2 matrix M and its lowest eigenvalue λmin at each point of
the domain.

(iv) Set

c1 =

⎧
⎨

⎩

ρ if x ∈ Ω, λmin < α < 0, ρ > 0

c0 elsewhere.
(3.11)

(v) Calculation of u1 solution to problem (3.1) with c = c1.

For numerical experiments, we considered, in a first step, grey level images (see
Figure 1). We note that the perturbed image is obtained by adding a gaussian noise (σ = 20)
to the original image, which grey level takes its values in the interval [0, 255]. We present in
Figure 1 images restored by different approaches. More precisely, the restored image using
the topological gradient approach is presented and compared to both linear and nonlinear
diffusion methods [8]. Notice that the convergence of the nonlinear approach is achieved
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after 53 iterations. Our method can be interpreted as a linear isotropic diffusion method
defined in the complementary of edges. In the anisotropic case, not only the amount of
diffusion is adapted locally to the data but also the direction of smoothing. Like in the
anisotropic nonlinear method, we smooth along image edges while inhibiting smoothing
across edges. This can be achieved by replacing the diffusivity scalar by a diffusivity tensor.
To show the efficiency of our method, we test an anisotropic algorithm with the topological
gradient as follows

Anisotropic Topological Gradient Algorithm

(i) Initialization: c = c0.

(ii) Calculation of u0 and v0: solutions of the direct (3.1) and adjoint (3.8) problems.

(iii) Computation of the 2 × 2 matrix M and its lowest eigenvalue λmin at each point of
the domain.

(iv) Set c =AcτnA
, with A= (τ, n) and cτn =
(
c0 0
0 ε

)
, where τ and n represent the tangent

and normal directions.

(v) Calculation of u1 solution to problem (3.1).

In Figure 2, we show that there is no significant difference between the results obtained
using the isotropic or the anisotropic approach with the topological gradient method. Our
two algorithms are tested on several images. All numerical tests show that the results
obtained using the two algorithms are very similar. We show in Figure 2 a zoom of the
512 × 512 Lena image and its restoration by the nonlinear method presented in [8], and the
isotropic and the anisotropic topological gradient algorithms.

We consider now color images such that the RGB model is used. Then, the image I is
defined by a 3D vector I(x) ∈ �3 which represents the intensity of the three colors: red, green,
blue, and since each component can be treated as a grey level image, then the topological
gradient approach can easily be used, provided the cost function to be minimized has no
coupling terms between the several channels. For the restoration problem, one usually set the
cost function to the square norm of the gradient of the image. If we consider the most simple
case, that is, the standard L2 norm of the gradient, then the cost function can be easily written
as a sum of the three independent terms, one for each channel. Then, the color image problem
can be decomposed into three channel-by-channel independent problems. We mention here
that the three channels can be supposed to be coupled, and a tensor gradient of the image can
be considered as it is proposed in the work of Di Zenzo [9].

Some other coupling techniques have been defined in order to process multichannel
images. We can cite for instance the Beltrami diffusion-type process, in which images
are considered as manifolds. A nonlinear structure tensor is defined and locally adjusted
according to a gradient-type measure and allows one to control the diffusion process [10–12].

For the numerical tests, we first consider in Figure 3 the natural extension of the
topological gradient method to multi-channel images, using the standard gradient norm
and we compare this approach with the Ambrosio-Tortorelli version of the Mumford-Shah
functional.

Then to improve the restoration process, we propose in Figure 4 to present numerical
results using the Di Zenzo approach coupled with the topological gradient approach. Figure 4
shows the restoration algorithm applied to the Di Zenzo gradient using a 500 × 380 color
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Figure 2: (a) zoom of the noisy Lena image (σ = 20), (b) zoom of the restored Lena image using the
nonlinear diffusion method, (c) zoom of the restored Lena image using topological gradient approach with
the isotropic algorithm, and (d) zoom of the restored Lena image using topological gradient approach with
the anisotropic algorithm.

image. The noisy image is obtained with an additive gaussian noise, such that the signal-
to-noise ratio (SNR) is equal to 10.54. The third image corresponds to the restored image
by our algorithm. The SNR of the restored image is 19.23. The identified edges given in the
fourth image, correspond to the pixels where the most negative eigenvalue of the matrix M
is smaller than a given threshold.

