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A hybrid immersed boundary-lattice Boltzmann method (IB-LBM) is presented in this work to
simulate the thermal flow problems. In current approach, the flow field is resolved by using
our recently developed boundary condition-enforced IB-LBM (Wu and Shu, (2009)). The nonslip
boundary condition on the solid boundary is enforced in simulation. At the same time, to capture
the temperature development, the conventional energy equation is resolved. To model the effect
of immersed boundary on temperature field, the heat source term is introduced. Different from
previous studies, the heat source term is set as unknown rather than predetermined. Inspired by
the idea in (Wu and Shu, (2009)), the unknown is calculated in such a way that the temperature
at the boundary interpolated from the corrected temperature field accurately satisfies the thermal
boundary condition. In addition, based on the resolved temperature correction, an efficient way to
compute the local and average Nusselt numbers is also proposed in this work. As compared with
traditional implementation, no approximation for temperature gradients is required. To validate
the present method, the numerical simulations of forced convection are carried out. The obtained
results show good agreement with data in the literature.

1. Introduction

As a long-standing challenge in the computational fluid mechanics, the flow problems
with complex geometry have been widely studied. In terms of grid applied, the numerical
methods can be generally classified into two categories. In the traditional approach, the body-
fitted mesh is employed to discretize the governing equation [1]. Thereafter, the boundary
condition could be implemented directly. As a result, the solution of problems strongly
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depends on the quality of generated mesh. Moreover, the mesh regeneration procedure is
usually unavoidable when the object is not fixed. To relieve this cumbersome requirement,
the alternative choice is to decouple the governing equation from the computational mesh. In
this category, the most famous algorithm is the immersed boundary method (IBM) proposed
by Peskin [2].

In IBM, the discretization of governing equation is performed on the Cartesian
(Eulerian) mesh, and the boundary of object is represented through a set of Lagrangian
points. Different from the body-fitted solver, the boundary condition in this method is
depicted by introducing a body force (restoring force) into the governing equation, which
replaces the effect of boundary on the surrounding flow field. Since the governing equation
is independent of the boundary, IBM is extremely suitable for handling various flowproblems
with complex geometry.

To acquire accurate solution via IBM, the appropriate calculation of force density
is of great importance. Up till now, there are several ways to fulfill this task. By treating
the boundary as deformable with high stiffness, Peskin [2] firstly applied the Hook’s law,
associated with the use of free parameter, to compute the restoring force (named penalty
method). Fadlun et al. [3] viewed the momentum equations as to be satisfied at boundary
points and hence the force density could be subsequently computed (named direct forcing
method). This approach has been widely used in current IBM application. Different from two
methods introduced above, which are based on the Navier-Stokes (N-S) solver, another force
calculation technique was proposed by Niu et al. [4] in the framework of lattice Boltzmann
method (LBM) [5]. The concept of momentum exchange at the boundary is utilized in this
approach (named momentum exchange method). Nonetheless, it should be stressed that the
force density is calculated explicitly in the conventional methods. Consequently, the nonslip
boundary condition cannot be guaranteed. Recently, we presented a boundary condition-
enforced IB-LBM [6], in which the force density is raised from the velocity correction and is
computed implicitly by enforcing the boundary condition. As compared to the conventional
IBM, the nonslip boundary condition can be guaranteed in this method.

The idea of IBM has been extensively introduced into numerous isothermal flow
problems. On the other hand, its application in thermal flow problems is limited and is
still in progress. A few attempts have been made in this aspect [7–9]. Similar to the use
of force density in isothermal flow problems, a heat source term is employed to meet the
influence of boundary in thermal flow problems. However, same as the force calculation
in conventional methods, the heat source term is computed explicitly in recent studies
[7–9]. In this way, the thermal boundary condition cannot be accurately satisfied, which
may affect the accuracy of solution. To address this problem, in this work, we develop
a hybrid IB-LBM for simulation of thermal flow problems following the idea of velocity
correction in [6]. In this method, the flow field is solved based on the IB-LBM in [6]. In the
meanwhile, the temperature field is obtained by solving the conventional energy equation
with additional heat source term, which is equivalent to temperature correction. With the
temperature correction evaluated implicitly, the thermal boundary condition can be satisfied
strictly. In addition, the Nusselt number is a crucial parameter in thermal flow problems.
Based on the established temperature correction, in this paper, both the local and average
Nusselt numbers can be efficiently computed. In this manner, the troublesome temperature
gradient calculation at the boundary points could be eliminated. To validate the proposed
algorithm, the forced convection from a stationary isothermal circular cylinder is simulated.
The numerical results show good agreement with available data in the literature.
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2. Methodology

