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Let G = (V, E) be an undirected graph with a weight function and a cost function on edges. The
constrained minimum spanning tree problem is to find a minimum cost spanning tree T in G such
that the total weight in T is at most a given bound B. In this paper, we present two polynomial time
approximation schemes (PTASs) for the constrained minimum spanning tree problem.

1. Introduction

Motivated by the applications of quality of service (QoS) routing and multicasting, several
multiple criteria problems have been studied (see [1–6] and references therein). Marathe et
al. [5] studied a class of bicriteria network design problems that are defined as follows. Given
an undirected graph G = (V, E) and two independent minimization criteria with a bound on
the first criterion, a generic bicriteria network design problem involves the minimization of the
second criterion but satisfies the bound on the first criterion among all possible subgraphs
from G [5]. They considered three different criteria that have total edge cost, diameter, and
maximum degree of a graph. The total edge cost of a graph is the sum of the costs of all
edges in the subgraph. The diameter of a graph is the maximum distance between any pair
of nodes in the subgraph. The degree of a node is the number of nodes adjacent to this
node, and the maximum degree of a graph is maximum over the degrees of all nodes in
the subgraph. Let G = (V, E) be an undirected graph and a positive integer B. Two different
nonnegative functions, weight and cost, associate on edges in E, respectively. The constrained
minimum spanning tree (CMST) problem [7–10] is to find a minimum total cost spanning tree
T in G such that the total weight in T is at most B. Aggarwal et al. [7] showed that the CMST
problem is weakly NP-hard. Then Hong et al. [9] gave a pseudopolynomial time algorithm
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to solve the CMST problem. Moreover, some approximation algorithms have been proposed
to solve the CMST problem [5, 8, 10].

Given two positive real numbers α and β, an (α, β)-approximation algorithm for the
CMST problem is defined as a polynomial-time algorithm that produces a solution with
the total weight at most α times the bound B and the total cost at most β times the total
cost of optimal solution for the CMST problem. The approximation ratio is denoted by
(α, β). An (α, β)-approximation algorithm for the CMST problem is called the polynomial
time approximation scheme (PTAS) that produces a spanning tree with an approximation
ratio of (1, 1 + ε), for any constant ε > 0. For any constant ε > 0, Marathe et al.
[5] gave a (1 + ε, 1 + 1/ε)-approximation algorithm for the CMST problem. Ravi and
Goemans [10] presented a (2, 1)-approximation algorithm to solve the CMST problem in
O(|E|log2|V |+ |V |log3|V |) time and improved the ratio to (1+ε, 1), where the time complexity
is O(|V |O(1/ε)(|E|log2|V | + |V |log3|V |)) for any constant ε > 0. These algorithms are based on
the Lagrangian relaxation. Hassin and Levin [8] employed Ravi andGoemans’ [10] algorithm
with the matroid intersection strategy [11–13] to design a (1, 1+5ε)-approximation algorithm
in O((1/ε2)(1/ε)|V |3) time for the CMST problem. For other related bicriteria problems,
Hassin [14] gave a fully polynomial time approximation scheme (FPTAS) for the restricted
shortest path problem. The purpose of this problem is to find a minimum cost shortest path
P from a source to a destination subject to the constraint that the total weight in P is at
most B. Then, Lorenz and Raz [15] gave an improved FPTAS whose time complexity is
O(|V ||E|loglog|V |+(|V ||E|)/ε) for the restricted shortest path problem. Further, Xue et al. [16]
also designed an FPTAS with improved time complexity toO(|V ||E|logloglog|V |+(|V ||E|)/ε)
for the restricted shortest path problem. If the graph is directed acyclic, and Ergun et al. [17]
provided an improved FPTAS for the restricted shortest path problem with running time
O((|V ||E|)/ε). Chen and Xue [18, 19] used a similar method to design PTASs for the k-pair
delay constrained minimum cost routing problem and the weight constrained Steiner tree problem
in series-parallel graphs. These algorithms are based on the rounding and scaling strategy
that is offered by Hassin [14]. In this paper, we present two polynomial time approximation
schemes to find (1, 1 + ε)-approximation ratio for the CMST problem. Applying the second
PTAS to Hassin and Levin’s algorithm [8], the approximation ratio can be improved to
(1, 1 + 4ε) for the CMST problem.

