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This paper considers a class of networked Permanent Magnet Synchronous Motors (PMSMs),
whose feedback loops are closed over a shared data network. Although the installation and
maintenance cost of the networked PMSM system can be lowered by replacing the conventional
point-to-point feedback cables with a network, the network packet dropouts and transmission
delay may degrade the system’s performance and even destabilize it. The load torque disturbance
is another source to deteriorate the PMSM system’s performance. To investigate the effects of the
data network and the torque disturbance on the speed tracking of a PMSM system is one major
task of this paper. In particular, we derive a sufficient stability condition for this system in an
LMI (linear matrix inequality) form and provides a way to bound the system’s H∞ performance.
Moreover, we adopt an iterative LMI method to design the speed controller of the PMSM system,
which can robustly guarantee stability and performance against the network-induced delays,
packet dropouts, and the torque disturbance. Simulations are done to verify the effectiveness of
the obtained results.

1. Introduction

In the high-performance applications, such as robotics, aeronautic devices, and precision
machine tools, the positioning accuracy is required to be higher and higher so that an
alternative better than the traditional induction motors is needed. The permanent magnet
synchronous motor (PMSM) is one wise choice to meet this accuracy challenge in the low-
to-medium power servo systems. Because the PMSM’s rotor is a permanent magnet and
the flux linkage is constant [1], it possesses many advantages, like superior power density,
large torque-to-inertia ratio, and high efficiency. Consequently, the PMSM has received
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widespreading acceptance in industrial applications and is recognized as one of the key
components in automation applications.

In PMSM applications, speed tracking is of great importance [2]. The existence of the
load torque disturbance, however, makes speed tracking a rather tough task. In fact, it is
impossible to measure the disturbance directly in real application. One way is to estimate the
disturbance and actively cancel it [3]. Such methods may complicate the system design and
increase the system’s cost. We take another way, that is, designing a robust controller that can
guarantee the system’s performance is less sensitive to the disturbance.

Conventionally, a PMSM servo system includes a small number of PMSMs, which
are connected to controllers by point-to-point cables to close the control loops. The modern
industry, however, demands more and more PMSMs that could be located in geographically
separated areas. Thus the direct cable connection architecture is inconvenient for the
installation and maintenance. Instead, we can close the feedback loops of PMSMs over a
digital network to form a networked control system (NCS), which is a newly developed
technology being able to reduce the system’s wiring cost, simplify the system’s diagnosis and
maintenance, and improve the system’s agility [4]. The use of network will, however, induce
intermittent losses and delays of the feedback information, may deteriorate the system’s
performance, and even cause instability [5]. There are many results on NCSs, some of which
are introduced here (see more in the survey [6]). Reference [7] investigates the problem of
robust stabilization and disturbance for the NCSs with random communication network-
induced delays. Reference [8] Considers H∞ output tracking for NCSs with delays and data
packet dropouts. In [9], the discrete-time NCSs is studied and a state feedback controller with
less conservatism is given. Moreover, a modified optimization algorithm is also proposed in
[9] to cope with Bilinear Matrix Inequalities (BMIs).

As an important field of NCSs, networked servo systems are also well studied in recent
years. In [10], fuzzy logic control is used to enhance the performance of networked servo
systems with delays. To compensate the noise in the transmission channels, two-degrees-of-
freedom control is utilized in [11]. Predictive control [12] is implemented to suppress the
negative effects of delays and dropouts induced by the network. These results mainly focus
on servo systems with DC motors or AC induction motors. Nevertheless, PMSM, as one
of the main actuators in servo systems, is rarely mentioned in the previous NCS research.
Due to its great potential in the industry, the networked PMSM servo systems could be one
of the hot research topics in the future. Though a networked PMSM servo system has the
same problems of data packet dropouts and transmission delay as typical networked servo
systems, it has its own characteristics due to the employment of field-orientation mechanism
and the special motor structures [13]. So when we design a controller for such a system, the
specific properties should be taken into account to achieve less conservative results. The load
torque disturbance, as a common disturbance in applications, should also be considered in
the networked PMSM servo system.

