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Spatial images are inevitably mixed with different levels of noise and distortion. The contourlet
transform can provide multidimensional sparse representations of images in a discrete domain.
Because of its filter structure, the contourlet transform is not translation-invariant. In this
paper, we use a nonsubsampled pyramid structure and a nonsubsampled directional filter to
achieve multidimensional and translation-invariant image decomposition for spatial images. A
nonsubsampled contourlet transform is used as the basis for an improved Bayesian nonlocal
means (NLM) filter for different frequencies. The Bayesian model adds a sigma range in image
a priori operations, which can be more effective in protecting image details. The NLM filter retains
the image edge content and assigns greater weight to similarities for edge pixels. Experimental
results both on standard images and spatial images confirm that the proposed algorithm yields
significantly better performance than nonsubsampled wavelet transform, contourlet, and curvelet
approaches.

1. Introduction

In spatial rendezvous and docking, spatial images are obtained by multisource remote
sensors. Spatial images are inevitably mixed with different levels of noise and distortion. The
accurate image feature extraction will be helpful for spatial object recognition and can directly
influence the success of spatial rendezvous and docking [1, 2]. Image feature extraction
of spatial images is based on the definition of image features; to some extent, it can be
said that it is based on sensitivity changes to image grayscale values for the human eye.
Multidimensional image representation can process images for the sparsest representation,
especially for 2D image signals [3, 4]. This approach identifies optimal high-dimensional
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Figure 1: Multidimensional image decomposition.

function representation for an image and yields superior image-processing results for an
effective solution. A nonlocal means (NLM) filter uses redundant image information on
the basis that structural similarity superimposed on pixel noise is random and noise can
be effectively removed using weighted averages [5, 6]. Compared to traditional statistical
filtering methods, NLM filtering overcomes the constraint of the local neighborhood and
extends pixel similarity to block-based similarity, so it is very suitable to deal with spatial
images.

In this paper, we use a nonsubsampled pyramid structure and a nonsubsampled
directional filter to achieve multidimensional and translation-invariant image decomposition
for spatial images. A nonsubsampled contourlet transform is used as the basis for an
improved Bayesian nonlocal means (NLM) filter for different frequencies. The Bayesian
model adds a sigma range in image a priori operations, which can be more effective in
protecting image details. The NLM filter retains the image edge content and assigns greater
weight to similarities for edge pixels. Experimental results both on standard images and
spatial images confirm that the proposed algorithm yields significantly better performance
than nonsubsampled wavelet transform, contourlet, and curvelet approaches.

The rest of this paper is organized as follows. Section 2 describes multidimensional
image decomposition, with a focus on contourlet and nonsubsampled contourlet transforms
(NSCTs). Section 3 outlines application of an NLM filter and proposes an improved NLM
algorithm based on a Bayesian model. Section 4 applies the improved NLM filter to NSCT,
especially NSDFB, to process image features for further extraction. Section 5 compares feature
extraction results for the proposed algorithm and other algorithms. Section 6 concludes the
paper.

2. Contourlet Transform Decomposition

2.1. Multidimensional Image Decomposition

The target of image multidimensional representation is to provide a description of image with
less characteristic information. The wavelet transform is a classic image multidimensional
representation algorithm that has a good effect on image edge points [7, 8]. However, the
wavelet transform can capture only limited direction information in the horizontal, vertical,
and diagonal directions, as shown in the left side of Figure 1. It is difficult to express image
smoothness contours; a better image representation is shown in the right side of Figure 1.
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Other well-known multidimensional image decomposition algorithms include ban-
dlets, brushlets, edge multidimensional transform, complex wavelets, and wedgelet. How-
ever, these algorithms require image edge detection and then summarize a representative
adaptive coefficient. A decomposition algorithm that can transform an image into fixed
decomposition coefficients is desirable. These coefficients can then be used in a broader
context that does rely on edge detection alone but also includes better directional image
decomposition.

In 2004, Candès and Donoho proposed a curvelet transform that uses a value
approximation algorithm for a continuous 2D spatial domain and adds a smooth signal on
the basis of a 1D Fourier transform [9]. The best approximation deviation is O((logM)3M−2)
for curvelet and O(M−1) for wavelet transforms. The curvelet transform is first applied to a
continuous signal and then combines a multidimensional filter and ridgelet transformation.
A second curvelet transform is based on frequency segments and extreme judgment.
The curvelet transform is universally applicable to continuous signals, but there will be
parallel noise in discrete fields [10]. It is also biased in directional image decomposition.
The reason is that the typical rectangular sampling mode leads to a priori geometric
deviation in decomposition of discrete image signals, especially in the horizontal and vertical
directions. This limitation prompted researchers to develop a new multiscale decomposition
algorithm that does not depend on edge detection and can decompose images in cross-scale
multidimensions.

