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This work is devoted to contribute with two algorithms for performing, in an efficient way,
connected components labeling and boundary extraction from orthogonal pseudo-polytopes. The
proposals are specified in terms of the extreme vertices model in the n-dimensional space (nD-
EVM). An overview of the model is presented, considering aspects such as its fundamentals and
basic algorithms. The temporal efficiency of the two proposed algorithms is sustained in empirical
way and by taking into account both lower dimensional cases (2D and 3D) and higher-dimensional
cases (4D and 5D).

1. Introduction

The extreme vertices model in the n-dimensional space (nD-EVM) is a representation
scheme whose dominion is given by the n-dimensional orthogonal pseudo-polytopes, that is,
polytopes that can be seen as a finite union of iso-oriented nD hyperboxes (e.g., hypercubes).
The fundamental notions of the model, for representing 2D and 3D-OPPs, were originally
established by Aguilera and Ayala in [1, 2]. Then, in [3], it was formally proved the
model is capable of representing and manipulating nD-OPPs. The nD-EVM has a well-
documented repertory of algorithms (see [1, 3–7]) for performing tasks such as Regularized
Boolean operations, set membership classification, measure interrogations (content and
boundary content), morphological operations (e.g., erosion and dilation), geometrical and
topological interrogations (e.g., discrete compactness), among other algorithms currently
being in development. Furthermore, conciseness, in terms of spatial complexity, is one the
nD-EVM’s main properties, because the model only requires storing a subset of a polytope’s
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vertices, the extreme vertices, which finally provides efficient temporal complexity of our
algorithms. Sections 2 and 3 are summaries of results originally presented in [1, 3]. For the
sake of brevity, and because we aim for a self-contained paper, some propositions are only
enunciated. Their corresponding proofs and more specific details can be found in [1, 3]. In
Section 2, the main concepts and basic algorithms behind the nD-EVM are described, while
Section 3 presents an algorithm for extracting forward and backward differences of an nD-
OPP.

Section 4 presents the first main contribution of this work: An EVM-based algorithm
for computing connected components labeling over an nD-OPP. It is well known connected
components labeling is one of the most important tools in image processing and computer
vision. The main idea is to assign labels to the pixels in an image such that all pixels
that belong to a same connected component have the same label [8]. As pointed out
by [9], it is essential for the specification of efficient methods that identify and label
connected components in order to process them separately for the appropriate analysis
and/or operations. Several approaches have been proposed in order to achieve such labeling,
and some of them are applicable in multidimensional contexts (e.g., see [10, 11]), but there
is a step that is commonly present in the majority of the methodologies: the scanning step
[12]. Such a step determines a label for the current processed pixel via the examination of
those neighbor pixels with an assigned label. Suzuki et al. group the methods for connected
components labeling in four categories [13].

(i) Methods that require multiple passes over the data: the scanning step is repeated
successively until each pixel has a definitive label.

(ii) Two-pass methods: they scan the image once to assign temporal labels. A second
pass has the objective of assigning the final labels. They make use of lookup lists or
tables in order to model relationships between temporal and/or equivalent labels
[9].

(iii) Methods that use equivalent representations of the data: their strategy is based
on using a more suitable representation based on hierarchical tree structures
(quadtrees, octrees, etc.) instead of the image’s raw data in order to speed up the
labeling [10, 14].

(iv) Parallel algorithms.

In [7], Rodrı́guez and Ayala describe an EVM-based algorithm for connected
components labeling. It works specifically for 2D and 3D-OPPs. First, they obtain a particular
partitioning from the 3D-EVM known as ordered union of disjoint boxes (OUODB), which
is, in fact, a special kind of cell decomposition [7]. Then, once the OUODB partition has
been achieved, it follows a process which is based in the two-pass approach. We take into
account some ideas presented by Rodrı́guez and Ayala, but our proposal deals with a higher-
dimensional context, that is, with nD-OPPs, and it works directly with their corresponding
nD-EVM representations.

Section 5 describes the second contribution of this work: a methodology for extracting
kD boundary elements from an nD-OPP represented through the nD-EVM. It is well known
that a boundary model for a 3D solid object is a description of the faces, edges, and vertices
that compose its boundary together with the information about the connectivity between
those elements [15]. However, the boundary representations can be recursively applied not
only to solids, surfaces, or segments but to n-dimensional polytopes [16]. For Putnam and
Subrahmanyan, a polytope’s boundary representation can be seen as a boundary tree [17].
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Figure 1: The boundary tree associated to a 3D cube.

In the tree, each node is split into a component for each element that it bounds. An element
(vertex, edge, etc.) will be represented several times inside the tree, one for each boundary
that it belongs to. See Figure 1 for a cube’s boundary tree.

The way we extract kD boundary elements from an nD-OPP represented through
the nD-EVM will be reminiscent to the reconstruction of the boundary tree associated
with such nD-OPP. Moreover, our methodology is strongly sustained in the use of our
proposed connected components labeling algorithm (Section 4) and the procedures described
in Sections 2 and 3. Some study cases will be presented in order to appreciate the information
our proposed procedure can share. Finally, in Section 6, we determine, in empirical way, the
time complexity of the algorithm presented in Section 5 in order to provide evidence of its
efficiency specifically when higher-dimensional nD-OPPs are considered.

2. The Extreme Vertices Model in the n-Dimensional Space (nD-EVM)

In Section 2.1, some conventions and preliminary background related directly with orthog-
onal polytopes will be introduced. In Section 2.2, the foundations of the nD-EVM will be
established. Section 2.3 presents some basic algorithms under the EVM.

2.1. The n-Dimensional Orthogonal Pseudo-Polytopes (nD-OPPs)

The following definitions ((a) to (i)) belong to Spivak [18].

(a) A singular n-dimensional hyperbox in �
n is given by the continuous function In :

[0, 1]n → [0, 1]n such that In(x) = x.

(b) For all i, 1 ≤ i ≤ n, if x ∈ [0, 1]n−1, then the two singular (n − 1)D hyperboxes In(i,0)
and In(i,1) are given by

In(i,0)(x) = In(x1, . . . , xi−1, 0, xi, . . . , xn−1) = (x1, . . . , xi−1, 0, xi, . . . , xn−1),

In(i,1)(x) = In(x1, . . . , xi−1, 1, xi, . . . , xn−1) = (x1, . . . , xi−1, 1, xi, . . . , xn−1).
(2.1)
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(c) A general singular k-dimensional hyperbox in the closed set A ⊂ �
n is defined as the

continuous function c : [0, 1]k → A.

(d) Given a general singular nD hyperbox c the composition c(i,α) = c ◦ In(i,α) defines an
(i, )α-cell.

(e) The orientation of an (n − 1)D cell c ◦ In(i,α) is given by (−1)α+i, while an (n − 1)D

oriented cell is given by the scalar-function product (−1)i+α · c ◦ In(i,α).
(f) A formal linear combination of singular general kD hyperboxes, 1 ≤ k ≤ n, for a

closed set A is called a k-chain.

(g) Given a singular nD hyperbox In, the (n − 1)-chain, called the boundary of In, is
defined as

∂(In) =
n∑

i=1

(
∑

α=0,1
(−1)i+α · In(i,α)

)
. (2.2)

(h) For a singular general nDhyperbox c,we define the (n−1)-chain, called the boundary
of c, by

∂(c) =
n∑

i=1

(
∑

α=0,1
(−1)i+α · c ◦ In(i,α)

)
. (2.3)

(i) The boundary of an n-chain
∑

ci, where each ci is a singular general nD hyperbox, is
given by

∂
(∑

ci
)
=
∑

∂(ci). (2.4)

Based on the above Spivak’s definitions, we have the elements to establish our own
precise notion of orthogonal polytope. A collection c1, c2, . . . , ck, 1 ≤ k ≤ 2n, of general
singular nD hyperboxes is a combination of nD hyperboxes if and only if

⎡

⎣
k⋂

α=1

cα
(
[0, 1]n

)
=

⎛

⎝0, . . . , 0︸ ︷︷ ︸
n

⎞

⎠

⎤

⎦ ∧ [(∀i, j, i /= j, 1 ≤ i, j ≤ k
)(
ci
(
[0, 1]n

)
/= cj
(
[0, 1]n

))]
. (2.5)

The first part of the conjunction establishes that the intersection between all the nD general
singular hyperboxes is the origin, while the second part establishes that there are not over-
lapping nD hyperboxes. Finally, we will say an n-dimensional orthogonal pseudopolytope p, or
just an nD-OPP p, is an n-chain composed by nD hyperboxes arranged in such way that by
selecting a vertex, in any of these hyperboxes, it describes a combination of nD hyperboxes
composed up to 2n hyperboxes.
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2.2. nD-EVM’s Fundamentals

Let c be a combination of hyperboxes in the n-dimensional space.An odd adjacency edge of c, or
just an odd edge, will be an edge with an odd number of incident hyperboxes of c. Conversely,
if an edge has an even number of incident hyperboxes of c, it will be called even adjacency
edge or just an even edge. A brink or extended edge is the maximal uninterrupted segment, built
out of a sequence of collinear and contiguous odd edges of an nD-OPP. By definition, every
odd edge belongs to brinks, whereas every brink consists of m edges, m ≥ 1, and contains
m+1 vertices. Two of these vertices are at either extreme of the brink and the remainingm−1
are interior vertices. The ending vertices of all the brinks in p will be called extreme vertices of
an nD-OPP p and they are denoted as EV(p). Finally, we have that any extreme vertex of an
nD-OPP, n ≥ 1, when is locally described by a set of surrounding nD hyperboxes, has exactly
n incident linearly independent odd edges.