This paper is organized as follows. In Section 2, we establish the mathematical model
for the networked PMSM servo systems, which suffers the uncertain network-induced delay
and data dropouts as well as the load torque disturbance. A sufficient stability condition of
the system is given and proven in Section 3 based on the Lyapunov-Krasovskii techniques.
Moreover, a bound on the system’sH∞ performance is also provided in Section 3. An iterative
LMI method is proposed to design a robust controller in Section 4, which can guarantee both
the stability and performance under the torque perturbation and the network-induced delay
and dropouts. Simulations are done in Section 5 to verify the effectiveness of the obtained
results. Some final remarks are placed in Section 6.
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2. Problem Formulation

2.1. PMSM Dynamics

In the synchronously rotating rotor d-q coordinate, a PMSM drive can be modeled as [2]

ud = Rid + Ld
did
dt

− npωLqiq,

uq = Riq + Lq

diq

dt
+ npωLdid + npωφa,

J
dω

dt
+ B0ω + Tl = npφa,

(2.1)

where ω is the rotating speed; id and iq are the d- and q-axes stator currents, respectively;
ud and uq are the d- and q-axes stator voltages, respectively; R is the stator resistance per
phase; Ld and Lq are the d- and q-axes stator inductances, respectively, and Ld = Lq = L in
the surface-mounted PMSM; np is the number of poles; φa =

√
3/2φf , with φf being the flux

linkage of the permanent magnet rotor; J is the total moment of inertia of the motor and load,
and B0 is the friction coefficient of the motor; Tl is the load torque.

A well-known strategy for a PMSM drive is the field-oriented vector control approach.
Under this scheme, a practical structure of cascaded control loops, including a speed loop
and two current loops, is usually employed [14]. In order to approximately eliminate the
coupling between the d- and q-axes currents, the d-axis reference current i∗d is set at zero and
id is regulated via a PI controller, as is shown in Figure 1.

Design the current controller of the q-axis as

uq = Riqr + npφaω, (2.2)

where iqr is the reference current of the q-axis, which is computed by the speed controller.
Then the state-space equation of a PMSM can be represented as

⎡

⎢⎢
⎣

diq

dt

dω

dt

⎤

⎥⎥
⎦ =

⎡

⎢⎢⎢
⎣

−R
L

0

npφa

J
−B0

J

⎤

⎥⎥⎥
⎦

⎡

⎣
iq

ω

⎤

⎦ +

⎡

⎢
⎣

R

L

0

⎤

⎥
⎦iqr +

⎡

⎢⎢
⎣

0

−Tl
J

⎤

⎥⎥
⎦. (2.3)

To proceed further, we need to make the following two definitions.

Definition 2.1. The tracking errors of speed, the q-axis current iq, and the reference current iqr
are defined as

e(t) = ω∗ −ω, eq(t) = i∗q − iq, eqr(t) = i∗qr − iqr , (2.4)

where ω∗, i∗q, i
∗
qr are the corresponding reference values.
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Figure 1: Configuration of a PMSM Servo System.

By Definition 2.1, the state-space equation (2.3) can be rewritten into a compact form
as

ẋ(t) = Ax(t) + B(u(t) + d(t)), (2.5)

where

x(t) =
[
eq(t) e(t)

]T
, u(t) =

[
eqr(t) 0

]T
, d(t) = [0 ΔTl(t)]T ,

A =

⎡

⎢⎢⎢
⎣

−R
L

0

npφa

J
−B0

J

⎤

⎥⎥⎥
⎦
, B =

⎡

⎢⎢
⎣

R

L
0

0
1
J

⎤

⎥⎥
⎦.

(2.6)

ΔTl(t) represents the load torque disturbance, which is bounded and perhaps time-varying.

Definition 2.2. The disturbance suppressing performance of the system is evaluated by the
following signal:

z(t) = e(t). (2.7)

We want to design a robust controller for a networked PMSM to satisfy the following
requirements.

(1) When the load torque disturbance d(t) = 0, the system is asymptotically stable
under any initial state, namely,

lim
t→∞

z(t) = 0. (2.8)
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Figure 2: The diagram of a typical networked servo system.

(2) When the load torque disturbance d(t)/= 0, the closed-loop system has the ability to
suppress disturbance, namely,

‖z(t)‖2 ≤ γ‖d(t)‖2, (2.9)

where ‖·‖2 stands for the L2 norm of a continuous-time signal and γ is a quantitative
measure of the disturbance attenuation. The smaller γ , the better disturbance
attenuation.