The rest of this paper is organized as follows. In Section 2, we first describe a (1, (1 +
ε)2)-approximation algorithm for the CMST problem and then improve the approximation
ratio to (1, 1 + ε). Finally, we make a conclusion in Section 3.

2. PTASs for the Constrained Minimum Spanning Tree Problem

In this section, we first clarify a (1, (1 + ε)2)-approximation algorithm for the CMST problem.
Hassin and Levin [8] first used this algorithm to obtain a (1, 2(1 + ε)) ratio for the CMST
problem. Then they applied the Lagrangian relaxation and matroid intersection methods to
improve the ratio to (1, 1+ 5ε) inO((1/ε2)(1/ε)|V |3)) time. However, they did not describe the
details of this algorithm. Then, we improve this approximation ratio into (1, 1 + ε). Note that
applying our algorithm, the approximation ratio of Hassin and Levin’s algorithm [8] can be
improved to (1, 1 + 4ε) ratio with the same time complexity. For convenience, we use C(H)
(resp., W(H)) to denote the sum of the costs (resp., weights) of all edges in any subgraph H
of G. Let TOPT be the optimal solution of the CMST problem. For any constant ε > 0 and an
integer B, Ravi and Goemans’ [10] algorithm, denoted byAR(ε, B), produces a spanning tree
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T of theW(T) at most (1+ε)B and of theC(T) at mostC(TOPT). Our algorithm first finds a cost
of the lower bound, denoted by LB, and a cost of the upper bound, denoted by UB, for the
CMST problem. Then, iteratively shrink this range between LB and UB until UB ≤ (1 + ε)LB.
A trivial lower bound LB can be set to 1, and an upper bound UB can be set to |V | ∗ Cmax,
in which Cmax is the maximum edge cost in G. However, the range between the trivial lower
bound and upper bound is too large (i.e., not polynomial in input size). We reduce the range
by Lorenz and Raz’s method [15] such that UB ≤ |V |∗ LB. First, let c1, c2, . . . , ck be all the
distinct costs of edges in G. Gj = (V, Ej) denotes the subgraph of G(V, E), where Ej is the set
of edges with costs not greater than cj . It is clear that Gk = G and Gj ⊆ Gj+1 for 1 ≤ j ≤ k − 1.
For 1 ≤ j ≤ k, we can use Prim’s algorithm [20] to find a minimumweight spanning tree Tj in
Gj . Let J be the smallest index j such thatW(Tj) is no more than B. Then, finding the value cJ
of a graph G can be done in O(|V |2 log |V |) time by binary search and Prim’s algorithm [20].
Therefore, we have cJ ≤ C(TOPT) ≤ |V | ∗ cJ . Hence, we can let the initial UB be |V | ∗ cJ and LB
be cJ . If UB ≤ (1 + ε)LB, then C(TJ) ≤ UB ≤ (1 + ε)LB ≤ (1 + ε)C(TOPT). Otherwise, we first
swap the cost (resp., weight) to the weight (resp., cost) for each edge in G and find a value
M between LB and UB. Then, apply algorithmAR(ε,M) to find a spanning tree T in G. If the
total weight of T is no more than B, let UB = (1 + ε)M; otherwise, let LB = M. Hence, the
range between LB and UB is shrunk. Then, we repeatedly run the algorithm AR(ε,M) until
UB ≤ (1 + ε)LB. The next lemma shows that we can obtain either a lower bound M or an
upper bound (1 + ε)M for the CMST problem after running AR(ε,M).

Lemma 2.1. Given an instance of the CMST problem with a constant ε > 0 and an integer C, one
swaps the cost (resp., weight) to the weight (resp., cost) for each edge and then applies algorithm
AR(ε,C) to find a spanning tree T . If W(T) ≤ B, then there is an upper bound (1 + ε)C. Otherwise,
one can obtain a lower bound C.