2.1. Boundary Condition-Enforced Immersed Boundary-Lattice Boltzmann
Method

For viscous incompressible flow problems with an immersed boundary, the governing
equations in the framework of lattice Boltzmann equation (LBE) can be written as

fα(x + eαδt, t + δt) − fα(x, t) = − 1
τ

(
fα(x, t) − f

eq
α (x, t)

)
+ Fαδt, (2.1)

Fα =
(
1 − 1

2τ

)
wα

(
eα − u
c2s

+
eα · u
c4s

eα
)
· f, (2.2)

ρu =
∑
α

eαfα +
1
2
fδt, (2.3)

where fα is the distribution function, feq
α is its corresponding equilibrium state, τ is the

single relaxation parameter, eα is the lattice velocity, wα are coefficients which depend on
the selected lattice velocity model, and f is the force density which is distributed from the
boundary force density. Here, the D2Q9 lattice velocity model is used, which is

eα =

⎧
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(0, 0), α = 0,
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and the corresponding equilibrium distribution function is

f
eq
α (x, t) = ρwα

[
1 +

eα · u
c2s

+
(eα · u)2 − (cs|u|)2

2c4s

]
(2.5)

with w0 = 4/9, wα = 1/9, (α = 1∼4), and wα = 1/36, (α = 5∼8). cs = 1/
√
3 is the sound

speed of this model. The relationship between the relaxation time and the kinematic viscosity
of fluid is υ = (τ − 0.5)c2sδt.

In order to satisfy the nonslip boundary condition, the force density f in (2.2) and
(2.3) should be set as unknown [6]. It can be calculated from the fluid velocity correction
δu. Furthermore, δu can be obtained from the boundary velocity correction δuB. The final
expression for δuB is
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AX = B, (2.6)
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Here, m is the number of Lagrangian (boundary) points, and n is the number of surrounding
Eulerian points. δul

B (l = 1, 2, . . . , m) is the unknown velocity correction vector at the
boundary points. δij = Dij(xij − Xl

B)ΔxΔy and δB
ij = Dij(xij − Xl

B)Δsl. Dij(xij − Xl
B) is the

delta function, which is expressed as
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(2.9)

and Δsl is the arc length of boundary element. Ul
B is the boundary velocity. The intermediate

fluid velocity u∗ is calculated by

u∗ =
1
ρ

∑
α

eαfα. (2.10)

By solving equation system (2.6), the unknown variables δul
B can be obtained. After that, the

fluid velocity correction δu can be calculated by

δu =
∑
l

δul
BDij

(
xij − Xl

B

)
Δsl. (2.11)
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As shown in (2.3), the relationship between the force density f and the fluid velocity
correction δu can be written as

f =
2ρδu
δt

. (2.12)

In the LBM, the macroscopic variables such as density and pressure are calculated by

ρ =
∑
α

fα, P = c2sρ. (2.13)

2.2. Implicit Temperature Correction for Energy Equation

After the flow field is accurately solved through the boundary condition-enforced IB-LBM
[6], the temperature field can be obtained by using the conventional energy equation with
additional heat source term, which can be written as

ρcp

(
∂T

∂t
+ (u · ∇)T

)
= k∇2T + q, (2.14)

where T is the temperature, cp is the specific heat of the fluid, k is the thermal conductivity of
the fluid, and q is the heat source density distributed from the boundary heat flux.