2.2. Structure of Networked PMSM Servo Systems

A typical networked servo system is shown in Figure 2, which can be divided into three parts:
(1) the remote unit containing a remote controller and a remote motor,
(2) the central controller,
(3) the communication network.

The remote unit and the central controller exchange feedback information through the
communication network.

When the remote motors are PMSMs, we get a networked PMSM servo system as
shown in Figure 3. Each distributed remote controller receives control signals from the
communication network and then convert them into PWM signals to drive the motor. It
also sends local measurements, such as rotating speed, motor current, and local environment
information, back to the central controller via the shared data network. The central controller
is usually a sophisticated controller and can provide advanced real-time control strategies to
the remote units.

2.3. System Modeling

Because of the limited bandwidth of the network, data packet dropouts are unavoidable.
When a dropout occurs, it might be more advantageous to drop the old packet and transmit
a new one than to retransmit the old one [15]. Network-induced delays are also considered
here. The model of the concerned networked PMSM servo system is shown in Figure 4.
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Figure 3: The diagram of a networked PMSM servo system.
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Figure 4: The model of the networked PMSM servo system.

The following assumptions are placed on the networked PMSM servo system.

(1) The sensor is clock driven, and the controller and actuator are event driven.

(2) The sampling period is a positive constant scalar h.

(3) The controller-to-actuator and the sensor-to-controller delays are denoted as τca and
τsc, respectively. The state feedback controller is static (see (2.14)). So these two
delays can be lumped as

τk = τsc + τca. (2.10)

Moreover, τk is less than h, that is, 0 ≤ τk ≤ τ ≤ h, where τ is the upper bound of
delays. Due to the static feedback controller, we can assume that the transmission
from the controller to the actuator is delay free and all delays come from the
transmissions from the sensor to the controller, that is, τsc = τk and τca = 0, in
Figure 4.

(4) The maximum numbers of the consecutive controller-to-actuator and sensor-to-
controller data dropouts are denoted as dca and dsc, respectively. They can also
be lumped as

dk = dca + dsc. (2.11)

dk is bounded as 0 ≤ dk ≤ d. Similar to τk, dk is also assumed to only come from the
transmissions from the sensor to the controller, that is, dsc = dk and dca = 0.
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If only delays exist in the system, the sampled signal at kh (∀k ∈ N) will arrive at the
controller at the time kh + τk. So the delay is η(t) = t − kh and its range is

η(t) ∈ [0, h + τ], (2.12)

When the data dropouts also exist, they can be treated as delays and yield the following
overall delay range:

η(t) ∈
[
0,
(
d + 1

)
h + τ

]
=
[
0, η

]
. (2.13)

It is well known that time-varying delay is more difficult to handle than constant delay from
the control system’s perspective. The actuator can know the total delay η(t) by the time
stamping technique. In the present paper, the actuator is assumed to purposefully postpone
to implement the received control variable by the time of η−η(t) and yields a constant overall
delay of η, which is easier to deal with. We choose a static state feedback controller. Due to
the constant delay strategy, our controller takes the following form:

u(t) = Kx
(
t − η

)
, (2.14)

where K is the feedback gain to be designed. By substituting (2.14) into (2.5), we get the
following state-space equation of the networked PMSM servo system:

ẋ(t) = Ax(t) + BKx
(
t − η

)
+ Bd,

z(t) = Cx(t).
(2.15)

3. Analysis of Networked PMSM Servo Systems

3.1. A Sufficient Stability Condition

In industry applications, the stability of a servo system is crucial. Sowe first have to guarantee
that the system is stable. Here stability means the asymptotic stability when the disturbance is
zero, that is, d(t) = 0. Under the delay and dropout conditions in (2.13), we get the following
stability condition, which is expressed in an LMI (linear matrix inequality) form and easy to
verify.