Proof. For convenience, we use TC to denote the minimum weight spanning tree of G with
total cost at most C. After running the algorithm AR(ε,C), we have a spanning tree T with
W(T) ≤ W(TC) and C(T) ≤ (1 + ε)C since the costs and weights of all edges are exchanged.
Hence, if W(T) ≤ B, then C(TOPT) ≤ C(T) ≤ (1 + ε)C. Otherwise, W(TC) ≥ W(T) > B. Then
we assume C(TOPT) < C for contradiction. Hence, we have W(TC) ≤ W(TOPT). However,
W(TOPT) ≤ B, and we have W(TC) ≤ B. Hence, C must be less than or equal to C(TOPT).

For clarification, we describe the (1, (1 + ε)2)-approximation algorithm for the CMST
problem as follows.

Algorithm PTAS-CMST

Input: A graph G = (V, E) with a weight function and a cost function on edges, an integer
bound B, and two real numbers ε > 0 and ρ > 0.
Output: A spanning tree TAPX of G subject toW(TAPX) ≤ B.

(1) For each edge in E, swap cost to weight and weight to cost, respectively. end for

(2) Let an initial upper bound UB = |V | ∗ cJ and an initial lower bound LB = cJ .

(3) If UB ≤ (1 + ε)LB, then let TAPX = TJ and return.

Else

(3.1) Let L = LB and U = �UB/(1 + ρ)�.
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(3.2) Repeat the following steps until the condition (1) U ≤ (1 + ε)L or (2) U ≤ L + 1
holds.

(3.2.1) Let a middle value M =
√
U ∗ L.

(3.2.2) Use algorithm AR(ρ,M) to find a spanning tree T .

(3.2.3) /∗ ifW(T) > B, thenwe have a lower boundM; elsewe have an upper bound
(1 + ρ)M and C(T) is less than or equal to this upper bound. ∗/

If W(T) ≤ B, then let U = M and TAPX = T ; else let L = M.

The approximation ratio of Algorithm PTAS-CMST is shown in the next lemma.

Lemma 2.2. Algorithm PTAS-CMST returns a spanning tree TAPX with C(TAPX) ≤ (1 + ε)(1 +
ρ)C(TOPT).

Proof. Let the upper bound Ui, the middle value Mi, and the lower bound Li be parameters
at the beginning of the ith iteration of step (3.2) for Algorithm PTAS-CMST. Let Ti denote
a spanning tree after running the i-th iteration of step (3.2.2). It is clear that Li ≤ Mi ≤ Ui.
Hence, Ui+1 ≤ Ui and Li+1 ≥ Li. Moreover, we have Li+1 =

√
Ui ∗ Li and Ui+1 = Ui when

W(Ti) > B. Then, we also have Ui+1 =
√
Ui ∗ Li and Li+1 = Li when W(Ti) ≤ B. Further,

Ui+1/Li+1 = Ui/
√
Ui ∗ Li, or Ui+1/Li+1 =

√
Ui ∗ Li/Li. Therefore, we have Ui+1/Li+1 =√

Ui/Li. Note that it successively narrows down the range between the lower bound L and
the upper bound U after each iteration of step (3.2). After running the ith iteration of step
(3.2.3), we obtain either a lower bound Mi or an upper bound (1 + ρ)Mi by Lemma 2.1. Let
k be the number of iterations of step (3.2). After performing this algorithm, we have either
Uk+1 ≤ (1 + ε)Lk+1 or Uk+1 ≤ Lk+1 + 1. For the former case, we have

C(TAPX) ≤
(
1 + ρ

)
Uk+1 ≤ (1 + ε)

(
1 + ρ

)
Lk+1

≤ (1 + ε)
(
1 + ρ

)
C(TOPT).

(2.1)

For the latter case, we have

C(TAPX) ≤
(
1 + ρ

)
Uk+1 ≤

(
1 + ρ

)
(Lk+1 + 1)

≤ (
1 + ρ

)
(C(TOPT) + 1).

(2.2)

Let ρ be ε, and hence Algorithm PTAS-CMST achieves an approximation ratio of (1, (1 + ε)2)
for the CMST problem.

Therefore, we have the following theorem.

Theorem 2.3. The CMST problem admits a PTAS. For any constant ε > 0, a (1, (1 + ε)2)-
approximation algorithm for the CMST problem can be found in polynomial time.