To solve (2.14), the fractional step technique is used. First, the energy equation without
heat source density is solved, which is called Predictor step:

ρcp

(
∂T

∂t
+ (u · ∇)T

)
= k∇2T. (2.15)

The solution of (2.15) is regarded as intermediate temperature T ∗. In the second step, or
named Corrector step, the following equation is solved:

ρcp
∂T

∂t
= q. (2.16)

Here, (2.16) means the effect of heat source on temperature field. Using the Euler explicit
scheme, ∂T/∂t can be rewritten as Tn+1 − T ∗/δt = δT/δt, where Tn+1 is the required
temperature at next time step. Therefore, (2.16) becomes

q = ρcp
δT

δt
, (2.17)

where δT is the temperature correction which determines the unknown variable q. It means
that to calculate heat source term is equivalent to correcting the temperature field near the
boundary. Similar to the implementation of velocity correction in IB-LBM [6], δT can further
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be calculated from the boundary temperature correction δTB. By enforcing the constant
temperature boundary condition, δTB can computed from the following equation system:
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Here, Tl
B is the specified boundary temperature. The parameters m, n, δij , and δB

ij have the
same meaning as those in equation system (2.6). After δTB is obtained from equation system
(2.18), the temperature correction δT can be calculated through

δT =
∑
l

δT l
BDij

(
xij − Xl

B

)
Δsl. (2.21)

Consequently, the corrected temperature can be computed by

T = T ∗ + δT. (2.22)

2.3. Local and Average Nusselt Number Evaluation

In thermal flow problems, the Nusselt number is an important measurement parameter. The
local Nusselt number Nu on the surface of boundary is defined as

Nu(XB, t) =
h(XB, t)Lc

k
, (2.23)
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where h is the local convective heat transfer coefficient and Lc is the characteristic length.
According to Newton’s cooling law and Fourier’s law, the heat conducted away from the
boundary should be equal to the heat convection from the boundary, that is,

−k∂T
∂n

(XB, t) = h(XB, t)(TB − T∞), (2.24)

where T∞ is the free stream temperature. Substituting (2.24) into (2.23) gives

Nu(XB, t) = − Lc

TB − T∞

∂T

∂n
(XB, t). (2.25)

Further averaging over the entire boundary, we can have the surface overall mean Nusselt
number Nu

Nu =
1
L

∫
Nuds = − Lc

(TB − T∞)L

∫
∂T

∂n
(XB, t)ds, (2.26)

where L is the total length of boundary. Usually, the average Nusselt number can be used to
estimate the rate of heat transfer from the heated surface.

As shown in (2.25) and (2.26), to evaluate the local and average Nusselt numbers, the
calculation of temperature gradient at the boundary point is required. Since the temperature
is located at the Eulerian mesh which is not coincided with boundary, we cannot calculate
the boundary temperature derivatives directly. On the other hand, according to the Fourier’s
law, we can have the following expression for heat flux on the boundary Q:

Q(XB, t) = −k∂T
∂n

(XB, t). (2.27)

At the same time, similar to (2.17), the boundary heat flux can be calculated using the
boundary temperature correction

Q = ρcp
δTB
δt

. (2.28)

Substituting (2.27) and (2.28) into (2.25) and (2.26), the expressions for the local and average
Nusselt numbers can be rewritten as

Nu =
ρcpLc

kδt(TB − T∞)
δTB, (2.29)

Nu =
ρcpLc

kδt(TB − T∞)L

∑
l

δT l
BΔsl. (2.30)

As can be seen from (2.29) and (2.30), the local and average Nusselt numbers can be
easily calculated by using the solved boundary temperature correction, which avoids the
temperature gradient computation on the boundary.
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Figure 1: Temperature contours for steady forced convection from a stationary circular cylinder.

3. Results and Discussion

As a benchmark case, the forced convection from a stationary circular cylinder has been
extensively simulated to validate the numerical methods. Both the experimental and
numerical results are available in the literature [10–12]. To characterize this thermal flow
problem, two nondimensional parameters are used: the Reynolds number Re = ρU∞D/μ
and Prandtl number Pr = μcp/k. Here, U∞ is the free stream velocity, D is the cylinder
diameter, and μ is the dynamic viscosity. In current simulation, the Prandtl number is fixed
at Pr = 0.7. Meanwhile, several low Reynolds numbers are selected: Re = 20, 40 (steady
flow), and 80, 150 (unsteady flow). Since this is a one-way interaction problem, the velocity
field can influence the temperature field while cannot be affected by the temperature field.
As the developed IB-LBM can accurately simulate velocity field [6], we only focus on the
temperature field in this case.