Theorem 3.1. Under the given controller gain K and the upper bound η > 0 (in (2.13)), the system
(2.15) is asymptotically stable if there exist matrices P > 0, Q > 0, Z > 0, Y and W such that the
following matrix inequality (3.1) holds:

⎡

⎢⎢⎢⎢⎢
⎣

W1 W2 −ηY AT

∗ W3 −ηW KTBT

∗ ∗ −ηZ 0

∗ ∗ ∗ −η−1Z−1

⎤

⎥⎥⎥⎥⎥
⎦

< 0, (3.1)

whereW1 = PA +ATP + Y + YT +Q, W2 = PBK − Y +WT , and W3 = −Q −W −WT .
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Proof. We construct the following Lyapunov-Krasovskii function:

V (t) = V1(t) + V2(t) + V3(t), (3.2)

where V1(t) = xT (t)Px(t), V2(t) =
∫ t
t−η x

T (α)Qx(α)dα, and V3(t) =
∫0
−η

∫ t
t+β ẋ

T (s)Zẋ(s)dsdβ.
By the Newton-Leibniz formula, we get

x
(
t − η

)
= x(t) −

∫ t

t−η
ẋ(α)dα. (3.3)

The derivatives of V1, V2, and V3 are computed as follows:

V̇1(t) = 2xT (t)P
[
Ax(t) + BKx

(
t − η

)]

= 2xT (t)P(A + BK)x(t) − 2xT (t)PBK
∫ t

t−η
ẋ(α)dα

= 2xT (t)P(A + BK)x(t)

+ 2xT (t)(Y − PBK)
∫ t

t−η
ẋ(α)dα + 2xT(t − η

)
W

∫ t

t−η
ẋ(α)dα

−
[

2xT (t)Y
∫ t

t−η
ẋ(α)dα + 2xT(t − η

)
W

∫ t

t−η
ẋ(α)dα

]

= 2xT (t)P(A + BK)x(t) + 2xT (t)(Y − PBK)
[
x(t) − x

(
t − η

)]

+ 2xT(t − η
)
W

[
x(t) − x

(
t − η

)]

−
[

2xT (t)Y
∫ t

t−η
ẋ(α)dα + 2xT(t − η

)
W

∫ t

t−η
ẋ(α)dα

]

=
1
η

∫ t

t−η

[
2xT (t)(PA + Y )x(t) + 2xT (t)

(
PBK − Y +WT

)
x
(
t − η

)

−2xT(t − η
)
Wx

(
t − η

) − 2xT (t)ηYẋ(α) − 2xT(t − η
)
ηWẋ(α)

]
dα,

V̇2(t) = xT (t)Qx(t) − xT(t − η
)
Qx

(
t − η

)

=
1
η

∫ t

t−η

[
xT (t)Qx(t) − xT(t − η

)
Qx

(
t − η

)]
dα,

V̇3(t) =
∫0

−η

[
ẋT (t)Zẋ(t) − ẋ

(
t + β

)
Zẋ

(
t + β

)]
dβ

=
∫ t

t−η

[
ẋT (t)Zẋ(t) − ẋ(α)Zẋ(α)

]
dα

=
1
η

t∫

t−η

[
xT (t)ηATZAx(t) + 2xT (t)ηATZBKx

(
t − η

)

+xT(t − η
)
ηKTBTZBKx

(
t − η

) − ẋT (α)ηZẋ(α)
]
dα.

(3.4)
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Finally, we have

V̇ (t) =
1
η

∫ t

t−η
ζT (t, α)Φζ(t, α)dα, (3.5)

where

ζ(t, α) =

⎡

⎢
⎢
⎣

x(t)

x
(
t − η

)

ẋ(α)

⎤

⎥
⎥
⎦, Φ =

⎡

⎢
⎢
⎣

W1 + ηATZA W2 + ηATZBK −ηY
∗ W3 + ηKTBTZBK −ηW
∗ ∗ −ηZ

⎤

⎥
⎥
⎦. (3.6)

By the Schur complement theorem, we get from (3.1) that there must exist ε > 0 such that

Φ < −εI, (3.7)

where I represents an identity matrix of an appropriate dimension. Substituting (3.7) into
(3.5) yields

V̇ (t) < −ε‖x(t)‖2. (3.8)

According to Lyapunov-Krasovskii theorem, if there exist ε > 0 such that V̇ (t) < −ε‖x‖2, the
system (2.15) is asymptotic stable. So if the matrix inequality (3.1) holds, the system (2.15) is
asymptotically stable. This completes the proof.

3.2. Robust Performance Analysis

Definition 3.2. A stable system in (2.15) is said to satisfy the H∞ performance index γ > 0 if
under the zero initial condition,

‖z(t)‖2 ≤ γ‖d(t)‖2. (3.9)

We can verify whether the performance requirement in (3.9) is satisfied through the following
theorem.