Let p be an nD-OPP. A kD extended hypervolume of p, 1 < k < n, denoted by φ(p), is
the maximal set of kD cells of p that lies in a kD space, such that a kD cell e0 belongs to a kD
extended hypervolume if and only if e0 belongs to an (n − 1)D cell present in ∂(p), that is,

(
e0 ∈ φ

(
p
)) ⇐⇒ (∃c, c belongs to ∂

(
p
))(

e0
(
[0, 1]k

)
⊆ c
(
[0, 1]n−1

))
. (2.6)

Given an nD-OPP, we say the extreme vertices model of p, denoted by EVMn(p),
is defined as the model as only stores to all the extreme vertices of p. We have that
EVMn(p) = EV(p) except by the fact that coordinates of points in EV(p) are not necessarily
sorted. In general, it is always assumed that coordinates of extreme vertices in the extreme
vertices model of an nD-OPP p, EVMn(p), have a fixed coordinates ordering. Moreover,
when an operation requires manipulating two EVMs, it is assumed both sets have the same
coordinates ordering.

The projection operator for (n − 1)D cells, points, and sets of points is, respectively
specified as follows.

(i) Let c(In(i,α)(x)) = (x1, . . . , xn) be an (n − 1)D cell embedded in the nD space.
πj(c(In(i,α)(x)))will denote the projection of the cell c(In(i,α)(x)) onto an (n−1)D space
embedded in nD space whose supporting hyperplane is perpendicular to Xj-axis;
that is, πj(c(In(i,α)(x))) = (x1, . . . , x̂j , . . . , xn).

(ii) Let v = (x1, . . . , xn) a point in �n . The projection of that point in the (n − 1)D space,
denoted by πj(v), is given by πj(v) = (x1, . . . , x̂j , . . . , xn).

(iii) Let Q be a set of points in �n . The projection of the points in Q, denoted by πj(Q),
is defined as the set of points in �n−1 such that πj(Q) = {p ∈ �n−1 : p = πj(x), x ∈
Q ⊂ �n}.

In all the three above cases, x̂j is the coordinate corresponding to Xj-axis to be suppressed.
For an nD-OPP p, we will say that npi denotes the number of distinct coordinates

present in the vertices of p along Xi-axis, 1 ≤ i ≤ n. Let Φi
k
(p) be the kth (n − 1)D extended

hypervolume, or just a (n − 1)D Couplet, of p which is perpendicular to Xi-axis, 1 ≤ k ≤ npi.
A slice is the region contained in an nD-OPP p between two consecutive couplets of p.

Sliceik(p)will denote to the kth slice of p, which is bounded byΦi
k
(p) andΦi

k+1(p), 1 ≤ k < npi.
A section is the (n− 1)D-OPP, n > 1, resulting from the intersection between an nD-OPP p and
a (n − 1)D hyperplane perpendicular to the coordinate axis Xi, n ≥ i ≥ 1, which dose not
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coincide with any (n − 1)D-couplet of p. A section will be called external or internal section of
p if it is empty or not, respectively. Si

k
(p) will refer to the kth section of p between Φi

k
(p) and

Φi
k+1(p), 1 ≤ k < npi. Moreover, Si

0(p) and Si
npi

(p) will refer to the empty sections of p before
Φi

1(p) and afterΦi
npi

(p), respectively.

The projection of the set of (n − 1)D couplets, πi(Φi
k
(P)), 1 ≤ i ≤ n, of an

nD-OPP p can be obtained by computing the regularized XOR (⊗∗) between the pro-
jections of its previous πi(Si

k−1(p)) and next πi(Si
k
(p)) sections; that is, πi(Φi

k
(p)) =

πi(Si
k−1(p))⊗∗πi(Si

k(p)), for all k ∈ [1, npi]. On the other hand, the projection of any section,
πi(Si

k
(p)), of an nD-OPP p can be obtained by computing the regularized XOR between

the projection of its previous section, πi(Si
k−1(p)), and the projection of its previous couplet

πi(Φi
k
(p)). Or, equivalently, by computing the regularized XOR of the projections of all the

previous couplets; that is, πi(Si
k
(p)) = ⊗∗k

j=1πi(Φi
j(p)).

2.2.1. The Regularized XOR Operation on the nD-EVM

Let p and q be two nD-OPPs having their respective representations EVMn(p) and EVMn(q),
then EVMn(p ⊗∗ q) = EVMn(p) ⊗ EVMn(q). This result, combined with the procedures
presented in the previous section for computing sections from couplets and vice versa, allows
expressing a formula for computing them by means of their corresponding extreme vertices
models. That is,

(i) EVMn−1(πi(Φi
k(p))) = EVMn−1(πi(Si

k−1(p))) ⊗ EVMn−1(πi(Si
k(p))),

(ii) EVMn−1(πi(Si
k(p))) = EVMn−1(πi(Si

k−1(p))) ⊗ EVMn−1(πi(Φi
k(p))).

2.2.2. The Regularized Boolean Operations on the nD-EVM

Let p and q be two nD-OPPs and r = p op∗q, where op∗ is in {∪∗,∩∗,−∗,⊗∗}. Then,
πi(Si

k(r)) = πi(Si
k(p))op

∗πi(Si
k(q)). This implies a regularized Boolean operation, op∗, where

op∗{∪∗,∩∗,−∗,⊗∗} ∈, over two nD-OPPs p and q, both expressed in the nD-EVM, can be
carried out by means of the same op∗ applied over their own sections, expressed through
their extreme vertices models, which are (n − 1)D-OPPs. This last property leads to a
recursive process, for computing the regularized Boolean operations using the nD-EVM,
which descends on the number of dimensions. The base or trivial case of the recursion is
given by the 1D-Boolean operations which can be achieved using direct methods. The XOR
operation can also be performed according to the result described in the above subsection.

2.3. Basic Algorithms for the nD-EVM

Before going any further, we say XA-axis is the nD space’s coordinate axis associated to the
first coordinate present in the vertices of EVMn(p). For example, given coordinates ordering
X1X2X3, for a 3D-OPP, then XA = X1.

The following primitive operations are, in fact, based in those originally presented in
[1] see Algorithm 1.

As can be observed, algorithms MergeXor, GetSection, and GetHvl are clearly sustained
in the results presented in Section 2.2. The algorithm GetSection, via MergeXor algorithm,
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Output: An empty nD-EVM.
Procedure InitEVM( )
{ Returns the empty set. }
Input: An (n − 1)D-EVM hvl embedded in nD space.
Input/Output: An nD-EVM p
Procedure PutHvl(EVM hvl, EVM p)
{ Appends an (n − 1)D couplet hvl, perpendicular to XA-axis, to p. }
Input: An nD-EVM p
Output: An (n − 1)D-EVM embedded in (n − 1)D space.
Procedure ReadHvl(EVM p)
{ Extracts next (n − 1)D couplet perpendicular to XA-axis from p. }
Input: An nD-EVM p
Output: A Boolean.
Procedure EndEVM(EVM p)
{ Returns true if the end of p along XA-axis has been reached. }
Input/Output: An (n − 1)D-EVM p embedded in (n − 1)D space.
Input: A coordinate coord of type CoordType

(CoordType is the chosen type for the vertex coordinates)
Procedure SetCoord(EVM p, CoordType coord)
{ Sets the XA-coordinate to coord on every vertex of the (n − 1)D
couplet p. For coord = 0, it performs the projection πA(p). }
Input: An (n − 1)D-EVM p embedded in nD space.
Output: A CoordType
Procedure GetCoord(EVM p)
{ Gets the common XA coordinate of the (n − 1)D couplet p. }
Input: An nD-EVM p.
Output: A CoordType
Procedure GetCoordNextHvl(EVM p)
{ Gets the common XA coordinate of the next available (n − 1)D couplet of p. }
Input: Two nD-EVMs p and q.
Output: An nD-EVM
Procedure MergeXor(EVM p, EVM q)
{ Applies the ordinary Exclusive OR operation to the vertices of
p and q and returns the resulting set. }
Input: An (n − 1)D-EVM corresponding to section S.