2.2. Contourlet Transform

The contourlet transform is a multidimensional decomposition algorithm proposed by
Do and Vetterli in 2005 [11]. The transform can be directly used for multidimensional
decomposition of discrete image signals. It has a dual filter for image decomposition
and yields a smoother sparse representation of the original image. The two filters are a
Laplacian pyramid (LP) filter [12, 13] and a directional filter bank (DFB) [14]. The LP yields
nonconsecutive image points, and then the DFB connects consecutive points into a nonlinear
structure. The process is shown in Figure 2.

A subsample contourlet transform uses a relevance factor M for image subsampling
at each decomposition level. A 2D filter is evolved from the 1D filter. For complete image
reconstruction, the following relationship holds for the 1D filter:

M0(z)N0(z) +M1(z)N1(z) = 2,

Sm =

⎧
⎨

⎩

D
(
2l−1, 2

)
, for 0 ≤ m ≤ 2l−1 − 1,

D
(
2, 2l−1), for 2l−1 ≤ m ≤ 2l − 1,

(2.1)

where M0(z) and M1(z) represent low- and high-pass analysis filters, and N0(z) and N1(z)
represent low- and high-pass synthesis filters, respectively. Downsampling matrices Sm are
shown above. For 2D complete decomposition,
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Figure 2: Contourlet transform.

M′(z) represents discrete properties of the heterogeneous domain, which can help
to reduce the filter complexity from O(N2) to O(N). In two dimensions, the first DFB step
is construction of the spectrum in the frequency domain using two-channel quincunx filter
banks to decompose an image into horizontal and vertical directions [15]. The DFB equivalent
parallel family is

{
D

(l)
k

[
n − S

(l)
m

]}

0≤m≤2l ,m∈L2
. (2.3)

Cutting operations on both directions for the decomposition spectrum provide 2D
directional and segmental image decomposition. Like the discrete wavelet transform, the
discrete downsampling contourlet transform is shift-invariant [16].

2.3. Nonsubsampled Contourlet Transform

NSCT is a fast implementation of the contourlet transform that provides a shift-invariant
and multidimensional image representation [17]. Compared with subsampled contourlet
transforms, NSCT is closer to the nonredundant wavelet transform [18]. NSCT uses a 2D
nonsubsampled filter bank and can be expressed as

M0(z)N0(z) +M1(z)N1(z) = 1, (2.4)

where M(z) represents a 2D filter of the z transform, M0(z) and M1(z) represent 2D low- and
high-pass analysis filters, and N0(z) and N1(z) represent 2D low- and high-pass synthesis
filters, respectively. There are also other limitations for the filter design.

NSCT involves two steps: multidimensional representation and directional decompo-
sition. Multidimensional representation is achieved by nonsubsampled pyramid decomposi-
tion. This step is similar to the 1D discrete nonsubsampled wavelet transform (NSWT), which
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uses the à trous method [19]. Compared to NSWT, NSCT uses a nonsubsampled 2D filter. The
frame bound of an NSCT directional decomposition is

P1 ≤ |M0(eε)| + |M1(eε)|
︸ ︷︷ ︸

t(eε)

≤ P2,

P1 =ess inf t(eε), P2 =ess sup t(eε), ε ∈ [−π,π]2.

(2.5)

After decomposition of the first layer, the sampling filter banks provide multiscale
decomposition of the underlying properties. The process for two-layer nonsubsampled
pyramid decomposition is shown in Figure 3.

The frequency domain for layer j supported by a low-pass filter is [−(π/2j),−(π/2j)];
the replacement domain is from [−(π/2j−1),−(π/2j−1)] to [−(π/2j),−(π/2j)], which is
supported by a high-pass filter.

Each step in NSWT image decomposition involves three directions. The total image
redundancy is 3J + 1; in NSP, the result redundancy is J + 1 [20]. The second NSCT
step provides directional information via the nonsubsampled filter, which combines two-
channel quincunx sampling filters and a resampling operation for 2D frequency division
on directional edges [21]. More accurate directional details can be sampled discretely on a
sample stage. Sampling uses a quincunx matrix Q and considers image direction alignment.
The process is shown in Figure 4.