We must note here that, for the case corresponding to the classical topological gradient
method, the solution u of (2.2) can be written as u = (u1, u2, u3), where uk are solutions of the
following problems:

−div
(
c∇uk

)
+ uk = vk in Ω,

∂nu
k = 0 on ∂Ω,

(3.12)

for k = 1, 2, 3, which implies that the cost function j can also be decomposed into three terms,
one for each channel, as follows:

j
(
ρ
)
=

3∑

k=1

jk
(
ρ
)
, (3.13)
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Figure 3: (a) original image, (b) noisy image (SNR = 10.59), (c) restored image by the classical topological
gradient method (SNR = 19.44, CPU = 61.03), and (d) restored image using Ambrosio-Tortorelli algorithm
(SNR = 18.47, CPU = 76.77).

with

jk
(
ρ
)
=
∫

Ωρ

∣
∣∣∇ukρ

∣
∣∣

2
dx, (3.14)

and the topological gradient G(x) can be rewritten in the following way:

G(x) = 〈M(x)n, n〉, (3.15)

where M(x) is the symmetric 2 × 2 matrix given by

M(x) =
3∑

k=1

[

−πc∇u
k
0(x)∇vk0 (x)T +∇vk0 (x)∇uk0(x)T

2
− π∇uk0(x)∇uk0(x)T

]

, (3.16)

with uk0 and vk0 being the solutions of the direct and adjoint problems with respect to each
channel k.

On the other hand, for the case corresponding to the topological gradient method
using the Di Zenzo gradient, a multispectral tensor associated to the image vector field is
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Figure 4: (a) the initial 500×380 image, (b) noisy image, (c) the restored image, and (d) edges of the restored
image.

considered and the largest eigenvalue of the tensor corresponds to the norm of the gradient,
called the Di Zenzo gradient [9]. The authors of [13] have proved the following result.

Lemma 3.1. For u = (u1, u2, u3) in L2(Ω,�3), the Di Zenzo gradient is given by

‖∇u‖DZ =

√
(
|∇u1|2 + |∇u2|2 + |∇u3|2

)1 +
√

1 − 4f(∇u)
2

, (3.17)

where f is the function defined by

f(∇u) = det2
(∇u1,∇u2) + det2

(∇u1,∇u3) + det2
(∇u2,∇u3)

(
|∇u1|2 + |∇u2|2 + |∇u3|2

)2 , (3.18)

with

det2
(∇us,∇ut) =

(
∂us

∂x1

∂ut

∂x2
− ∂ut

∂x1

∂us

∂x2

)2

for s, t = 1, 2, 3, (3.19)
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and | · | is the standard norm in �2 . As in the previous section, the topological gradient can be written
as

G(x, n) = 〈M(x)n, n〉, (3.20)

whereM(x) is the 2 × 2 symmetric matrix given by

M(x) =
3∑

k=1

[

−πc∇u
k
0(x)∇vk0 (x)T +∇vk0 (x)∇uk0(x)T

2
− πH(∇u0(x))∇uk0(x)∇uk0(x)T

]

, (3.21)

whereH is given by

H(∇u0) =
1 +

√
1 − 4f(∇u0)

2
, (3.22)

and f is defined by (3.18).

4. Application to Image Classification

This section is concerned with the problem of classifying an original image using n predefined
classes Ci, 1 ≤ i ≤ n, by choosing the color intensity as a classifier. More precisely, let u0 be the
original image defined on an open set Ω of �2 . Our goal is to find n color Ci, 1 ≤ i ≤ n, and a
partition Ωi, 1 ≤ i ≤ n, of Ω such that u0 is close to Ci in Ωi. The classified image u will then
be defined by

u(x) = Ci ∀x ∈ Ωi, (4.1)

where {Ωi}i=1,...,n are defined by

Ωi =
{
x ∈ Ω;x belongs to the ith class

}
. (4.2)

We recall that the variational approach consists in defining a cost function measuring the root
mean square difference between the original image and the classified image

J
(
(Ωi)i=1,...,n

)
=

n∑

i=1

∫

Ωi

(u0(x) − Ci)2dx. (4.3)

The minimization of J is easy, because for each point x ∈ Ω, we only have to find
ix = arg min{|u0(x) − Ci|; i = 1, . . . , n} and add x to subset Ωix . This can be called the
closest class algorithm because each pixel of the original image is assigned in the classified
image to its closest class. Inspired by the work of Samson et al. [14] in which the authors
propose a classification model coupled with a restoration process, we propose to use the
topological gradient approach applied to image restoration problem for both supervised and
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unsupervised classification problems [3, 4]. Our idea is to still consider the PDE problem
given by (2.2) and instead of considering c = 0 (or c = ρ from a numerical point of view)
on the edge set and c = c0 elsewhere, we consider c = ρ on the contours of the image
and c = 1/ρ elsewhere. As ρ is supposed to be small, then u and u0 are almost the same.
Otherwise, c = 1/ρ, which implies that the PDE defined in (2.2) is nearly equivalent to� u = 0
with Neumann boundary condition (normal derivative) equal to zero, and this will provide
a really smooth image. The classification problem is then as follows.