An (n − 1)D-EVM corresponding to couplet hvl.
Output: An (n − 1)D-EVM.

Procedure GetSection(EVM S, EVM hvl)
{ return MergeXor(S, hlv) }
Input: An (n − 1)D-EVM corresponding to section Si .
An (n − 1)D-EVM corresponding to section Sj .
Output: An (n − 1)D-EVM.
Procedure GetHvl(EVM Si , EVM Sj )
{ return MergeXor (Si, Sj ) }
Input: Two nD-EVMs p and q.

The Boolean Operation op to apply over p and q.
The number n of dimensions.

Output: An nD-EVM.
Procedure BooleanOperation(EVM p, EVM q, BooleanOperator op, int n)
{ Returns as output an nD-OPP r, codified as an nD-EVM, such that
r = p op∗q. }

Algorithm 1: Basic procedures under the EVM.

returns the projection of the next section of an nD-OPP between its previous section and
couplet [1, 3]. On the other hand, the algorithm GetHvl returns the projection of the couplet
between consecutive input sections Si and Sj [1, 3].

The algorithm BooleanOperation computes the resulting nD-OPP r = p op∗ q, where
op∗ is in {∪∗, ∩∗, −∗, ⊗∗} (note that r = p⊗∗ q can also be trivially performed usingMergeXor
function). The basic idea behind the procedure is the following.

(i) The sequence of sections from p and q, perpendicular to XA-axis, are obtained first.

(ii) Then, every section of r can recursively be computed as

πi

(
Si
k(r)
)
= πi

(
Si
k

(
p
))

op∗πi

(
Si
k

(
q
))

. (2.7)

(iii) Finally, r’s couplets can be obtained from its sequence of sections, perpendicular to
XA-axis.
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In fact, BooleanOperation can be implemented in a wholly merged form in which it only
needs to store one section for each of the operands p and q (sP and sQ, resp.), and two
consecutive sections for the result r (sRprev and sRcurr) [1]. The idea is to consider a main
loop that gets sections from p and/or q, using function GetSection. These sections, sP and sQ,
are recursively processed to compute the corresponding section of r, sRcurr. Since r’s two
consecutive sections, sRprev and sRcurr, are kept, then the projection of the resulting couplet,
is obtained by means of function GetHvl, and then, it is correctly positioned in r’s EVM by
procedure SetCoord [1]. When the end of one of the polytopes p or q is reached, then the main
loop finishes, and the remaining couplets of the other polytope are either appended or not
to the resulting polytope r depending on the Boolean operation considered. More specific
details about this implementation of BooleanOperation algorithm can be found in [1] or [3].

3. Forward and Backward Differences of an nD-OPP

Because it is well known that regularized XOR operation over two sets A and B can be
expressed as A⊗∗B = (A−∗ B)∪∗(B −∗ A), then we have that given an nD-OPP p, and
specifically one of its couplets

πi

(
Φi

k

(
p
))

= πi

(
Si
k−1
(
p
))⊗∗πi

(
Si
k

(
p
))

=
(
πi

(
Si
k−1
(
p
))−∗πi

(
Si
k

(
p
)))

∪∗
(
πi

(
Si
k

(
p
))−∗πi

(
Si
k−1
(
p
)))

,

(3.1)

the expressions πi(Si
k−1(p))−∗πi(Si

k(p)) and πi(Si
k(p))−∗πi(Si

k−1(p)) will be called forward and
backward differences of the projection of two consecutive sections πi(Si

k−1(p)) and πi(Si
k(p)),

and they will be denoted by FDi
k(p) and BDi

k(p), where Xi-axis is perpendicular to them.
One interesting characteristic, described in [1], of forward and backwarddifferences of

a 3D-OPP, is that forward differences are the sets of faces, on a couplet, whose normal vectors
point to the positive side of the coordinate axis perpendicular to such couplet. Similarly,
backward differences are the sets of faces, on a couplet, whose normal vectors point to the
negative side of the coordinate axis perpendicular to such couplet. By this way, it is provided
a procedure for obtaining the correct orientation of faces in a 3D-OPP when it is converted
from 3D-EVM to a boundary representation.

In the context of an nD-OPP p, there are methods to identify normal vectors in the
(n − 1)D cells included in p’s boundary. For example, simplicial combinatorial topology
provides methodologies assuming a polytope is represented under a simplexation. Such
methods operate under the fact the n + 1 vertices of an nD simplex are labeled and sorted.
Such sorting corresponds to an odd or an even permutation. By taking n vertices from the
n+ 1 vertices of the nD simplex, we get the vertices corresponding to one of its (n− 1)D-cells.
In this point, usually, a set of entirely arbitrary rules are given to determine the normal vector
to such (n − 1)D cells; see for example, [19, 20]. Such rules establish, according to the parity
of the permutation, if the assigned normal vector points towards the interior of the polytope
or outside of it.

On the other hand, there are works that consider the determination of normal vectors
by taking into account properties of the cross product and the vectors that compose the basis
of nD space. For example, Kolcun [21] provides one of suchmethodologies; however, it is also
dependent of polytopes are represented through a simplexation. In this last sense, forward
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X3

X2

X1

(a)

X3

X2

X1

(b)

X3

X2

X1

(c)

X3

X2

X1

(d)

Figure 2: (a)A 3D-OPP with its extreme (black) and nonextreme vertices (white). (b) Couplets perpendic-
ular to X1-axis. (c) Couplets perpendicular to X2-axis. (d) Couplets perpendicular to X3-axis.

and backward differences will provide us a powerful tool, because, in fact, given an nD-
OPP p, forward differences FDi

k(p) are the sets of (n−1)D cells lying onΦi
k
(p), whose normal

vectors point to the positive side of the coordinate axisXi, while backward differences BDi
k(p)

are the sets of (n−1)D cells also lying onΦi
k
(p) butwhose normal vectors point to the negative

side of the coordinate Xi-axis.
Figure 2 shows a 3D-OPP and its corresponding sets of 2D-couplets perpendicular

to X1, X2, and X3-axes (Figures 2(b), 2(c), 2(d)). According to Figure 2(a), the OPP has
5 non-extreme vertices which are marked in white. Three of them have four coplanar
incident odd edges; another one has six incident odd edges, and the last one has exactly
two incident collinear odd edges. The remaining vertices, actually the extreme vertices, have
exactly three linearly independent odd edges. Table 1 shows the extraction, for the 3D-
OPP shown in Figure 2(a), of its faces and their correct orientation through forward and
backward differences. The first row shows sections perpendicular to X1-axis. Through them,
we compute forward differences FD1

1(p) to FD1
3(p) in order to obtain the faces whose normal

vector points towards the positive side of X1-axis. On the other hand, these same sections
share us to compute backward differences BD1

1(p) to BD1
3(p), which are composed by the set

of faces whose normal vector points towards the negative side of X1-axis. In a similar way,
the remaining two rows of Table 1 show sections perpendicular to X2 and X3-axes and their
respective forward and backward differences.

An algorithm for computing forward and backward differences consists of obtaining
projections of sections of the input polytope and processing them through BooleanOperation
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Table 1: Forward and backward differences of a 3D-OPP (see text for details).

Sections Forward differences Backward differences

X3
X2

X1

X3
X2

X1

X3
X2

X1

X3
X2

X1

X3
X2

X1

X3
X2

X1

X3
X2

X1

X3
X2

X1

X3
X2

X1

algorithm by computing regularized difference between two consecutive sections. Algo-
rithm 2 implements these simple ideas in order to compute the forward and backward
differences in an nD-OPP p represented through the nD-EVM. Its output will consist of two
sets: the first set FD contains the (n − 1)D-EVMs corresponding to forward differences in p,
while the second set BD contains the (n − 1)D-EVMs corresponding to backward differences
in p. Algorithm 2 will be useful when we describe our procedure for extracting kD boundary
elements of an nD-OPP which is represented through the nD-EVM. Such procedure will be
described in Section 5.

