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We present a model for an SIR epidemic in a population consisting of two components—locals
and migrants. We identify three equilibrium points and we analyse the stability of the disease
free equilibrium. Then we apply optimal control theory to find an optimal vaccination strategy
for this 2-group population in a very simple form. Finally we support our analysis by numerical
simulation using the fourth order Runge-Kutta method.

1. Introduction

Mathematical modeling of the numerical evolution of infectious diseases has become an
important tool for disease control and eradication when possible. Much work has been done
on the problem of how a given population is affected by another population when there
is mutual interaction. The mere presence of migrant people poses a challenge to whatever
health systems are in place in a particular region. Such epidemiological phenomena have been
studied extensively, described by mathematical models with suggestions for intervention
strategies. The epidemiological effect of migration within the population itself was modeled
for sleeping sickness in a paper [1] by Chalvet-Monfray et al. In the case of malaria, there
is for instance a study [2] by Tumwiine et al. on the effect of migrating people on a fixed
population. The latter two diseases are vector borne. Diseases that propagate without a vector
spread perhaps more easily when introduced into a new region. Various studies of models
with immigration of infectives have been undertaken for tuberculosis, see for instance [3] by
Zhou et al., or the work [4] of Jia et al., and for HIV, see the paper [5] of Naresh et al.

A very simple compartmental model of an epidemic would be an autonomous system
comprising a system of two or three differential equations, such as, for instance, the model of
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Kermack and McKendrick. There are more sophisticated models that allow for an incubation
period for the pathogen after entering the body of a host. One of the ways of dealing with
this phenomenon is by way of delay differential equations, for instance, in the papers [6]
of De la Sen et al. and [7] of Li et al. Another way of handling an incubation period is by
introducing another compartment. A comparison of these two approaches can be found in
the work [8] of Kaddar et al. Other models allow for certain entities such as force of infection
or incidence rate to be nonconstant. Such a model, in both a deterministic and a stochastic
version, is considered in [9] by Lahrouz et al.

In this paper, we study a disease of the SIR type, prevailing in a population that
can be regarded as consisting of two subpopulations. We compare it with similar models
existing in the literature. We study stability of equilibrium solutions and optimal roll out of
the vaccination. Such a study, in the case of a homogeneous population, was done in [10]
by Zaman et al. For more complex population structures, there is a study by Piccolo and
Billings [11]. A model similar to that of Piccolo and Billings has been studied in a stochastic
setting in the work [12] of Yu et al. In [12], such a population is being referred to as a two-
group population. A model of SEIR type for such a diversified population was proposed
in [4] by Jia et al. In the latter paper, they analyse stability of solutions, but they do not
consider vaccination. Our paper aims to follow the approach of [4], but for the SIR case and
to include vaccination. Some papers have addressed epidemicmodels with pulse vaccination,
for instance, an SIR model with pulse vaccination strategy to eradicate measles is presented
in [13] by Agur et al. A model of an SIR epidemic in a two-group population, separated by
age, is presented in the paper [14] of Acedo et al. They present a vaccination strategy similar
to that in [13]. Much work in pulse vaccination has been done following on and inspired by
[13]. However, two different diseases of SIR type may require completely different strategies
for effective control of the disease. In this paper, we cater for those diseases for which pulse
vaccination is not the best solution. We will assume the so-called proportional vaccination.
A very interesting control problem is solved in the paper [15] of Tchuenche et al. In [15], the
control vector is 3-dimensional, providing for a two-dimensional control on vaccination and
a control on treatment. In the current paper, the control problem and its solution follow more
closely along the lines of [10]. We obtain a simplification over [10] by observing that some of
the pivotal costate variables vanish.

This paper is organized as follows. In Section 2, we formulate the model by way of a
system of six ordinary differential equations. Then, we analyse the disease-free equilibrium
and derive the threshold parameters in Section 3. In Section 4, we consider the optimal control
problem, controlling vaccination on both the locals and the migrants. The percentages of
susceptibles being vaccinated are taken as the control variables. We include a simulation.
Finally, Section 5 has concluding remarks and offers a brief outlook on further research
possibilities.