Supervised Classification Algorithm

(i) Initialization: c = c0.

(ii) Calculation of u0 and v0 the solutions of the direct (3.1) and adjoint (3.8) problems
respectively.

(iii) Computation of the 2 × 2 matrix M and its lowest eigenvalue λmin at each point of
the domain.

(iv) Set

c1 =

⎧
⎪⎨

⎪⎩

ρ if x ∈ Ω, λmin < α < 0, ρ > 0
c0

ρ
elsewhere.

(4.4)

(v) Calculation of u1 solution to problem (3.1) with c = c1.

(vi) Application of the k-mean classification algorithm to u1.

As in the restoration process, the classification algorithm is applied to color images by
decomposing the image in the RGB color space and then we deal separately with the three
component images. The topological gradient of the sum can be considered as the sum of the
three topological gradients with respect to each channel. Figure 5 shows the classification of
a 500 × 380 color image, using 30 color levels (whereas the original image has 2563 different
colors), without regularization in a first time, then with regularization. We should mention
here that the control of the regularization process can be made by considering progressively
different values of c : c = c0/ρ, c = c0/ρ2, c = c0/ρ3, and so on.

On the other hand, the unsupervised classification corresponds to a classification
problem in which the classes are not given. In this case, it is possible to determine them
in an optimal way, still by using the topological gradient method. The idea is to study the
impact of changing the value of a class Ci := Ci + 1 or Ci − 1 on the cost function which
implies that for each class, we add (or substract, depending on which variation provides the
most negative variation) one to the value of the class. This algorithm has been applied in the
previous numerical tests in order to determine the optimal value of the classes: in Figure 5,
the values of 3, 2, and 5 classes with respect to the channels RGB have been determined with
this algorithm. One may notice that this algorithm needs at least that the number of classes is
known. But in unsupervised classification, it is not the case. The idea is then to add another
term in the cost function defined in (4.3), measuring the number of classes. This can be seen
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Figure 5: From (a) The unregularized classified image and and (b)the regularized classified image.

as a regularization term, because we usually do not want to get too many classes. We propose
here to rewrite the cost function given by (4.3) as follows:

J
(
(Ωi)i=1,...,n

)
=

n∑

i=1

∫

Ωi

(u0(x) − Ci)2dx + αn, (4.5)

where α is a positive regularization coefficient. It is then possible to bound n as the two terms
of the cost function are positive. The unsupervised classification algorithm is as follows

Unsupervised Classification Algorithm

(i) Initialization with n = 1.

(ii) Determination of the optimal value.

(iii) While n is smaller than its upper bound:

(iv) set n := n + 1 and determine the optimal values of the new n classes.

(v) Stop if the value of the cost function at the optimum (with respect to Ci) is larger
than the previous optimal value with n − 1 classes.

This algorithm has been applied in Figure 5 in order to find the optimal number of
classes and their optimal values.

5. Application to Tomography Problem

In this section, we use the topological gradient as a tool for the reconstruction problem in
tomography. We recall that a standard approach for regularizing the ill-posed problem of
tomographic imaging consists in the following optimization problem:

min
f

∥
∥Af − g∥∥2 + λφ

(
f
)
, (5.1)
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Table 1: Comparison between several reconstruction methods, quantified by several ratios and similarity
indexes, for a noisy sinogram with SNR = 24.5.

Method PSNR SNR SSIM MSE
FBP 14.59 33.0 0.41 0.0342
FBP + Hamming 15.91 31.71 0.52 0.0273
Topological gradient (TV) 22.43 33.75 0.82 0.0042
Topological gradient (L1/L2) 26.18 34.01 0.94 0.0023
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Figure 6: Evolution of the PSNR (in dB) of the reconstructed image by the topological gradient method, as
a function of the level of the regularization coefficient c0.

where A denotes a system matrix defining the discrete Radon transform, g is the measured
projection, φ is a regularization functional, and λ represents a parameter which controls the
tradeoff between a good fit to the data and the smoothness of the solution. Inspired by the
work of. Chan et al. [15], we propose to consider the following minimization problem:

min
f

∫

Ω

∣
∣Af − g∣∣2

dx + c
∫

Ω

∣
∣∇f∣∣αdx, (5.2)

where c is a positive constant and α is equal to 1 on the edges and to 2 elsewhere. Using the
same idea of the topological gradient approach, we consider, for a given regular function g,
the following direct problem:

−div
(
c∇fρ

)
+A#Afρ = A#g in Ωρ,

∂nfρ = 0 on ∂Ωρ,
(5.3)

where n denotes the outward unit normal to ∂Ωρ and A and A# are respectively the discrete
Radon transform and the dual discrete Radon transform.
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(c) Reconstructed image (PSNR =
26.18)

Figure 7: Reconstruction of the Shepp-Logan head phantom using the topological gradient method.

Let v be the solution of the adjoint problem

−div(c∇v) +A#Av = −∂fJ
(
f
)

in Ω,

∂nv = 0 on ∂Ω.
(5.4)

By considering the same algorithm applied for image restoration, we compute the
reconstruction solution by solving the following proble:

−div
(
c1(x0)∇f

)
+A#Af = A#g in Ω,

∂nf = 0 on ∂Ω,
(5.5)

with

c1(x0) =

⎧
⎪⎨

⎪⎩

1
∣
∣∇f(x0)

∣
∣ , x0 ∈ {x ∈ Ω, λmin < α0 < 0},

c0 elsewhere,
(5.6)

where c0 is a given constant. In order to obtain the optimal value of the coefficient c0, we have
studied the behavior of the SNR of the reconstructed image as a function of c0. In fact, we
have experimentally confirmed that the quality of the reconstructed image is first increasing
rapidly with c0 and then decreasing slightly, as we can see it in Figure 6. The optimal value
is c0 = 30, and it has then been considered for our numerical tests. We have tested our
method on the well known Shepp-Logan head phantom, for which projections data have
been computed using a discrete Radon transform. Figure 7(a) shows the original image. A
gaussian noise is added to the data with a signal to noise ratio SNR = 22, the sinogram is
represented in Figure 7(b). Figure 7(c) shows the reconstruction result (PSNR = 26.18). We
also present in this paper a numerical comparison using several methods. Table 1 shows the
PSNR (peak signal to noise ratio, in dB), SNR (signal-to-noise ratio, in dB), SSIM (structural
SIMilarity), and MSE (mean squared error) of the reconstructed images for several methods:
FBP (filtered backprojection), FBP + Hamming (with a Hamming filter on the FBP image),
and the topological gradient approach using either the TV (total variation) norm or both
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Figure 8: Segmentation using a watershed transformation combined with the topological gradient: (a) is a
302×280 fruit-basket gray level image, (b) is a 399×246 road scene image, (c) is the segmented fruit-basket
image with c = 1, (e) is the same segmented image such that c = 50, (d) is the segmented road scene image
with c = 1, and (f) represents the same segmented image such that c = 50.

TV and L2 norms. The sinogram has a noise level such that the SNR is 24.5. We can see
in Table 1 that the best results for all indicators are obtained with the hybrid L1/L2 norm
within the topological gradient approach. The peak SNR is higher of more than 3 decibels,
the structural similarity index is larger than 94% and the mean squared error is smaller than
1%. Note that both topological gradient methods provide much better results than the filtered
backprojection, which is not surprising.

6. Application to Image Segmentation

We propose in this part a new algorithm for the segmentation problem based on the
topological gradient approach. Through the different and various applications which were
presented, we can easily conclude that the topological gradient approach is a very interesting
method in image analysis. First, the topological gradient method can easily be applied to
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Figure 9: Segmentation results of a synthetic image using an active contour model: different iterations are
displayed from (b) to (e), (f) is the segmented image using our new approach.