4. A Connected Components Labeling Algorithm under the nD-EVM

Now, as one of the main contributions of this work, we will describe our proposed algorithm
for performing connected components labeling in an nD-OPP p expressed under the nD-
EVM. We think our algorithm can be positioned in Suzuki’s second category (see Section 1),
because it assigns temporal labels for elements embedded in the current processed slice of p,
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Input:An nD-EVM p.
The number n of dimensions.

Output� A set FD containing the (n − 1)D-EVMs of Forward Differences in p.
A set BD containing the (n − 1)D-EVMs of Backward Differences in p.

Procedure GetForwardBackwardDifferences(EVM p, int n)
FD = ∅ // FD will store (n − 1)D-EVMs corresponding to Forward Differences.
BD = ∅ // BD will store (n − 1)D-EVMs corresponding to Backward Differences.
EVM hvl // Current couplet.
EVM Si, Sj // Previous and next sections about hvl.
EVM FDcurr // Current Forward Difference.
EVM BDcurr // Current Backward Difference.
hvl = InitEVM( )
Si = InitEVM( )
Sj = InitEVM( )
while(Not(EndEVM(p)))

hvl = ReadHvl(p)// Read next couplet.
Sj = GetSection(Si, hvl)
FDcurr = BooleanOperation(Si, Sj , Difference, n − 1)
BDcurr = BooleanOperation(Sj, Si, Difference, n − 1)
FD = FD ∪{FDcurr}// The new computed Forward Difference is added to FD.
BD = BD ∪{BDcurr}// The new computed Backward Difference is added to BD.
Si = Sj

end-of-while
return {FD, BD}

end-of-procedure

Algorithm 2: Computing forward and backward differences in a polytope p represented through an nD-
EVM.

Sliceik(p), but when the next slice is processed, Sliceik+1(p), it is possible some of these labels
change taking place a second pass over Sliceik(p)which assigns new labels. Two properties of
interest of our algorithm are pointed out.

(i) It processes only two consecutive slices of p at a time. In fact, such slices are not
explicitly manipulated but their corresponding representative (n − 1)D sections.

(ii) The algorithm descends recursively over the number of dimensions in such way
that it is determined for each (n − 1)D section of p its corresponding (n − 2)D
components. By this way, the (n − 2)D components of two consecutive (n − 1)D
sections are manipulated and used for determining the labels to assign.

The idea behind the proposed methodology considers to process sequentially each
(n − 1)D section of p. Let Sj be the current processed section of p. We obtain, via a recursive
call, its (n−1)D components. Let Si be the section before Sj . For each (n−1)D component cSj

in Sj and for each (n− 1)D component cSi in Si, it is performed their regularized intersection
cSj∩∗cSi. According to the result, one of three cases can arise.

Case 1. (i) If the intersection is not empty and cSj does not belong to any component of p,
then cSj is added to the component of p, where the current component of Si, cSi, belongs.

Case 2. (i) If the intersection is not empty but cSj is already associated to a component of p,
then such component and the component where cSi is contained are united to form only one
new component for p. It could be the case that both components to unite are, in fact, the same.
In this situation, no action is performed. On the other hand, if the union is achieved, then all
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the references pointing to the original nD components where cSi and cSj belonged must be
updated in order to point to the new component.

Case 3. (i) If the intersection with all components of Si is empty, then cSj does not belong to
any of the currently identified components of p. Therefore, cSj belongs to, and starts, a new
nD component.

Tables 2 and 3 show an example where the above ideas are applied on a 2D-OPP.
Such OPP is composed of 22 extreme vertices and has five internal sections which are
perpendicular to X1-axis. Once all sections are processed, it is determined the existence of
two components.

A more specific implementation of our procedure is given in Algorithm 3. In order
to distinguish between Cases 1 and 2, the algorithm uses a Boolean flag (withoutComponent).
When Case 1 is achieved, then cSj , the current component of section Sj , is already associated
to a component of p. Therefore, the flag’s value is inverted for indicating this last property
and, for instance, sharing that only Case 2 could be reached in the subsequent iterations. If
for all components of Si, the section before Sj , the intersection with cSj was empty, then the
flag never changed its original value. In this way, Case 3 can be identified.

Our implementation considers the use of lists for controlling and manipulating
references between (n − 1)D sections’ components and their associated nD components.
We assume that such lists are manipulated and accessed through the following primitive
functions.

(i) Size (list): returns the number of elements in the list.

(ii) List (i): returns the element at position i of the list, 0 ≤ i < Size(list).

(iii) Update (list, i, nV): the list is updated by substituting element in position i with the
new element nV.

(iv) Append (list, v): an element v is appended at the end of the list.

(v) Insert (list, i, v): an element v is inserted at position i of the list.

(vi) Remove (list, i): it is removed from the list the element at position i.

(vii) IndexOf (list, v): returns a negative integer if v is not present in the list. Otherwise,
an index between 0 and Size (list)-1 is returned indicating the first occurrence of v.

(viii) DeleteAll (list): deletes all the elements contained in the list.

Algorithm 3 considers the use of five lists.

(i) componentsSj (componentsSi): the (n − 1)D components of section Sj(Si). The (n −
1)D-EVM associated to the jth (ith) component of section Sj(Si) is obtained via
componentsSj(j) (componentsSi(i)).

(ii) indexesSj (indexesSi): a list of indexes. k1 = indexesSj(j) (k2 = indexesSi(i)) de-
notes the jth (ith) component of section Sj(Si) belongs to the k1th (k2th) component
of nD-OPP p.

(iii) componentsP: the components of input nD-OPP p. components( k) returns a list of
(n − 1)D sections which describe the kth nD component of p.

Let cSi be the ith component of section Si and cSj be the jth component of section Sj .
Both cSi and cSj were, respectively, obtained from componentsSi(i) and componentsSj(j). The
lists are used and manipulated according the considered algorithm’s case.
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Table 2: Connected component labeling over a 2D-OPP (Part 1).
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0(p) is an empty section.
Then, Case 3: a1b1 belongs to the new
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The projection of section S1
2(p) has

four 1D components: a2b2, c2d2, e2f2,
and g2h2.

g2h2 ∩∗ a1b1 /= ∅, and g2h2 does not
belong to any component of p. Then,
Case 1: g2h2 now belongs to
component 0 (the component which
a1b1 belongs).

0

X2
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e2f2 ∩∗ a1b1 /= ∅, and e2f2 does not
belong to any component of p. Then,
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Case 3: a2b2 belongs to new
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0

1
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(i) In Case 1, componentsP(indexesSi(i)) returns the component of p, where cSi belongs.
cSj is incorporated to such component by appending it in such list. Finally, via
Append(indexesSj, indexesSi(i)), it is now established that cSj belongs to the same
component than cSi, because they have the same component’s index.

(ii) In Case 2, we obtain the components, where cSi and cSj belong through compo-
nentsP(indexesSi(i)) and componentsP(indexesSj(j)) (if indexesSi(i) and indexesSj(j) are
equal, then, as commented previously, no action is performed). All the elements
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Table 3: Connected component labeling over a 2D-OPP (Part 2).

Projection of section S1
3(p) has two 1D

components: a3b3 and c3d3.

b2 b3
a2 a3

S1
3(p)S1

2(p)

X2

X1

d2

d3

e2

c2 c3

g2

f2

h2

c3d3 ∩∗ g2h2 /= ∅, and c3d3 does not
belong to any component of p. Then,
Case 1: c3d3 now belongs to
component 0.

0

1
2

X2

X1

c3d3 ∩∗ e2f2 /= ∅, and c3d3 is associated
to component 0. Then,
Case 2: e2f2 also belongs to
component 0. No action takes place.

0

1
2

X2

X1

c3d3 ∩∗ c2d2 /= ∅, and c3d3 belongs to
component 0.
Case 2: c2d2 is associated to
component 1. Therefore, components 0
and 1 are united in the new
component 3.

3

2

X2

X1

a3b3 ∩∗ a2b2 /= ∅, and a3b3 does not
belong to any component of p.
Case 1: a3b3 is now associated to
component 2.

3

2

X2

X1

The projection of section S1
4(p) is

composed by segment a4b4.

b3 b4
a3 a4

S1
4(p)S1

3(p)

X2

X1

d3

c3

a4b4 ∩∗ a3b3 /= ∅, and a4b4 does not
belong to any component of p.
Therefore,
Case 1: a4b4 now belongs to
component 2.

3

2

X2

X1

The projection of section S1
5(p) is

composed by segment a5b5.

b4

b5

a4 a5

S1
5(p)S1

4(p)

X2

X1

a5b5 ∩∗ a4b4 /= ∅, and a5b5 does not
belong to any component of p. Then,
Case 1: a5b5 is now associated to
component 2.