3. NLM Filter Based on a Bayesian Approach

3.1. NLM Filter

Different frequency components play different roles in an image structure. Low-frequency
components account for most image energy, forming basic local gradation areas, but play
a small role in image content or structure. High-frequency components form the main
image edges and determine its basic content or structure and are thus the most important
components. Changes in high-frequency information lead to changes in the basic image
content or structure, and information extracted from the image by the human eye will thus
be subject to major changes. Thus, high-frequency components play the most important role
in image perception by the human eye.

At present, many image filters only consider adjacent pixels; some filters take into
account information for neighboring pixels, such as Yaroslavsky neighborhood filters [22]
and bilateral filters [23]. A nonlinear filter involves additive white noise and can effectively
handle image redundancy [24].

The NLM algorithm takes advantage of grayscale image redundancy and structural
redundancy through a weighted average of pixel values to estimate the current pixel value.
The value of each pixel is calculated using the Gaussian-weighted Euclidean distance
between subblocks; a pixel as taken as the right center of the corresponding subblock. This
ensures that pixels with a similar structure are assigned greater weight. For an original image
v = {v(i) | i ∈ I}, the expression for the image processed using the NLM filter, NL(v), is

NL(v, i) =
∑

j∈I
w

(
i, j

)
v
(
j
)
, (3.1)
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Figure 3: Non-subsampled pyramid decomposition.
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Figure 4: Nonsubsampled directional filter banks.

where w(i, j) is the Gaussian-weighted Euclidean distance between pixels i and j, which
represents the similarity of the image subblocks with i and j as centers:
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where Z(i) is a normalization factor, v(Ni) is a set of subblocks with pixel i as the center, ‖ · ‖2a
is a Gaussian-weighted Euclidean distance function, a is Gaussian kernel standard deviation,
and h is a filter parameter that controls the degree of smoothing. The weight w(i, j) meets
0 ≤ w(i, j) ≤ 1, if neighborhood pixels are more similar with v(Ni), the weight of center pixel
is greater.

3.2. NLM Filter Combined with a Bayesian Method

The traditional NLM algorithm is very similar in both grayscale and structure content
for smooth neighborhood areas. The algorithm yields the best results in flat areas, where
better denoising effects can be obtained. At image edges and in texture-rich regions, the
algorithm performs poorly because these regions have many repeat structures, the difference
in grayscale content is greater, and the larger Euclidean distance makes the weights very
small and reduces denoising capability, especially the ability to retain image detail [25].
To improve the edge retention capacity of the NLM algorithm, a Bayesian algorithm was
added to make use of image edge information and adjust the similarity of the neighborhood
structure so that the center pixel of edge contents that are similar can be given greater weight.
This provides a more effective approach for protecting image detail.

The Bayesian NLM filter is expressed as

n(x) =

∑
y∈Δ(x) p

(
v(x) | u(y))p(u(y))u(y)

∑
y∈Δ(x) p

(
v(x) | u(y))p(u(y)) , (3.3)

where v(x) represents noise data, u(x) represents nonnoise image data, n(x) is the average
pixel precision weight for gray value u(y) at a rate of change Δx, and p(v(x) | u(y))p(u(y))
is the similarity between v(x) and u(y). Equation (5) can then be rewritten as

w
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)
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1
Z(i)
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⎤

⎥
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3.3. Improved Bayesian NLM Filter

We propose an improved Bayesian NLM filter in which a sigma range is added to the prior
image operation for more effective protection of image details [26]. The first step is analysis
of the probability density for pixel levels, which takes the average variance for the improved
Bayesian filter. Considering the independence and integrity of an image, its conditional
probability distribution can be expressed as

p
(
v(x) | u(y)) =

M×M∑

m=1

p
(
vm(x) | um

(
y
))
, (3.5)
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where vm(x) and um(y) are the image probability densities at pixel m and vm(y) is a subset
of um(y). For L-level image decomposition, the conditional probability density function is

p
(
vm(x) | um

(
y
))

=
vm(x)L−1

F(L)

(
L

um

(
y
)

)

exp

(

−Lvm(x)
um

(
y
)

)

, (3.6)

F(L) =
√

Ga(L)
L∑

l

exp
(
um

(
y
)l−1 − vm(x)l−1

)
. (3.7)