Theorem 3.3. Under the given controller gain K and the upper bound η > 0 (in (2.13)), the system
(2.15) satisfies the performance index γ in (3.9) if there exist matrices P > 0,Q > 0, Z > 0, Y andW
such that the following matrix inequality holds:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

W1 W2 −ηY PB AT CT

∗ W3 −ηW 0 KTBT 0

∗ ∗ −ηZ 0 0 0

∗ ∗ ∗ −γ2I BT 0

∗ ∗ ∗ ∗ −η−1Z−1 0

∗ ∗ ∗ ∗ ∗ −I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (3.10)

whereW1 = PA +ATP + Y + YT +Q, W2 = PBK − Y +WT , and W3 = −Q −W −WT .
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Proof. Equation (3.10) implies (3.1). By Theorem 3.1, we know the system is stable.
Define Jzd =

∫∞
0 [zT (t)z(t) − γ2dT (t)d(t)]dt. Jzd can be modified into

Jzd =
∫∞

0

[
zT (t)z(t) − γ2dT (t)d(t) + V̇ (t)

]
dt + V (t)|t=0 − V (t)|t=∞. (3.11)

Under the zero initial condition, V (t)|t=0 = 0. Because of V (t)|t=∞ ≥ 0, we get

Jzd ≤
∫∞

0

[
zT (t)z(t) − γ2dT (t)d(t) + V̇ (t)

]
dt

≤ 1
η

∫∞

0

∫ t

t−η

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x(t)

x(t − η)

ẋ(α)

d(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

T

Ξ

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x(t)

x
(
t − η

)

ẋ(α)

d(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎦
,

(3.12)

where

Ξ =

⎡

⎢⎢⎢⎢⎢
⎣

W1 + CTC W2 −ηY PB

∗ W3 −ηW 0

∗ ∗ −ηZ 0

∗ ∗ ∗ −γ2I

⎤

⎥⎥⎥⎥⎥
⎦
+

⎡

⎢⎢⎢⎢⎢
⎣

AT

KTBT

0

BT

⎤

⎥⎥⎥⎥⎥
⎦
ηZ

⎡

⎢⎢⎢⎢⎢
⎣

AT

KTBT

0

BT

⎤

⎥⎥⎥⎥⎥
⎦

T

. (3.13)

By the Schur complement theorem, we know that (3.10) implies Ξ < 0. Therefore,
Jzω < 0, that is,

∫∞

0

[
zT (t)z(t) − γ2dT (t)d(t)

]
dt < 0. (3.14)

After simple manipulations, the above equation yields

‖z(t)‖22 ≤ γ2‖d(t)‖22. (3.15)

Equation (3.15) is equivalent to (3.9).

In (3.9), the left side variable z(t) and the right one d(t) have different units. So the
ratio between them, γ , does not have a clear physical meaning. In order to overcome this
difficulty, we introduce the following relative sensitive functions.

Definition 3.4. The sensitive functions of the speed tracking error and the load torque
disturbance are defined as

Sz =
‖Z‖2
ωref

, ST =
‖ΔTl‖2
Tl0

, (3.16)

where ωref is the reference tracking speed and Tl0 is the nominal load torque.
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Based on the above definition, (3.15) can be rewritten into

Sz ≤ γ̃ST , (3.17)

where γ̃ = (Tl0/ωref)γ .

Remark 3.5. In (3.17), both units of Sz and ST are percentage. So (3.17) means how much
percent of load torque disturbance yields how much percent of speed tracking error. γ̃ is
exactly the gain between two percentage variables (Sz and ST ) and can quantitatively reflect
the capability to attenuate the load torque disturbance attenuation. γ̃ is determined by the
system’s delay in (2.13) and the controller gain K in (2.14). Although we cannot change the
system’s delay, we do have freedom to choose an appropriate K to yield a better (smaller) γ̃ ,
which is the major task of the next section.

4. The Design of the Robust Controller

When we design the robust controller, the controller gain K is unknown. So the matrix
inequalities in Theorems 3.1 and 3.3 are bilinear matrix inequalities (BMIs). As a result, we
cannot find a maximum η or the minimum γ using convex optimization algorithms. In the
subsequent part, we propose some methods to resolve this issue.