many problems in image analysis. Second, we should mention that we obtain excellent
numerical results and the computing time is very interesting and confirms the theoretical
complexity O(n · log(n)) of our algorithms, where n is the size of the image. However,
the topological gradient approach presents a major drawback: the identified edges are not
connected and then the results obtained for the segmentation problem can be degraded,
particularly for complex images. So, the main idea in this part is to take advantage of the
topological gradient efficiency, to detect the main contours with an interesting computational
cost (the topological gradient algorithms require only three system resolutions) and to find
an alternative solution for the discontinuous edges detected by the topological gradient
approach. The approach proposed in this paper is based on mathematical morphology
[16, 17] and more precisely on the watershed transformation [18]. A major advantage of
the method proposed is that it attenuates the oversegmentation usually observed with the
watershed technique. This attenuation is due to the fact that the topological gradient provides
a global analysis of the image then the almost unwanted contours due to the noise added to
a given image are effectively reduced by our approach. The basic idea observed using this
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coupled method is the use of the topological gradient instead of the morphological gradient
classically used with watersheds. The property of the topological gradient to be less sensitive
than the morphological or classical gradients to noise and small variations of the image, will
contribute significantly to give the best identification of the edges and then to attenuate
the oversegmentation usually obtained using watershed techniques. We illustrate in this
work the efficiency of the combined method proposed for the segmentation problem. Other
numerical tests and comparisons with other methods can be found in [19]. In this part, we
consider two real images which have various difficulties (curves, circles, straight lines, etc.).
The first image is a 302 × 280 fruit-basket gray level image and the second one is a 399 × 246
gray level image which represents a road scene. Figure 8 shows the segmentation result of
the two previous images, according to the coupled method for image segmentation based
on a watershed algorithm [18] and the topological gradient approach previously presented
in this paper. The results shown in Figures 8(c) and 8(d) are obtained with c = 1, we can
improve the attenuation of the identified regions number after the segmentation process by
choosing larger values of the coefficient c, but this will depend on what we want to segment
and what we want to obtain at the end of the segmentation process: if one would obtain
a maximum of details then it suffices to take c = 1, otherwise, one should consider larger
values of c which gives a considerable attenuation of the segmented regions. Figures 8(e)
and 8(f) show the numerical results of the segmentation process with c = 50. We can clearly
observe the attenuation of the obtained regions such that the main edges of the two images
are conserved. One should remark that we can either define the watershed of the function u
or of its gradient: the difference between the two definitions is that in the first case we obtain
the influence zones of the processed image, while the second case gives the image edges. It
is well-known that in both cases, the watershed gives an oversegmentation, and to avoid this
drawback, the alternative to combine it with the topological gradient approach seems to be a
good choice to overcome this inconvenience as shown in Figure 8.

Finally, due to a large number of approaches used for the segmentation problem, it
clearly appears that it is important to compare our experimental results with methods already
proposed in the literature. Particularly, we propose to compare our method with an active
contour model based on the level set approach, which is well known to be an efficient method,
extensively used in many applications over the last decade. The basic idea in active contour
models is to evolve a curve subject to constraints from a given image, in order to detect
different objects in that image. To achieve this goal, we start with a curve around the object to
be detected, the curve moves toward its interior normal and has to stop on the boundary of
the object. This was the first idea of classical snakes and active contour models proposed by
[20]. Our numerical tests are based on a level set method proposed by [21] and given by the
following evolution equation:

∂u

∂t
= g(|∇I|)

(
div

( ∇u
|∇u|

)
+ α

)
|∇u| + 〈∇g,∇u〉, in (0,∞) ×Ω, (6.1)

with boundary and initial conditions given by ∂u/∂n = 0 on (0,∞) × ∂Ω and Φ(0, x, y) =
Φ0(x, y) in Ω, α ≥ 0 is a positive given coefficient, g(|∇I|) is an edge detector function
defined in our numerical tests by g(s) = 1/(1 + s2), and φ0 represents the initial level set
function. We refer the reader to [8] for more details about geodesic active contours and level
set methods. Figure 9 shows the numerical results obtained. We should mention that in order
to obtain the final contour illustrated in Figure 9(e), the algorithm requires 500 iterations and
a computational time of 78 seconds. We present in Figure 9 some solutions as time evolves:
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during the evolution, the initial curve is shrinking and stopping as soon as it is close to an
object boundary and spilling in order to detect the others objects.

7. Conclusion

We presented in this paper many applications in image processing of the topological gradient
approach with an illustration of both advantages and inconveniences of this technique.
We proved that the topological gradient approach provides an excellent frame for solving
different image processing problems, same if an alternative way to overcome its major
drawback to give not connected contours is to combine it with other approaches. It has been
applied to image restoration, edge detection, image classification, and image segmentation
for both grey level and color images. It has also been applied to tomography problem, and our
main goal consists in applying it to other real life problems mainly that in all the applications
proposed, we obtained good results and the computing time is very short. We propose in a
forthcoming paper to perform the application of the topological gradient approach to image
segmentation, eventually by combining it with other approaches and particularly using
marker criteria. In fact, as the edges are detected in regions where the topological gradient
is the most negative, then it suffices to extract some points which belong to the edge set and
then use these points as a selected marker set. We also intend to extend this work to color
image segmentation and three-dimensional segmentation.
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