3

2

X2

X1



Journal of Applied Mathematics 15

in the first component are transferred to the second component. The position
where the first component resided in the list componentsP is now updated to NULL.
Via, Update(indexesSi, i, indexesSj(j)), it is established that cSi belongs to the same
component like cSj . Finally, it must be verified if there are (n − 1)D components of
Si and Sj whose value in indexesSi and indexesSj refers to the now nullified position
in componentsP. If it is the situation, then their indexes must be updated with the
value in indexesSj(j).

(iii) In Case 3, a new component for nD-OPP p is created. The new list, containing
only to cSj , is appended in list componentsP. The value given by the size of list
componentsPminus one is appended in list indexesSj. Such value corresponds to the
component’s index for cSj .

When the algorithm finishes the processing of sections, each list in componentsP is a list
of (n − 1)D sections or a NULL element. If a NULL element is found, then it must be
removed. Otherwise, we obtain the corresponding nD-EVM, which at its time corresponds
to a component of the input nD-OPP p. It is possible the (n − 1)D sections contained in a
given list are not correctly ordered. With the purpose of determining the correct sequence, in
Algorithm 3, when a (n− 1)D-OPP is appended, the common XA coordinates of the previous
and next couplets are also introduced with it.

Consider a 5D-OPP q generated by the union of the following six 5D hypercubes:

(i) C1 = [0, 1] × [0, 1] × [0, 1] × [0, 1] × [0, 1],

(ii) C2 = [0, 1] × [1, 2] × [0, 1] × [0, 1] × [0, 1],

(iii) C3 = [0, 1] × [2, 3] × [0, 1] × [0, 1] × [0, 1],

(iv) C4 = [1, 2] × [2, 3] × [0, 1] × [0, 1] × [0, 1],

(v) C5 = [2, 3] × [2, 3] × [1, 2] × [1, 2] × [1, 2],

(vi) C6 = [3, 4] × [2, 3] × [0, 1] × [1, 2] × [1, 2].

Figure 3(a) shows q’s 5D-4D-3D-2D projection. Hypercubes C5 and C6 have a common (3D)
volume; hypercube C5 shares an edge with hypercube C4, and hypercubes C1 to C4 compose
a J-shaped form. Its representation via the 5D-EVM required 92 extreme vertices. Figures 3(b)
and 3(c) show its 4D couplets and sections, perpendicular to X1-axis, respectively. Each
4D section of q is composed of only one component (this is determined via a recursive
call of Algorithm 3). Remember that S1

0(q) = ∅, hence, its intersection with section S1
1(q)

is also empty and, therefore, S1
1(q) is associated to 5D component 0. Next, the regularized

intersections between projections of sections S1
1(q) and S1

2(q) is also empty. This implies
that S1

2(q) is associated with 5D component 1. The same result is obtained when computing
regularized intersection between projections of sections S1

2(q) and S1
3(q). Component 2 has to

S1
3(q). Finally, the intersection between S1

3(q) and S1
4(q) corresponds to a 4D hyperbox, which

implies that S1
4(q) is also associated to component 2. As a final result, Algorithm 3 identified

three 5D components in q.

(i) Component 0 corresponds to hypercube C6 (Figure 4(a)).

(ii) Component 1 corresponds to hypercube C5 (Figure 4(b)).

(iii) Component 2 corresponds to the union of hypercubes C1 to C4 (Figure 4(c)).

Previously, we mentioned hypercubes C5 and C6 shared a 3D volume. When computing
regularized intersection between S1

1(q) and S1
2(q) (their corresponding sections in q) the result
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Input: An nD-OPP p.
The number n of dimensions.

Output: A list containing the EVMs which describe the nD components of p.
Procedure ConnectedComponentsLabeling(EVM p, int n)

if(n = 1) then
return ConnectedComponentsLabeling1D(p) // Base case.

else
EVM hvl // Current (n − 1)D couplet of p.
EVM Si, Sj // Previous and next (n − 1)D sections about hvl.
Si = InitEVM( )
List components Si // The (n − 1)D components of section Si .
List indexes Si // A list of indexes.
List components Sj // The (n − 1)D components of section Sj .
List indexes Sj // A list of indexes.
List componentsP // The nD components of input polytope p.
CoordType currCoord = getCoordNextHvl(p)
hvl = ReadHvl(p)
CoordType nextCoord = getCoordNextHvl(p)
while(Not(EndEVM(p)))

Sj = GetSection(Si , hvl)
components Sj = ConnectedComponentsLabeling (Sj , n − 1) // Recursive call.
for(int j = 0, j < Size(components Sj ), j = j + 1)

EVM cSj = components Sj(j)
boolean withoutComponent = true
for(int i = 0, i < Size(components Si), i = i + 1)

EVM cSi = components Si(i)
EVM c = BooleanOperation(cSj ,cSi, Intersection, n − 1)
if(Not(IsEmpty(c)) and (withoutComponent = true)) then

// CASE 1
withoutComponent = false
List componentToUpdate = componentsP(indexes Si(i))
Append(componentToUpdate, {cSj , currCood, nextCoord})
Append(indexes Sj , indexes Si(i))

else if(Not(IsEmpty(c)) and (withoutComponent = false)) then
// CASE 2
if(indexes Si(i)/= indexes Sj(j)) then

List component1 = componentsP(indexes Si(i))
List component2 = componentsP(indexes Sj (j))
for(int k = 0, k < Size(component1), k = k + 1)

Append(component2, component1(k))
end-of-for
Update(componentsP, indexes Si(i), NULL)
for(int k = 0, k < Size(indexes Si), k = k + 1)

if(indexes Si(k) = indexes Si(i)) then
Update(indexes Si , k, indexes Sj (j))

end-of-if
end-of-for
for(int k = 0, k < Size(indexes Sj), k = k + 1)

if(indexes Sj (k) = indexes Si(i)) then
Update(indexes Sj , k, indexes Sj (j))

end-of-if
end-of-for
Update(indexes Si , i, indexes Sj (j))

end-of-if
end-of-if

end-of-for
if(withoutComponent = true) then

// CASE 3
List newComponent
Append(newComponent, {cSj , currCoord, nextCoord})
Append(componentsP, newComponent)
Append(indexes Sj , Size(componentsP) - 1)

end-of-if
end-of-for
Si = Sj

components Si = components Sj

indexes Si = indexes Sj

currCoord = GetCoordNextHvl(p)
hvl = ReadHvl(p) // Read next couplet.

nextCoord = GetCoordNextHvl(p)
end-of-while
// End of sections’ processing.
int i = 0
while(i < Size(componentsP))

if(componentsP(i) = NULL) then
Remove(componentsP, i)
i = i − 1

else
List currentListOfSections = componentsP(i)
EVM evmComponent = getEVMforListOfSections(currentListOfSections, n)
Update(componentsP, i, evmComponent)

end-of-if
i = i + 1
end-of-while
return componentsP

end-of-if
end-of-procedure

Algorithm 3: Connected component labeling over an nD-OPP expressed in the nD-EVM.
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Figure 3:A 5D-OPP. (a) 5D-4D-3D-2D projection. (b) 4D Couplets perpendicular toX1-axis. (c) 4D Sections
perpendicular to X1-axis.

was the empty set. This is due to the use of regularized boolean operations: operations
between nD polytopes must be dimensionally homogeneous; that is, they must produce
as result another nD polytope or the null object [22]. Hypercubes C5 and C4 shared a (1D)
edge, but the regularized intersection between their corresponding sections, in q, S1

2(q) and
S1
3(q), also produced a null object. A distinct situation arises when the regularized intersection

between S1
3(q) and S1

4(q) is analyzed: Algorithm 3 determined that they are associated with
the same component.

The above example has illustrated a property of Algorithm 3. When the foundations
behind our method were established, it was commented the algorithm process, not in
an explicit way, consecutive slices of the input polytope p. Each nD slice of p has
its corresponding representative (n − 1)D section for which Algorithm 3 determines its
corresponding (n − 1)D components. Let c1 and c2 be nonempty (n − 1)D components such
that c1 is associated to (n − 1)D section Si

j(p), while c2 is associated to (n − 1)D section
Si
j+1(p). The fact that c1 and c2 have empty regularized intersection implies (1) that their

corresponding nD regions are disjoint and, therefore, they have null adjacencies, or (2) that
some parts of its corresponding slices have a kD adjacency; that is, some kD elements,
k = 0, 1, 2, . . . , n − 2, are, completely or partially, shared. In both cases, Algorithm 3 uses
this kind of adjacencies, via the result of regularized intersection between c1 and c2, for
determining that the corresponding nD regions are disjoint and, for instance, associate them
with different components. Hence, a nD component shared by Algorithm 3 corresponds to
those parts of the input nD-OPP that are united via (n−1)D adjacencies. The way Algorithm 3
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X1
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X1
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Figure 4: The three components identified by applying Algorithm 3 over the 5D-OPP from Figure 3(a).

breaks a polytope will be very useful in the following sections, specifically when we present
our methodology for identifying kD boundary elements.