2. Model Formulation
To study the transmission of a disease in two interacting populations, we consider the total
populationwith sizeN, as being divided into two subpopulations, themigrant subpopulation
of size M, and the local subpopulation of size L. We assume that each subpopulation size is
constant (the rate of birth equals the mortality rate) and that the population is uniform and
homogeneouslymixing. Divide each subpopulation into disjoint classes called the susceptible
class (S), the infectious class (I), and the class of the removed (R). Thus, there will be
three such classes for the local population and also three classes for the migrant population.
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Figure 1: Flow chart of two interacting populations.

The sizes of these classes change with time and will be denoted by S0(t), I0(t), R0(t), S1(t),
I1(t), and R1(t). Let us agree henceforth to suppress the subscript (0) for local population,
writing simply S(t) instead of S0(t), and so on.

The model is described by a system of six differential equations as follows. The
schematic diagram depicted in Figure 1 illustrates the model and informs the differential
equations. We note that the first three equations in (2.1) constitute an SIR model as, for
instance, in the paper [10] by Zaman et al. Let us normalize the variables, using the new
variables s1 = S1/M, i1 = I1/M, r1 = R1/M, s = S/L, i = I/L and r = R/L. After
normalizing our model, which we shall refer to as model (2.1) and (2.2), becomes as follows:

ds1(t)
dt

= v1 − (v1 + u1(t))s1(t) − β1i1(t)s1(t),

di1(t)
dt

= β1i1(t)s1(t) −
(
γ1 + v1

)
i1(t),

dr1(t)
dt

= γ1i1(t) − v1r1(t) + u1(t)s1(t),

(2.1)

ds(t)
dt

= v − (v + u(t))s(t) − βi(t)s(t) − β2i1(t)s(t),

di(t)
dt

= βi(t)s(t) + β2i1(t)s(t) −
(
γ + v

)
i(t),

dr(t)
dt

= γi(t) − vr(t) + u(t)s(t).

(2.2)
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Here v1 and v are the mortality rate (equal to the birth rate) in the migrant subpopulation,
and the local subpopulation, respectively. The functions u1(t) and u(t) are the percentages
of susceptible individuals being vaccinated in the respective subpopulations per unit
time. Individuals enter the recovered compartment at rates γ1 and γ for the respective
subpopulations. Also β1 and β are the transmission coefficients from the susceptible
compartment into the infectious, for the migrant subpopulation and the local subpopulation,
respectively. The transmission coefficient from migrants to locals is denoted by β2. The term
β2i1smodels the influence of the migrant subpopulation onto the locals as in the paper [4] of
Jia et al.

In the normalized system above, the sizes of the two groups in the population are
not visible. At least we should be aware of their relative sizes. In particular, the weighting
constant c0 must be in step with the ratio M/L. The feasible region for the system is the
following set:

Ω =
{
X ∈ R

6
+ : X1 +X2 +X3 = 1, X4 +X5 +X6 = 1

}
. (2.3)

3. Equilibria and Their Stability

Equilibrium points are time-independent solutions to the given system of equations.
Therefore, in this subsection, we assume u1(t) and u(t) to be constant functions, u1(t) ≡ u1

and u(t) ≡ u. Stability properties of the equilibria are closely linked with the numbers

K1 =
β1v1

(v1 + u1)
(
γ1 + v1

) , K =
βv

(v + u)
(
γ + v

) . (3.1)

We shall prove that the basic reproduction ratio is the number Ru,u1 = max{K,K1}. This will
follow from Proposition 3.3.

Notation 1. If u and u1 are both identically zero, then Ru,u1 will be written as R0. For an
equilibrium point E, the coordinates will be denoted by Es, Es1 , and so on.

Remark 3.1. Suppose that in the model (1a, 1b) in [4] of Jia et al., we make the following
modifications, transforming the model into SIR: replace the compartments EM and IM by a
single compartment JM, and similarly replace EL and IL by a single JM,

Then the model takes the same form as our model (2.1) and (2.2), if in (2.1) and (2.2)
we put u(t) ≡ 0, u1(t) ≡ 0 and v1 = v.

We take advantage of the aforementioned equivalence in presenting our next theorem.

Theorem 3.2. Let one consider the unvaccinated version of model (2.1) and (2.2), that is, with u(t) ≡
0 and u1(t) ≡ 0, and let us further assume that v1 = v.