Proof. By Lemma 2.2, Algorithm PTAS-CMST returns a (1, (1 + ε)2)-approximation solution
for the CMST problem. Next, we analyze the time complexity of Algorithm PTAS-CMST as
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follows. Let k be the number of iterations of step (3.2). We also let L1 and U1 be the initial
lower bound and upper bound, respectively. SinceUi+1/Li+1 =

√
Ui/Li, we have

U1

L1
,

(
U2

L2

)
=
(
U1

L1

)1/2

,

(
U3

L3

)
=
(
U2

L2

)1/2

=
(
U1

L1

)(1/2)2

,

...
(
Uk

Lk

)
=
(
Uk−1
Lk−1

)1/2

= · · · =
(
U1

L1

)((1/2)k−1)

.

(2.3)

Because (Uk/Lk) > (1+ ε) andU1/L1 ≤ (|V |/1+ ρ) + 1, we have k ≤ log1/2log(|V |+1+ρ)/(1+ρ)(1+
ε) + 1. Hence, k is O(loglog|V | − loglog(1 + ε)). Then, step (3.2.2) can be done in O(|V |o(1/ρ) ∗
(|E|log2|V | + |V |log3|V |)) time by Ravi’s algorithm [10]. Hence, Algorithm PTAS-CMST is a
polynomial time approximation scheme for the CMST problem.

Now, we improve the approximation ratio to (1, 1 + ε) for the CMST problem. This
algorithm is the modification of the one designed in [17] for the restricted shortest path
problem.

Algorithm Modify-PTAS-CMST

Input: A graph G = (V, E) with a weight function and a cost function on edges, an integer
bound B, and two real numbers ε > 0 and 0 < γ < 1.
Output: A spanning tree TAPX of G subject toW(TAPX) ≤ B.

(1) For each edge in E, swap cost to weight and weight to cost, respectively. end for

(2) Let an initial upper bound UB = |V | ∗ cJ and an initial lower bound LB = cJ .

(3) IfUB ≤ (1 + ε)LB,then let TAPX = TJ and return.

Else

(3.1) Let L = LB and U = UB.

(3.2) Repeat the following steps until the condition (1) U ≤ (1 + ε)L or (2) U ≤ L + 1
holds.

(3.2.1) Let a real number ρ = (U/L)γ − 1 and a middle value M =
√
U ∗ L/(1 + ρ).

(3.2.2) Use algorithm AR(ρ,M) to find a spanning tree T .
(3.2.3) /∗ ifW(T) > B, thenwe have a lower boundM; elsewe have an upper bound

(1 + ρ)M and C(T) is less than or equal to this upper bound. ∗/

If W(T) ≤ B, then let U = (1 + ρ)M and TAPX = T ; else let L = M.

The approximation ratio of Algorithm Modify-PTAS-CMST is shown in the next
lemma.
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Lemma 2.4. The spanning tree TAPX is a (1, 1 + ε)-approximation solution for the CMST problem.

Proof. Let the upper boundUi, the middle valueMi, the lower bound Li, and the real number
ρi be parameters at the beginning of the ith iteration of step (3.2) for Algorithm Modify-
PTAS-CMST. Let Ti denote a spanning tree after running the i-th iteration of step (3.2.2). If
W(Ti) ≤ B, we haveUi+1 = (1+ρi)Mi = (U1+γ

i ∗L1−γ
i )1/2 and Li+1 = Li. Otherwise, ifW(Ti) > B,

we have Li+1 = Mi = (U1−γ
i ∗L1+γ

i )1/2 andUi+1 = Ui. Hence, (Ui+1/Li+1) = (Ui/Li)
((γ+1)/2). Note

that it successively narrows down the range between the lower bound L and the upper bound
U after each iteration of step (3.2) since 0 < γ < 1. Let k be the number of iterations of step
(3.2). After performing this algorithm, we have either Uk+1 ≤ (1 + ε)Lk+1 or Uk+1 ≤ Lk+1 + 1.
For the former case, we have

C(TAPX) ≤ Uk+1 ≤ (1 + ε)Lk+1

≤ (1 + ε)C(TOPT).
(2.4)

For the latter case, we have

C(TAPX) ≤ Uk+1 ≤ (C(TOPT) + 1). (2.5)

Therefore, we have the following theorem.

Theorem 2.5. The CMST problem admits a PTAS. For any constant ε > 0, a (1, 1+ε)-approximation
algorithm for the CMST problem can be found in polynomial time.