5. Extracting kD Boundary Elements from an nD-OPP

This section presents the second main contribution of this work. As commented in Section 1,
the way we extract kD boundary elements from an nD-OPP represented through the nD-
EVM will be reminiscent to the reconstruction of the boundary tree associated to such nD-
OPP. According to Section 3, forward and backward differences can be computed through
Algorithm 2. In fact, all FDi

k(p) and BDi
k(p) from an nD-OPP are (n− 1)D-OPPs embedded in

(n − 1)D space, because the projection operator is used in their corresponding definitions:
FDi

k(p) = πi(Si
k−1(p))−∗ πi(Si

k(p)) and BDi
k(p)=πi(Si

k(p))−∗ πi(Si
k−1(p)). If such forward

and backward differences were computed through our proposed algorithm, then they are
expressed as EVMn−1(FDi

k(p)) and EVMn−1(BDi
k(p)). If we apply again Algorithm 2 to such

(n − 1)D-OPPs, we will get new forward and backward differences that correspond to the
(n − 2)D oriented cells on the boundary of such (n − 1)D-OPPs. These new forward and
backward differences are themselves (n − 2)D-OPPs represented through the EVM. Hence,
by applying again Algorithm 2 to them, we obtain their associated (n − 3)D oriented cells
grouped as forward and backward differences. This procedure generates a recursive process
which descends in the number of dimensions. In each recursivity level, we obtain forward
and backward differences associated to the input kD-OPPs, 1 ≤ k ≤ n. The base case is
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Input: An kD-OPP p
The number k of dimensions
A list boundaryElements containing n lists.
A list previousCoordinates for completing the n coordinates of

(k − 1)-coordinates points.
Procedure GetBoundaryElements(EVM p,int k,List boundaryElements,List previousCoordinates)

if(k ≥ 2)then
EVM FDcurr, BDcurr
List v = GetSetVX1(p)
List identifiedBoundaryElements = boundaryElements (k − 1)
���� vertices = boundaryElements(0)
{FD, BD} = GetForwardBackwardDifferences(p, k)

for(int i = 0, i < Size(FD), i = i + 1) // Forward Differences are processed.
EVM FDcurr = FD(i)
List compsFDcurr = ConnectedComponentsLabeling(FDcurr, k − 1)
CoordType commonCoord = v(i)
for(int j = 0, j < Size(compsFDcurr), j = j + 1)

EVM currComp = compsFDcurr(j)
List verticesCurrComp
for each Extreme Vertex eV in currComp do

List point = getNdPoint(eV, commonCoord, previousCoordinates)
int index = IndexOf(vertices, point)
if(index < 0) then // A new point has been discovered.

Append(vertices, point)
index = Size(vertices) − 1
end-of-if
Append(verticesCurrComp, index)

end-of-for
int index = IndexOf(identifiedBoundaryElements, verticesCurrComp)
if(index < 0) then // A new (k − 1)D boundary element has been found.

Append(identifiedBoundaryElements, verticesCurrComp)
end-of-if
Append(previousCoordinates, commonCoord)
// Recursive call for identifying new (k − 2)D boundary elements.
GetBoundaryElements(currComp, k − 1, boundaryElements, previousCoordinates)
Remove(previousCoordinates, Size(previousCoordinates) - 1)

end-of-for
end-of-for
for(int i = 0, i < Size(BD), i = i + 1) // Backward differences are processed.

EVM BDcurr = BD(i)
List compsBDcurr = ConnectedComponentsLabeling(BDcurr, k − 1)
CoordType commonCoord = v(i)
for(int j = 0, j < Size(compsBDcurr), j = j + 1)

EVM currComp = compsBDcurr(j)
List verticesCurrComp
for each Extreme Vertex eV in currComp do

List point = getNdPoint(eV, commonCoord, previousCoordinates)
int index = IndexOf(vertices, point)
if(index < 0) then // A new point has been discovered.

Append(vertices, point)
index = Size(vertices) − 1

end-of-if
Append(verticesCurrComp, index)

end-of-for
int index = IndexOf(identifiedBoundaryElements, verticesCurrComp)
if(index < 0) then // A new (k − 1)D boundary element has been found.

Append(identifiedBoundaryElements, verticesCurrComp)
end-of-if
Append(previousCoordinates, commonCoord)
// Recursive call for identifying new (k − 2)D boundary elements.
GetBoundaryElements(currComp, k − 1, boundaryElements, previousCoordinates)
Remove(previousCoordinates, Size(previousCoordinates) - 1)

end-of-for
end-of-for

end-of-if
end-of-procedure

Algorithm 4: Extracting kD boundary elements from an OPP expressed in the EVM.

reachedwhen n = 1. In this situation, the boundary of a 1D-OPP is described by the beginning
and ending extreme vertices of each one of its composing segments.

Algorithm 4 implements the above-proposed ideas in order to identify and to extract
kD boundary elements from a nD-OPP. Input parameters for our algorithm require the
EVM associated with the input nD-OPP p, the number k of dimensions, and a list, where
the boundary elements of p are going to be stored. Such a list, called boundaryElements, is
assumed to be a list of lists such that boundaryElements( k) returns the list that contains the
identified kD elements, k = 0, 1, 2, . . . , n − 1. When k = n, then we have the main call with
nD-OPP p, n ≥ 2, and list boundaryElements initialized with n empty lists (if n = 1, then the
boundary elements of p are precisely its extreme vertices which can be directly extracted from
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the EVM1(p)). When 2 ≤ k < n, then the input OPP is, in fact, a kD boundary element of p
and boundaryElements contains the elements (vertices, edges, faces, etc.) discovered prior to
such recursive call. In the algorithm’s basic case, when k = 1, no action is performed, because
the input 1D-OPP has only as boundary elements the vertices that bound its corresponding
segment. The vertices in such 1D-OPP have been previously identified, because the algorithm
always receives and uses a list of discovered vertices. Such a list is located in the input
boundaryElements at position zero, and it is updated, as required, along main and all recursive
calls.

Specifically, Algorithm 4 performs the discovery of kD boundary elements, for an
input kD-OPP p, in the following way.

(i) We obtain the list, where the discovered (k−1)D boundary elements are going to be
stored: boundaryElements (k−1). We obtain the list of previously discovered vertices
of p: boundaryElements(0).

(ii) We compute, through Algorithm 2, p’s forward and backward differences
perpendicular toXA-axis (the axis associatedwith the first coordinate of the vertices
in the input EVM).

(iii) For each element in the list of forward (backward) differences are computed, via
Algorithm 3, its corresponding components. Each component is expressed as a (k −
1)D-EVM.

Now, each component in the currently processed forward (backward) difference is processed
in the following way.

(i) We initialize a list which will store the vertices that form the component
(verticesCurrComp).

(ii) Because the component is an OPP embedded in (k − 1)D space, the vertices in
its EVM only contain k − 1 coordinates. The points’ coordinates are completed
first by incorporating them into the common XA coordinate that the k-coordinates
extreme vertices, that define the forward (backward) difference to which the
component belongs, have. The remaining n − k coordinates are taken from the list
previousCoordinates (such a list is received as input by the algorithm). The function
GetNdPoint performs the completion of the points’ coordinates in such a way that
we obtained vertices with n coordinates.

(iii) Each point (now with n coordinates) from the component is evaluated in order
to determine if it has been previously discovered. In this sense, it is verified if
the point is present in the list of identified vertices. If function IndexOf returns a
negative index, then it implies a new vertex has been discovered. In this case, the
point is appended in the list of vertices. Its corresponding new index is given by
the size of such a list minus one. In any case, the point’s index is inserted in the
component’s list of vertices (verticesCurrComp). It is important to take into account
that points listed in verticesCurrComp appear in the order they were discovered by
our algorithm; hence, points’ ordering in such a list do not necessarily follow the
orientation of the component they belong to.

Once all the points in the EVM of the current component have been processed, we continue,
on one side, to determine if it has been previously discovered, and on the other side, to use it
for the discovering of new (k − 2)D boundary elements. Both tasks are, respectively, achieved
in the following way.
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X3

X2

X1

Figure 5: A 3D-OPP. The dotted lines correspond to even edges. The vertex with the dotted circle is a
nonextreme vertex.