If R0 < 1, then the disease-free equilibrium F with Fs = 1 and Fs1 = 1 exists and is globally
stable.

Proof. In view of Remark 3.1, this theorem is a direct consequence of [4, Theorem 1].

Turning to the more general model (2.1) and (2.2), with vaccination and without the
assumption v1 = v, we can identify three possible equilibrium points.
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Proposition 3.3. (a) If Ru,u1 < 1, then the disease-free equilibrium F is locally asymptotically stable
and its coordinates are

Fs1 =
v1

v1 + u1
, Fi1 = 0, Fr1 =

u1

v1 + u1
,

Fs =
v

v + u
, Fi = 0, Fr =

u

v + u
.

(3.2)

(b) If K1 < 1 and K > 1, then there is a unique feasible equilibrium B with

Bs1 =
v1

v1 + u1
, Bi1 = 0, Br1 =

u1

v1 + u1
,

Bs =
γ + v

β
, Bi =

v

γ + v

(
1 − 1

K

)
, Br = 1 − Bs − Br.

(3.3)

(c) The endemic equilibrium D has coordinates as follows:

Ds1 =
γ1 + v1

β1
, Di1 =

v1

γ1 + v1

(
1 − 1

K1

)
,

Dr1 = 1 −Ds1 −Dr1 ,

(3.4)

Ds is a root x of the quadratic polynomial P(x) = C2x
2 + C1x + C0 with

C0 = β1v
2v1 + β1v

2γ1 + β1γγ1v + β1γv1v,

C1 = C0 + β2v1γ1γ + β2v
2
1γ − β2v1β1v − β2v1β1γ − β1γγ1u − β1βγ1v

+ β2u1v1v + β2v1γ1v + β2v
2
1v − β1βv1v − β1vv1u − β1γv1u − β1vγ1u

+ β2u1
(
v1γ + γ1γ + γ1v

)
,

C2 = β1β
(
γ1 + v1

)
(v + u),

Di =
v − (u + v)s

v + γ
, Dr = 1 −Ds −Di.

(3.5)

Proof. The given points F,D, B ∈ R
6 clearly are equilibrium solutions, which may or may not

be feasible.
(a) The Jacobian associated with the system (2.1) and (2.2) at point F is

W =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

a1 0 0 0 0 0
β1i1 b1 0 0 0 0
−u1 γ1 −v1 0 0 0
0 β2s 0 a − β2i1 −βs 0
0 β2s 0 βi + β2i1 c 0
0 0 0 u γ −v

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

, (3.6)
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where

a1 = −v1 − u1 − β1i1, b1 = β1s1 − γ1 − v1, c = βs − γ − v. (3.7)

We set out to find the eigenvalues of W . This amounts to solving for λ in the equation,

q1 · (λ + v1) · q2 · (λ + v) = 0, (3.8)

where q1(λ) and q2(λ) are the quadratic expressions below:

q1 =
(
λ + v1 + u1 + β1i1

)(
λ − β1s1 + γ1 + v1

)
+ β21i1s1, (3.9)

q2 =
(
λ − βs + γ + v

)(
λ + v + u + βi + β2i1

)
+ β2si + ββ2is. (3.10)

Now from (3.9)we can write q1 in the form

q1 = λ2 +A1λ +A2, (3.11)

where A1 and A2 are the constants:

A1 = v1 + u1 + β1i1 − β1s1 + γ1 + v1,

A2 =
(
v1 + u1 + β1i1

)(
γ1 + v1 − β1s1

)
+ β21i1s1.

(3.12)

Substituting the equilibrium values (at the point F) of s1, i1, s and i, we can rewrite

A1 = v1 + u1 −
β1v1

v1 + u1
+ γ1 + v1,

A2 = (v1 + u1)
(
γ1 + v1 −

β1v1

v1 + u1

)
.