Define X = P−1 and Δ = diag{X,X,X, I, I, I}. Pre- and postmultiply (3.10) by Δ, we
obtain

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

W̃1 W̃2 −ηỸ B XAT XCT

∗ W̃3 −ηW̃ 0 FTBT 0

∗ ∗ −ηXS−1X 0 0 0

∗ ∗ ∗ −γ2I BT 0

∗ ∗ ∗ ∗ −η−1S 0

∗ ∗ ∗ ∗ ∗ −I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (4.1)

where W̃1 = AX + XAT + Ỹ + Ỹ T + Q̃, W̃2 = BF − Ỹ + W̃T , W̃3 = −Q̃ − W̃ − W̃T , Ỹ = XYX,
Q̃ = XQX, W̃ = XWX, F = KX, and S = Z−1.

Define a matrix variable M < XS−1X, then matrix inequality (4.1) is equivalent to the
combination of matrix inequalities (4.2), (4.3) and(4.4)

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

W̃1 W̃2 −ηỸ B XAT XCT

∗ W̃3 −ηW̃ 0 FTBT 0

∗ ∗ −ηM 0 0 0

∗ ∗ ∗ −γ2I BT 0

∗ ∗ ∗ ∗ −η−1S 0

∗ ∗ ∗ ∗ ∗ −I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (4.2)
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[−Z P

P −N

]

< 0, (4.3)

S = Z−1, N = M−1, P = X−1. (4.4)

Based on the above transformation, a robust controller can be designed as follows.

Theorem 4.1. Under the given η > 0 and γ > 0, the system (2.15) satisfies the performance index γ
if there exist matrices X > 0, P > 0, Q > 0, Z > 0, M > 0, S > 0, N > 0, Y and W such that matrix
inequalities (4.2), (4.3) and (4.4) hold. In this case, a robust H∞ state feedback controller gain can be
chosen as K = FX−1.

It is noted that the conditions in Theorem 4.1 are not LMI because of the inverse matrix
constraints in (4.3) and (4.4). Fortunately, there are some methods to efficiently solve these
inequalities. In [16], a method is given to obtain the suboptimal delay η or the suboptimal γ by
setting S = X. With more computational efforts, better results can be obtained by an iterative
algorithm in [17]. That iterative algorithm is called cone complementary linearization (CCL)
method. By adopting the CCL method, we get the following algorithm to cope with the
nonlinear minimization problem subject to LMIs.

Algorithm 4.2. There are 4 steps.

Step 1. Choose a sufficiently large initial variable γ > 0 such that there exists a feasible
solution to matrix inequalities (4.2) and (4.3) and (4.4). Set γmin = γ .

Step 2. Find a feasible set (X0, P0, Q0, Z0,M0, S0,N0, Y0,W0) satisfying (4.2) and (4.3), and
the matrix inequality in (4.5) (One way to get a feasible set is by setting S = X as the
aforementioned suboptimal solution). Set k = 0,

[
S I

I Z

]

< 0,

[
N I

I M

]

< 0,

[
P I

I X

]

< 0. (4.5)

Step 3. Solve the LMI problem in (4.6),

MinX,P,Q,Z,M,S,N,Y,W tr(SkZ + SZk +NMk + PkX + PXk)

s.t. equations (4.2),(4.3), and (4.5).
(4.6)

Set Xk+1 = X, Pk+1 = P , Qk+1 = Q, Zk+1 = Z, Mk+1 = M, Sk+1 = S, Nk+1 = N, Yk+1 = Y , and
Wk+1 = W .

Step 4. If (3.10) holds, then set γmin = γ and return to Step 2 after decreasing γ to some extent.
If (3.10) is not satisfied within a specified number of iterations, to say kmax, then we stop the
above iterations. Otherwise, set k = k + 1 and go back to Step 3.
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Table 1: The nominal parameters of a PMSM.

R L φf B0

2.875Ω 0.0085H 0.0816Wb 0.00185N ·m · s
J np Tl

0.0008N ·m · s 4 2N ·m

Table 2: The relationship between the speed tracking error and η.