(i) It is verified if the component’s list of vertices (verticesCurrComp) is an element
of the list containing the previously identified (k − 1)D boundary elements. If the
function IndexOf returns a negative index, then a new (k − 1)D boundary element
has been discovered and list verticesCurrComp is appended in the list of (k − 1)D
elements.

(ii) It is performed a recursive call to the algorithm by using as input the component’s
(k − 1)D-EVM. Such a recursive call will identify (k − 2)D boundary elements of
nD-OPP p.

Consider the 3D-OPP p shown in Figure 5. Suppose that the ordering of the
coordinates of 3D-EVM of p is X1X2X3. All the vertices of p are extreme except that with a
dotted circle, because it has five incident edges and four of them are odd edges, while the fifth
one, which is parallel toX3-axis, is, in fact, an even edge; hence, it does not belong to any brink
of p. There are another two even edges in p: one of them is parallel to X1-axis while the other
toX2-axis. Tables 4 and 5 show the wayAlgorithm 4 discovers faces, perpendicular toX1-axis,
and vertices of p (we recall that our algorithm lists boundary elements’ vertices in the order
they are discovered). Table 4 corresponds to the processing of forward differences. FD1

1(p) is
composed by only one component and its 2D-EVM shares the discovering of four vertices.
Three of them correspond to projections of extreme vertices of p, because they have only 2
coordinates, while the fourth one precisely corresponds to the projection of the nonextreme
vertex indicated in Figure 5. The vertices are completed, in order to have three coordinates,
by annexing them the common coordinate of its corresponding forward difference FD1

1(p).
By this way, vertices v1, v2, v3, and v4, and the face they define, are initially discovered. Via
Algorithm 3, FD1

2(p) is separated in two components. Each component corresponds to a new
face defined by four vertices. Both faces and the eight vertices are, respectively, added to the
lists of discovered faces and vertices.

Table 5 shows the processing of backward differences. BD1
2(p) corresponds to a 2D-

OPP in which six of its seven vertices are extreme vertices. When applying Algorithm 3
over BD1

2(p), we obtained two components. The extreme vertices of BD1
2(p) are present in

the components, but a new vertex appear which is product of the separation of the original
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Table 4: Identifying faces, of the 3D-OPP from Figure 5, through forward differences and Algorithm 4 (see
text for details. Faces’ vertices are listed in the order they are discovered).

Forward
difference

Connected
components
labeling

Discovered vertices and faces

v1, v2, v3, v4

X3

X2

X1

FD1
1(p) v1

v2

v3

v4

(Vertex v1 was not in EVM3(p)).

V (p) = {v1, v2, v3, v4}
F(p) = {{v1, v2, v3, v4}}

X3

X2

X1

Component 1

v5

v6

v7

v8

v5, v6, v7, v8

V (p) = {v1, v2, v3, v4, v5, v6, v7, v8}
F(p) = {{v1, v2, v3, v4}, {v5, v6, v7, v8}}

FD1
2(p)

v12

v10

v11

Component 2

v9

v9, v10, v11, v12

V (p) = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10,

v11, v12}
F(p) = {{v1, v2, v3, v4}, {v5, v6, v7, v8},

{v9, v10, v11, v12}}

X3

X2

X1

Component 1
v16

v14

v15

v13

v13, v14, v15, v16

V (p) = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10,

v11, v12, v13, v14, v15, v16}
F(p) = {{v1, v2, v3, v4},

{v5, v6, v7, v8}, {v9, v10, v11, v12},
{v13, v14, v15, v16}}

FD1
3(p)

v20

v18

v19

v17

Component 2

v17, v18, v19, v20

V (p) = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10,

v11, v12, v13, v14, v15, v16, v17, v18,

v19, v20}
F(p) = {{v1, v2, v3, v4}, {v5, v6, v7, v8},

{v9, v10, v11, v12}, {v13, v14, v15, v16},
{v17, v18, v19, v20}}
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Table 5: Identifying faces, of the 3D-OPP from Figure 5, through backward differences and Algorithm 4
(see text for details. Faces’ vertices are listed in the order they are discovered).

Backward difference
Connected
components
labeling

Discovered vertices and faces

X3

X2

X1

BD1
1(p)

v24

v22

v23

v21

v21, v22, v23, v24

V (p) = {v1, v2, v3, v4, v5, v6, v7, v8, v9,
v10, v11, v12, v13, v14, v15, v16,
v17, v18, v19, v20, v21, v22, v23, v24}

F(p) = {{v1, v2, v3, v4}, {v5, v6, v7, v8},
{v9, v10, v11, v12}, {v13, v14, v15, v16},
{v17, v18, v19, v20}, {v21, v22, v23, v24}}

X3

X2

X1

BD1
2(p)

v27

v25

v26

v2

Component 1 v2, v25, v26, v27

(Vertex v2 was discovered
when processing FD1

1(p))
V (p) = {v1, v2, v3, v4, v5, v6, v7, v8, v9,

v10, v11, v12, v13, v14, v15, v16,
v17, v18, v19, v20, v21, v22, v23, v24,
v25, v26, v27}

F(p) = {{v1, v2, v3, v4}, {v5, v6, v7, v8},
{v9, v10, v11, v12}, {v13, v14, v15, v16},
{v17, v18, v19, v20}, {v21, v22, v23, v24},
{v2, v25, v26, v27}}

v2

v29

v1

v28

Component 2

v1, v2, v28, v29

(Vertices v1 and v2 were
discovered when processing FD1

1(p))
V (p) = {v1, v2, v3, v4, v5, v6, v7, v8, v9,

v10, v11, v12, v13, v14, v15, v16, v17,
v18, v19, v20, v21, v22, v23, v24, v25,
v26, v27, v28, v29}

F(p) = {{v1, v2, v3, v4}, {v5, v6, v7, v8},
{v9, v10, v11, v12}, {v13, v14, v15, v16},
{v17, v18, v19, v20}, {v21, v22, v23, v24},
{v2, v25, v26, v27}, {v1, v2, v28, v29}}

face. Such a vertex (v2), in fact, was previously identified when processing FD1
1(p) (Table 4).

nonextreme vertex v1 is present in the second component: it was also identified when FD1
1(p)

was processed. The remaining vertices in both components, and the faces they define, are
appended to their corresponding lists.

Each one of the 2D components in the forward and backward differences of p is used
as input for the recursive calls of Algorithm 4. These calls have the objective of identifying
edges perpendicular to X2-axis. Table 6 presents the way Algorithm 4 discovers of some
of these edges. When FD1

1(p) is sent as input its corresponding 1D forward and backward
differences, perpendicular to X2-axis, are computed. Two edges are identified: one is defined
by vertices v3 and v4 (an odd edge), while the other is defined by vertices v1 and v2. Edge
{v1, v2} is one of the three even edges that 3D-OPP p has. According to previous sections,
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Table 6: Identifying some edges, of the 3D-OPP from Figure 5, through Algorithm 4 (see text for details).

Input 2D-OPP
1D Forward
and backward
differences

Connected
components
labeling

Discovered edges

X2

X1

X3

X3

X2

v2

v4

v1

v3

FD1
1(p)

v4

v3

FD2
1

v4

v3

{v3, v4}
E(p) = {{v3, v4}}

v2
v1

BD2
1

v2
v1

{v1, v2}
(even edge)

E(p) = {{v3, v4}, {v1, v2}}

X

X2

X1

3

X3

X2

v6

v8

v5

v7

Component 1

of FD1
2(p)

v8

v7

FD2
1

v8

v7

{v7, v8}
E(p) = {{v3, v4},
{v1, v2}, {v7, v8}}

v6
v5

BD2
1

v6
v5

{v5, v6}
E(p) = {{v3, v4}, {v1, v2},
{v7, v8}, {v5, v6}}

X3

X2

X1

X3

X2

v10

v12

v9

v11

Component 2

of FD1
2(p)

v12

v11

FD2
1

v12

v11

{v11, v12}
E(p) = {{v3, v4}, {v1, v2},
{v7, v8}, {v5, v6},
{v11, v12}}

v10

v9

BD2
1

v10

v9

{v9, v10}
E(p) = {{v3, v4}, {v1, v2},
{v7, v8}, {v5, v6},
{v11, v12}, {v9, v10}}

nonextreme vertices are ignored by the EVM. Moreover, when brinks are obtained from an
EVM, even edges remain unidentified, because they are not part of brinks. Tables 4 and
6 exemplify situations where these types of former boundary elements are obtained after
computing forward and backward differences.