(3.13)

The roots of q1 have negative real parts if both A1 and A2 are positive. Now we note that A2

is positive if and only if

γ1 + v1 −
β1v1

v1 + u1
> 0, (3.14)

that is,

K1 =
β1v1

(v1 + u1)
(
v1 + γ1

) < 1. (3.15)
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If K1 < 1, then also A1 > 0. From (3.10) we have q2 as follows:

q2 = λ2 +
(
v + u + βi + β2i1 − βs + γ + v

)
λ +

(
γ + v − βs

)(
v + u + βi + β2i1

)
+ β2si + ββ2si.

(3.16)

Now let us define the coefficients Q1 and Q2 as

Q1 =
(
v + u + βi + β2i1 − βs + γ + v

)
,

Q2 =
(
γ + v − βs

)(
v + u + βi + β2i1

)
+ β2si + ββ2si.

(3.17)

By applying a similar analysis as for q1, we find that the roots of (3.16) have negative real
parts if and only if both Q1 and Q2 are positive, which is equivalent to the condition

K =
βv

(v + u)
(
γ + v

) < 1. (3.18)

Therefore, the disease-free equilibrium is locally asymptotically stable if K1 < 1 and K < 1,
that is, when Ru,u1 < 1.

((b) and (c)): The points are obtained by direct computation. Feasibility of B is clear
when K and K1 are as given in (b).

We include a computational example of an endemic equilibrium point D.

Example 3.4. Let us choose parameter values:

(
v, β, γ, u, v1, β1, γ1, u1, β2

)
= (0.11, 0.40, 0.09, 0.5, 0.15, 0.55, 0.05, 0.25, 0.3). (3.19)

Then we obtain K1 = 1.03125 and D has coordinates:

Ds1 = 0.36364, Di1 = 0.02273, Ds = 0.17726, Di = 0.00936. (3.20)

We note that P(x) also has a root x = 0.50866, but this is not a feasible value for Ds since the
corresponding Di value (= −1.00141) is negative.

In line with the terminology of [4], we shall refer to the point B as a boundary
equilibrium. Stability analysis of the points B and D would take more effort than in the case
of F, and could distract from the main purpose of this paper.

4. Optimal Vaccination Strategy

We wish to design optimal vaccination strategies u∗(t) and u∗
1(t), respectively, for the local

population and the migrant population. We have six state variables s1(t), s(t), . . . , r(t). The
variable u(t) denotes the percentage of susceptible individuals being vaccinated per unit of
time in the local population, and u(t) is assumed to be bounded, 0 ≤ u(t) ≤ α ≤ 1. A similar
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interpretation holds for u1(t), and we assume that for some constant α1, 0 ≤ u1(t) ≤ α1 ≤ 1.
Our optimal control problem amounts to minimizing the objective function below

J(u(t), u1(t)) =
∫T

0

[
i(t) + c0i1(t) + cu2(t) + c1u

2
1(t)

]
dt, (4.1)

where c0, c, and c1 are positive weighting constants. The integral in the objective function can
be regarded as follows. The first two terms in the integrand represent the suffering, the lost
working hours, the cost of hospitalization, and so on, due to infections. The other two terms
represent the cost of vaccination. Similar objective functions are considered in the book [16]
of Lenart and Workman and in, for instance, the paper [10] of Zaman et al. Our problem is
then as follows.

Problem 1. Minimize J(u(t), u1(t)) subject to the system (2.1) and (2.2) of differential
equations, together with the initial conditions

s1(0) = s10 ≥ 0, i1(0) = i10 ≥ 0, r1(0) = r10 ≥ 0,

s(0) = s0 ≥ 0, i(0) = i0 ≥ 0, r(0) = r0 ≥ 0,
(4.2)

and terminal conditions, s1(T), i1(T), r1(T), s(T), i(T), and r(T) are free, while the control
variables are assumed to be measurable functions that are bounded above

0 ≤ u(t) ≤ α ≤ 1, 0 ≤ u1(t) ≤ α1 ≤ 1. (4.3)

The Hamiltonian for this problem is as follows:

H(t, s1, i1, r1, s, i, r, u, λ1, λ2, λ3, λ4, λ5, λ6) = i(t) + c0i1(t) + cu(t)2 + c1u1(t)2

+ λ1(t)
(
v1 − (v1 + u1(t))s1(t) − β1i1(t)s1(t)

)

+ λ2(t)
(
β1i1(t)s1(t) −

(
γ1 + v1

)
i1(t)

)

+ λ3(t)
(
γ1i1(t) − v1r1(t) + u1(t)s1(t)

)

+ λ4(t)
(
v − (v + u(t))s(t) − βi(t)s(t) − β2i1(t)s(t)

)

+ λ5(t)
(
βi(t)s(t) + β2i1(t)s(t) −

(
γ + v

)
i(t)

)

+ λ6(t)
(
γi(t) − vr(t) + u(t)s(t)

)
.