Speed error
percentage 6% 5.6% 5.2% 4.8% 4.4% 4.0%
η 0.082 0.075 0.068 0.061 0.055 0.049
Speed error
percentage 3.6% 3.2% 2.8% 2.4% 2.0%
η 0.043 0.037 0.032 0.026 0.005

5. Simulation Results

To verify the results in Theorems 3.1, 3.3, and 4.1, a MATLAB/SIMULINK simulation
platform of networked PMSM servo systems is built up, which is shown in Figure 1. The
sampling period h is 10ms. The tracking reference speed is set to 1500 r/min. The nominal
parameters of a PMSM is shown in Table 1.

In the following simulations, the load torque disturbance is no larger than 30% of
the nominal value. According to Theorem 4.1 and Definition 3.4, we obtain the relationship
between the speed tracking error and η, which is demonstrated in Table 2.

Remark 5.1. The data in Table 2 shows the relationship between the speed tracking error
and the maximum delay η. When the networked PMSM servo system needs higher tracking
accuracy, it can tolerate less transmission delay and data packet dropouts. If the speed tacking
error is less than 2.0%, η is equal to 0.005 s, which means that the system cannot tolerate even
one data packet dropout under this circumstance.

In the sequel, we simulate 3 cases to demonstrate the effectiveness of the obtained
results. In these simulations, the maximum relative speed tracking error is 5%, and the load
torque disturbance is no larger than 30% of the nominal value. According to Definition 3.4,
we get

γ ≤ γmin = 125. (5.1)

By Theorem 4.1 (with γ = γmin), we try to maximize η and reach a suboptimal solution with
η = 0.064 s and the corresponding controller gain of K = [0,−0.0212].

5.1. Stability of System

Case 1. The first simulation is to verify the stability of the networked PMSM servo system. η is
set to 0.064 s. Figure 5 shows the speed tracking error trajectory. After approximate 0.15 s, the
speed tracking error is almost zero. So this result demonstrates the correctness of the stability
condition in Theorem 3.1.
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Figure 5: The speed tracking error.

5.2. Robustness against Transmission Delay and Data Dropouts

Case 2. In the second case, performance comparison is made between two approaches, the
robust controller proposed in this paper and the PID controller.

The PID Controller

Its parameters are tuned to perform well under the network-delay-free situation. In the
simulation, the network-induced delay is set to 0.1 h (= 0.001 s).

Robust Controller

The robust controller is then applied as the central controller to regulate the speed loop. The
network-induced delay η is set to be 0.064 s. η = 0.064 s = 6.4 h means that the system can
tolerate 5 dropouts among any 6 consecutive data packets.

The results of this case are shown in Figure 6.
Although the PID controller suffers a much smaller delay than the robust controller,

it generates much worse tracking performance than the robust controller. The reason lies in
that the design of the robust controller takes the delay into account, while the design of the
PID controller does not. So the effectiveness of Theorems 3.3 and 4.1 is confirmed.

5.3. Robustness against Load Torque Disturbance

Case 3. The purpose of the third simulation is to verify that the proposed robust controller
can effectively suppress the load torque disturbance. Under the worst condition of five
consecutive data packet dropouts and network-induced delay up to 0.4 h, a 30% load torque
disturbance occurs at time 0.5 s and disappears at time 0.55 s. Figure 7 shows the simulation
results.
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Figure 6: Speed response under the network delays and dropouts.
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Figure 7: Speed response under the network delays and dropouts and the load torque disturbance.

As we see in Figure 7, when the load torque disturbance starts at time 0.5 s, the speed
deviates from the reference speed of 1500 r/min. However, after the disturbance disappears
at time 0.55 s, the speed of PMSM quickly returns back to the reference speed in about 0.03 s.
From the speed response curve, we can also see that the speed tracking error is less than
5% during the whole process. These simulation results confirm that the robust controller
designed in this paper satisfies the accuracy demand and can effectively suppress the load
torque disturbance.

6. Conclusion

The networked PMSM servo system has a promising future in industry applications.
However, its performance may be degraded by the network delays and data packet dropouts.
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The load disturbance is also a detrimental factor for the control performance. In this paper, we
propose a sufficient stability condition by the Lyapunov-Krasovskii method, quantitatively
investigate the robustness of the system’s performance against the load torque disturbance,
and give a way to design a robust controller, which can either tolerate larger network delay or
give betterH∞ performance. The simulations are done to verify the correctness of the stability
result and demonstrate the superiority of the obtained controller in terms of performance
robustness against the data packet dropouts and transmission delay as well as the load torque
disturbance.
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