When considering nD orthogonal polytopes, n ≥ 4, Algorithm 4 is clearly capable of
identifying nonextreme vertices and even edges. Furthermore, it is capable of discovering
those kD boundary elements that cannot be described via brinks. Consider the 4D-OPP p
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X3

X2

X4

X1

(a) A 4D-OPP p

X3

X2

X4

X1

(b) Brinks of p

X3

X2

X4

X1

(c) Φ1
1(p),Φ

1
2(p), and Φ1

3(p)

X2

X4

X3

X1

(d) FD1
1(p) and FD1

2(p)

X3

X2

X4

X1

(e) BD1
1(p) BD

1
2(p)

X2

X2

X4

X3

X3

(f) Processing 2D forward and
backward differences of FD1

1(p)

Figure 6: Discovery of a specific face in a 4D-OPP via Algorithm 4 (see text for details).

presented in Figure 6(a). Such polytope can be seen as two hypercubes sharing a face (which
is shaded in gray). The face is composed by four nonextreme vertices and four even edges.
When p’s brinks, parallel to X1 to X4-axes, are obtained (Figure 6(b)), the shared face’s
elements are not present, because the 4D-EVM only stores extreme vertices which in time
define brinks which are formed only by odd edges. Figure 6(c) presents the three 3D couplets,
perpendicular toX1-axis, of p. Each couplet is formed by a volume. The three volumes appear
to intersect, but this is an effect of the 4D-3D-2D projections used. Figure 6(d) presents p’s
two 3D forward differences perpendicular to X1-axis. When processing FD1

1(p), Algorithm 4
detects a 3D boundary volume defined by eight vertices: four of them correspond to extreme
vertices of p, while the other four correspond to the vertices of the shared face: such vertices
did not belong to EVM4(p). These four vertices are detected again when processing backward
difference BD1

2(p) (see Figure 6(e)). Three-dimensional forward difference FD1
1(p) is used, in

a recursive call, as input for Algorithm 4 (see Figure 6(f)). When its 2D forward and backward
differences, perpendicular to X4-axis, are processed and specifically when processing its only
backward difference, the shared face is formerly discovered and stored in the list of p’s
boundary faces. The edges of such face are formerly discovered when this face is then sent as
input, in a new recursive call, of Algorithm 4.

We conclude this section by mentioning that it is important to take into account
the coordinates ordering in an EVM determines which boundary elements are identified.
Suppose that we use the sorting X1X4X2X3. Algorithm 2 will extract forward and backward
differences perpendicular to X1-axis. Then, in turn, Algorithm 4 shares to identify 3D
boundary volumes perpendicular precisely to X1-axis (see Figures 6(d) and 6(e)). When
each one of these volumes is sent as input in the corresponding recursive calls, we have
input 3D-EVMs sorted as X4X2X3. Hence, there are identified, again, because of the use of
Algorithm 2, faces perpendicular to X4-axis. In this phase, we are working with volumes
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embedded in a 3D space, because of the use of projection operator which has removed the
X1-coordinate. But, when the source 4D Space is taken into account, it can be determined,
in fact, such faces are perpendicular to the plane described by X1 and X4 axes, because
they precisely belong to volumes perpendicular to X1-axis (see Figure 6(f)). When each face,
expressed as a 2D-EVM, is sent again as input, we identify edges perpendicular to X2-axis,
formally, edges perpendicular to the 3D hyperplane described by X1, X4, and X2 axes. Some
applications could require to have access to boundary elements which cannot be identified
via a given coordinates ordering. In this sense, a new sorting of the corresponding EVM is
required, but it can be achieved in efficient time respect to the number of extreme vertices in
the corresponding EVM. By this way, for example, coordinates sorting X3X4X1X2 will share
to identify 3D volumes perpendicular to X3-axis, faces perpendicular to the plane X3X4, and
edges perpendicular to the 3D hyperplane X3X4X1.

6. An Experimental Time Complexity Analysis for
Boundary Extraction under the nD-EVM

The following key points define the conditions over which the execution time of Algorithm 4
was measured.

(i) The units for the time measures are given in nanoseconds.

(ii) The evaluations were performed with a CPU Intel Core Duo (2.40GHz) and 2
Gigabytes in RAM.

(iii) Our algorithms were implemented using the Java Programming Language under
the Software Development Kit 1.6.0.

(iv) Our testing consider n = 2, 3, 4, 5.

(v) For each n, we have generated 10,000 random nD-OPPs. Each generated nD-OPP g
was, respectively, expressed as EVMn(g) and sent as input to Algorithm 4.

(vi) In the 2D, 3D, 4D, and 5D cases, the considered coordinates ordering were
X1X2, X1X2X3, X1X2X3X4, and X1X2X3X4X5, respectively. This implies that, as
specified in Section 5, we identified first (n−1)D boundary elements perpendicular
toX1-axis, then we identified (n−2)D boundary elements perpendicular toX2-axis,
and so on.

(vii) Once the generation of nD-OPPs has finished and the algorithm was evaluated, we
proceed with a statistical analysis in order to find a trendline of the form t = axb,
where x = Card (EVMn(g)), that fits as good as possible to our measures in order to
provide an estimation of the temporal complexity of Algorithm 4 for each value of
n. The quality of the approximation curve is assured by computing the coefficient
of determination R2.

Table 7 shows some statistics related to our generated polytopes. In Figure 7 the
behavior of Algorithm 4 with our testing sets of nD-OPPs can be visualized. In the same
chart the corresponding trendline for each value of n whose associated equations are shown
in Table 8 can be also appreciated.

We can then observe in the obtained trendlines (Table 8) that the exponents associated
with the number of vertices vary between 1 and 1.5. These experimentally identified
complexities for our Algorithm 4 provide us elements to determine its temporal efficiency
when we extract boundary elements from an nD-OPP expressed as an EVM.



Journal of Applied Mathematics 27

Table 7: Some statistical characteristics of the sets of random nD-OPPs for testing of Algorithm 4.

n
Max

card (EVMn(g))
Min

card (EVMn(g))
Median

card (EVMn(g))
Average

card (EVMn(g))
Standard deviation
card (EVMn(g))

2 7,016 4 3,682 3,633.35 2,004.88

3 6,742 0 5,334 4,695.53 1,772.10

4 6,830 0 5,362 4,727.48 1,781.45

5 7,310 0 5,392 4,825.45 1,876.69
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Figure 7: Execution times of Algorithm 4 for 2D, 3D, 4D, and 5D-OPPs and their corresponding trendlines.

Table 8: Equations associated to the trendlines that describe execution time of Algorithm 4 in the cases
with n = 2, 3, 4, 5.

n Trendline t = axb a b R2

2 t = 484.02x1.4313 484.02 1.4313 0.9866

3 t = 27, 391x1.1214 27,391 1.1214 0.9962

4 t = 33, 300x1.1744 33,300 1.1744 0.9835

5 t = 34, 957x1.2047 34,957 1.2047 0.9658
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7. Concluding Remarks and Future Work

In this work, we have provided two contributions: an algorithm for computing connected
components labeling and an algorithm for extracting boundary elements. The procedures
deal with the dominion of the n-dimensional orthogonal pseudo-polytopes, and they are
specified in terms of the extreme vertices model in the n-dimensional space. As seen before,
both algorithms are sustained in the basic methodologies provided by the nD-EVM. As
commented in Section 2, some of such basic algorithms in time are sustained in theMergeXor
algorithm. It computes the regularized XOR between two nD-OPPs expressed in the EVM
but in terms of the ordinary XOR operation. This implies MergeXor, as its name indicates,
is implemented as a merging procedure that only takes in account those extreme vertices
present in the first or second input EVMs but not in both. Therefore, it can be specified as
a merging-like procedure with an execution linear time given by the sum of the cardinalities
of the input EVMs [1]. On one hand, this has as a consequence the temporal efficiency of the
basic EVM algorithms. On the other hand, as seen in Section 6 and from an empirical point
of view, we have elements to sustain the efficiency of the algorithms provided here.

As part of our future work, and particularly, immediate applications for Algorithms 3
and 4, we comment that we will attack the problem related to the automatic classification
of video sequences. In [23], we describe a methodology for representing 2D color video
sequences as 4D-OPPs embedded in a 4D color-space-time geometry. Our idea is the
use of geometrical and topological properties, such as boundary descriptions, connected
components, and discrete compactness, in order to determine similarities and differences
between sequences and for instance to classify them. In [5], part of this work has been
boarded using only discrete compactness, and the obtained results are promising. We are
going to incorporate the information provided by Algorithms 3 and 4 in order to determine
if they can contribute to enhance the results.
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