(4.4)

In the theorem below, the controls, the state variables, and the costate variables are functions
of time. However, notationally this dependence will be suppressed except when required
explicitly. The upper dot denotes the time derivative.

Theorem 4.1. An optimal solution for Problem 1 exists. An optimal solution satisfies the identity

λ3(t) = 0 = λ6(t) ∀0 ≤ t ≤ T, (4.5)



Journal of Applied Mathematics 9

and also satisfies the following system of differential equations:

λ̇1 = λ1
(
v1 + u1 + β1i1

) − λ2β1i1,

λ̇2 = −c0 + λ1β1s1 − λ2
(
β1s1 − γ1 − v1

)
+ λ4β2s − λ5β2s,

λ̇4 = λ4
(
v + u + βi + β2i1

) − λ5
(
βi + β2i1

)
,

λ̇5 = −1 + λ4βs − λ5
(
βs − γ − v

)
,

(4.6)

with transversality conditions:

λ1(T) = 0, λ2(T) = 0, λ4(T) = 0, λ5(T) = 0. (4.7)

Furthermore, the optimal vaccination strategy is given by

u∗(t) = min
(
max

(
λ∗4(t)s

∗(t)
2c

, 0
)
, α

)
,

u∗
1(t) = min

(
max

(
λ∗1(t)s

∗
1(t)

2c1
, 0
)
, α1

)
.

(4.8)

Proof. Existence of a solution follows since the Hamiltonian is convex with respect to
u(t) and u1(t). We check the first-order conditions for this optimization problem. We
calculate the partial derivatives of the Hamiltonian with respect to the different state
variables, in order to obtain the time derivatives λ̇i(t) of the costate variables. Due to
s1(T), i1(T), r1(T), s(T), i(T) and r(T) being free, the following terminal conditions hold:

λ1(T) = 0, λ2(T) = 0, λ3(T) = 0, λ4(T) = 0, λ5(T) = 0, λ6(T) = 0. (4.9)

We start off by observing that,

λ̇3(t) = −∂H
∂r1

= −v1λ3(t), λ̇6(t) = −∂H
∂r

= −vλ6(t). (4.10)

This implies that λ3(t) and λ6(t) are of the form

λ3(t) = Ae−v1t, λ6(t) = Be−vt, (4.11)

for some constants A and B, respectively. The terminal conditions λ3(T) = 0 and λ6(T) = 0,
forces A and B to vanish. Therefore, λ3 and λ6 are identically zero, that is, λ3(t) ≡ 0 and
λ6(t) ≡ 0 as claimed in the theorem.

Now we calculate

λ̇1(t) = −∂H
∗

∂s1
, λ̇2(t) = −∂H

∗

∂i1
, λ̇4(t) = −∂H

∗

∂s
, λ̇5(t) = −∂H

∗

∂i
, (4.12)

and we obtain the equations as asserted in the theorem.
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We now turn to the final part of the proof, which is about the form of the controls, u∗(t)
and u∗

1(t). The function u∗(t)must optimize H. So we calculate

∂H

∂u
= 2cu − λ4s. (4.13)

Consider a fixed value of t. Now if 2cu(t) − λ4(t)s(t) is zero for some value of u(t) in [0, α],
then the given value of u(t) is optimal. If for every number u ∈ [0, α], we have

2cu − λ4(t)s(t) ≥ 0
(
resp., 2cu − λ4(t)s(t) ≤ 0

)
, (4.14)

then we must choose u(t) = 0 (resp., u(i) = α). Thus, we must have

u∗(t) = min
(
max

(
λ∗4(t)s

∗(t)
2c

, 0
)
, α

)
. (4.15)

The function u∗
1(t) also must optimize H, and by a similar argument we obtain the stated

expression for u∗
1(t).