For the steady flow simulation, the computational domain is 60D × 40D with the
nonuniformmesh size of 321 × 241. The cylinder is located at (20D, 20D). The region around
the cylinder is 1.2D × 1.2D with a finest and uniform mesh size of 49 × 49. To apply the IB-
LBM on nonuniform mesh, the Taylor series expansion and least-squares-based LBM [13]
are utilized. Figure 1 shows the temperature contours at Re = 20 and 40. It can be seen from
the figure that the isotherms cluster heavily in the front part of cylinder. When the Reynolds
number is increased, the behavior of isotherm clustering is strengthened. The clustering of
isotherm indicates that the temperature gradient is large there. As a result, the heat transfer
rate near the front of cylinder is much larger than other regions. This phenomenon can
be further verified via the local Nusselt number distribution on the surface of cylinder, as
shown in Figure 2 for the case of Re = 20. Without evaluation of temperature gradient on the
boundary point, the local Nusselt number can be easily computed from the solved boundary
temperature correction, as shown in (2.29). To make comparison, the result of Bharti et al.
[12] is also involved. In this figure, θ = 0◦ means the front stagnation point of cylinder. From
Figure 2, it can be found that the value of local Nusselt number located at θ = 0◦ is maximum
and it decreases monotonously with respect to θ. Also can be seen from the figure is that the
result of current simulation shows good agreement with that of Bharti et al. [12].
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Figure 2: Local Nusselt number distribution on the surface of cylinder at Re = 20.
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Figure 3: Instantaneous isotherms (colorful) and vorticity contours (gray) for unsteady forced convection
from a stationary cylinder.

For the unsteady flow simulation, the computational domain is 50D × 40D with the
mesh size of 401 × 301. The region around the cylinder keeps 1.2D × 1.2D with a uniform
mesh size of 97 × 97. The cylinder is still located at (20D, 20D). Figure 3 plots the isotherms as
well as vorticity contours at Re = 80 and 150. The regular vortex shedding occurs at these two
Reynolds numbers. Concurrently, the isotherms lose symmetry and start to display shedding
behavior, which synchronously moves downstream with vortex.

To illustrate the performance of average Nusselt number calculation by using (2.30),
the obtained numerical results for all Reynolds numbers considered here are shown in
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Table 1: Nusselt number comparison at different Reynolds numbers.

References Cases Nu

Lange et al. [11]

Re = 20 2.409

Re = 40 3.281

Re = 80 4.571

Re = 150 6.396

Bharti et al. [12]

Re = 20 2.465

Re = 40 3.283

Re = 80 —

Re = 150 —

Present

Re = 20 2.472

Re = 40 3.281

Re = 80 4.611

Re = 150 6.432

Table 1. To compare with available results in the literature, the numerical results of Lange
et al. [11] and Bharti et al. [12] are also listed in the table. It is clear that the results from
current method basically agree well with the reference data. Besides, the value of average
Nusselt number increases with Reynolds number as expected.

4. Conclusion

In this paper, a hybrid immersed boundary-lattice Boltzmann method is developed to
simulate the heat transfer problems. Employing the newly proposed IB-LBM [6], the nonslip
boundary condition is enforced in simulation, and thus the velocity field can be accurately
simulated. In the meanwhile, the temperature field is resolved by using the conventional
energy equation with additional heat source term which mimics the influence of boundary
on temperature field. Similar to the idea of velocity correction in [6], the heat source term
is equivalent to the temperature correction and is set as unknown. By enforcing the thermal
boundary condition, this unknown variable can be determined. Furthermore, utilizing the
relationship between the temperature correction and heat flux, a simple approach for local
and average Nusselt number evaluation is proposed. Different from the conventional way,
there is no requirement for temperature gradient calculation.

The efficiency and capability of developed method as well as way to calculate the local
and averageNusselt numbers are illustrated by the simulation of forced convection problems.
The obtained numerical results show good agreement with available data in the literature. It
is demonstrated that the present method has a promising potential for solving thermal flow
problems with complex geometry.
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