Proof. Clearly, Algorithm Modify-PTAS-CMST returns a (1, 1 + ε)-approximation solution
for the CMST problem by Lemma 2.4. Next, we analyze the time complexity of Algorithm
Modify-PTAS-CMST as follows. Let k be the number of iterations of step (3.2). We also let L1

and U1 be the initial lower bound and upper bound, respectively. Then, we have

U1

L1
,

(
U2

L2

)
=
(
U1

L1

)(γ+1)/2

,

(
U3

L3

)
=
(
U2

L2

)(γ+1)/2

=
(
U1

L1

)(((γ+1)/2)2)

,

...
(
Uk

Lk

)
=
(
Uk−1
Lk−1

)(γ+1)/2

= · · · =
(
U1

L1

)(((γ+1)/2)k−1)

(2.6)

since Ui+1/Li+1 = (Ui/Li)
(γ+1/2).

Initially, U1/L1 = |V |. After running Algorithm Modify-PTAS-CMST, we have
(Uk+1/Lk+1) ≤ (1 + ε). Step (3.2.2) can be done in O(|V |o(1/ρ) ∗ (|E|log2|V | + |V |log3|V |)) time
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by Ravi’s algorithm [10]. Let I be the smallest index j such that |V |o(1/ρj ) > |V |, for 1 ≤ j ≤ k.
For all 1 ≤ j ≤ I − 1, the time is

∑I−1
j=1 O(|V |o(1/ρj ) (|E|log2|V | + |V |log3|V |)). It is clear that

(UI/LI) < 21/γ and (UI−1/LI−1) ≥ 21/γ . Hence, we have log(γ+1)/2(1/(γ ∗ log2|V |)) + 1 ≥ I − 1 >

log(γ+1)/2(1/(γ ∗ log2|V |)) since (UI/LI) = (U1/L1)
(((γ+1)/2)I−1) . If I −1 ≥ 1, the complexity is at

most O(|V |(1 − log((γ+1)/2)γ − log(γ+1/2)(log2|V |))(|E|log2|V | + |V |log3|V |)), for all 1 ≤ j ≤ I − 1.

Then, for all I ≤ j ≤ k, the time complexity is
∑k

j=I O(|V |o(1/ρj )(|E|log2|V | + |V |log3|V |)). Since
(Uk/Lk) > (1 + ε) with (Uk/Lk) = (U1/L1)

(((γ+1)/2)(k−1)), we have k < log(γ+1)/2(log(1 +
ε)/ log |V |) + 1. Moreover, (1/ρI) ≤ (1/(ρI+1)) ≤ · · · ≤ (1/ρk). Hence we have the time
complexity at mostO(|V |o(1/ρk)(1+log(γ+1)/2 log(1+ε)+log(γ+1)/2γ)(|E|log2|V |+|V |log3|V |)) for
all I ≤ j ≤ k. Because γ is a constant, the total time complexity is at most O((|V |loglog|V | +
|V |1/((1+ε)γ−1)loglog(1+ε))(|E|log2|V |+|V |log3|V |)), where 1/ρk ≤ 1/((1+ε)γ−1), 0 < γ < 1.

Let ε = 1 and γ ≈ 1. Use Algorithm Modify-PTAS-CMST to find a feasible solution
for the CMST problem with ratio (1,2). The total time complexity of this algorithm is at
most O((|V |1/(2γ−1) + |V |loglog|V |)(|E|log2|V | + |V |log3|V |)). Then, we can apply Hassin and
Levin’s [8] algorithm (i.e., the Lagrangian relaxation and matroid intersection), and the
approximation ratio can be improved to (1, 1 + 4ε) with the same time complexity of Hassin
and Levin’s algorithm (i.e., O((1/ε2)(1/ε)|V |3)).

3. Conclusion

In this paper, we presented two polynomial time approximation schemes for the CMST
problem. Using the second PTAS with the Lagrangian relaxation and matroid intersection,
the approximation ratio of Hassin and Levin’s algorithm [8] can be improved to the ratio of
(1, 1 + 4ε). A open problem left in the paper could involve studying whether there exists a
fully polynomial time approximation scheme for the CMST problem.
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