Numerical Simulation

We present two simulations in the examples below, and we use the Runge-Kutta fourth-
order method. For both of these examples, we use the same parameter values, but the initial
conditions on the state variables will be different. The parameter values are as follows:

c0 = 1; c = 0.3; c1 = 0.2; g = 0.4; d = 0.0222; β = 0.09; β1 = 0.12; β2 = 0.02;

α = 0.7; α1 = 0.8; μ1 = 0.0222; γ1 = 0.3; T = 300.
(4.16)

The time horizon of a control problem in epidemiology is usually dependent on economic
factors such as budgeting, biological, and medical considerations, or even maybe influenced
by political dynamics. For the purpose of our illustrative examples, the chosen value of T is
nominal.

Example 4.2. Consider the initial conditions

s(0) = 0.7; i(0) = 0.28; r(0) = 0.02; s1(0) = 0.7; i1(0) = 0.25; r1(0) = 0.05. (4.17)

We note that if both groups have the infection on a significant scale, then the optimal strategy
is to vaccinate in both groups on a comparable scale. The optimal vaccination rollouts for the
two groups are similar in form (Figures 2, 3, and 4).

Example 4.3. In this case we assume at time t = 0 to have the local population to be infection-
free. We consider the initial conditions

s(0) = 1; i(0) = 0; r(0) = 0; s1(0) = 0.7; i1(0) = 0.25; r1(0) = 0.05. (4.18)
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Figure 2: This plot shows the proportions of susceptible and infected individuals in the local
subpopulation, according to Example 4.2.
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Figure 3: For the case of Example 4.2, we show the proportions of susceptible and infected individuals in
the migrant group.

Naively, one would expect to see that in such a case the optimal strategy should be to
vaccinate the migrants at much higher ratios than the locals. Our simulation reveals that
although the initial infection on locals is zero, it is optimal to immediately start on vaccination
of the locals whenever there are infected migrants (Figure 5).
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Figure 4: The vaccination strategies for the two groups, Example 4.2.
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Figure 5: The vaccination strategies for the two groups, Example 4.3.

We conclude this section with a comparison of the values of the objective functional,
comparing cases of contant vaccination with optimal (and variable) vaccination strategies.

Example 4.4. In Table 1 we use model parameters as for the simulations of Examples 4.2 and
4.3. Only the state variables and the controls are different. We take the values s(0) = 1 and
i(0) = 0 as fixed (with r = 1 − s − i), and we select values for s1(0) and i1(0) as indicated in
the table. For comparison with the case of optimal control, we consider the constant values
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Table 1

s1 i1 J(u∗, u∗
1) J(u, u1) J(û, u1)

0.45 0.50 0.74198 2.2439 3.0395
0.60 0.35 0.53076 2.2290 2.8290
0.75 0.20 0.31481 2.0092 2.6092

u1 = 0.7 and u = 0.7 of u1(t), and u(t), respectively, and in the last column we use the values
u1 = 0.7 and û = 0.3.

The computations in the table show that the application of just a constant vaccination
strategy would render excessively large values of the objective functional in comparison with
the optimal vaccination strategy. The resulting benefit therefore makes it worth the effort of
calculating the optimal control.

5. Concluding Remarks

We observe the influence of the migrant subpopulation onto a given (local) population, and
then determine an optimal vaccination strategy for the two-group population. In the model
of Jia et al., the emphasis is on the high impact of migrants. The paper [4] of Jia et al., and
also the work [2] of Tumwiine et al., together with some other papers, support the theory
that migrants have considerable influence in transmission of most communicable diseases.
Our model facilitates numerical illustration of these phenomena. Example 4.3, in particular,
shows how optimal control theory informs the best strategy, eliminating the risk of naive
decision making. With the results of this paper, we are now able to efficiently plan the rollout
of the appropriate vaccination strategy on such a two-group population. Future research may
include similar investigations on stochastic two-group SIR models such as the model in [12]
of Yu et al. In particular, the approach of Lahrouz et al. [9] to the stochastic model, permits
an SIR model in which the total population stays constant, while stochasticity prevails in the
propagation of the disease. This method shows much promise in epidemiological modeling.
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