Because of multiscale features, we assume that the prior probability p(u(y)) is
continuous and uniform, p(u(y)) = 1/|Δx|. The proposed algorithm uses an iterative
technique, which takes the observed value v(x) as the initial value u(y). This treatment can
process data directly but takes longer, and details can become fuzzy. If the frequency window
is too large, the result will have too much edge details and point targets become even more
blurred. Experimental results confirmed that 3 × 3 window is an appropriate choice. The
algorithm uses an a priori estimate mean u′(y) to replace u(y) to reduce image noise bias and
Δx is replaced by N(x). The new Bayesian filter can be expressed as

n(x) =

∑
y∈Δ(x) p

(
v(x) | u′(y

))
p
(
u′(y

))
u′(y

)

∑
y∈Δ(x) p

(
v(x) | u′(y

))
p
(
u′(y

)) . (3.8)

N(x) can be expressed as N(x) = Δx ∩ N1(x) ∩ N2(x), where N1(x) and N2(x) are
a priori regional image characteristics and pixel features, respectively. The a priori regional
characteristic is image region Δx, and unrelated points are removed using a region similarity
algorithm. The a priori pixel feature is the set obtained by comparing the similarity of adjacent
pixels [27]. A priori pixel characteristics are generally always overlooked in NLM filter
processes. In fact, a priori pixel characteristics are good for excluding pixel noise [28].

The sigma range between pixel x and the a priori mean u′(x) can be defined as
(u′(x)I1, u

′(x)I2) and the range (I1, I2) meets ξ =
∫ I2

I1
p(s)ds, where p(s) is the image

probability density function. For different sigma values ξ ∈ {0.1, 0.2, . . . , 0.9}, the range can
be calculated by pixel search [29].

It is desirable to have a greater sigma weight; however, under conditional probability,
the sigma range cannot be greater than the maximum upper boundary, u′(x)I2 < Vmax, where
Vmax is the maximum image density. It has been demonstrated that a priori pixel characteristics
can have a good effect on retention of image edges, but there will be some situations in which
isolated pixels are ignored. To solve this problem, the proposed algorithm uses a threshold
T = Vmax/2 to separate two pixels [30]. For a priori pixels, only u′(x) < T are retained.

4. Image Feature Extraction Based on the Contourlet Transform

The proposed algorithm can improve the accuracy and completeness of image feature
extraction based on direct contourlet decomposition. An image is first processed by
the contourlet transform to yield a multidimensional domain, with multiple-resolution
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Figure 5: Image feature extraction based on the contourlet transform.

decomposition coefficients for large-scale details (low-frequency signal) and finer image
details (high-frequency signal). Next, the algorithm applies deeper decomposition to the
large-scale approximation. The whole process can be repeated until the algorithm yields the
detail required.

Figure 5 shows the two-layer decomposition, where I is the observed image, I ′ is the
image processed using the contourlet transform, LP is a Laplacian pyramid decomposition
filter, DFB is a direction filter bank, LF is the low-frequency signal and HF is the high-
frequency signal.

The decomposition coefficients for different frequencies are processed using the
Bayesian-based NLM filter with a decomposition threshold. In particular, we use the wavelet
threshold approach for the low-frequency part and the NLM approach for the high-frequency
part. The specific steps in the algorithm are as follows.

Step 1. Decompose image I using the nonsubsampled contourlet transform.

Step 2. Apply the decomposition threshold method to the low-frequency part for noise
suppression and feature extraction.

Step 3. Apply the improved Bayesian NLM filter to the high-frequency part for feature
extraction.

Step 4. Reconstruct the high-frequency and low-frequency parts of the image processed using
the contourlet transform.

For the low-frequency part, threshold decomposition is used to remove image noise.
First, the threshold value T is set. Decomposition coefficients smaller than T are considered to
be noise and thus are set to zero; coefficients greater than T are reserved. The decomposition
threshold is

T =
θn
2k

√

2 logN, θn =
M(d1)
0.6745

, M(d1) =
N∑

i=0

∑

n∈z2

d1[2n + ki], (4.1)
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where k is the number of layers for wavelet decomposition, θn is a function for estimating
mean absolute deviation, where d1 is the high-frequency coefficient for first-layer contourlet
decomposition. The high-frequency part of the first layer usually contains few signal
components and comprises mainly noise. For the high-frequency part, G[Dk(x)] and
G[Dk(y)] are two blocks for image I. G [Dk(p)] represents the rectangular neighborhood
around p as center. The proposed algorithm uses an improved Bayesian NLM image filter
and a Euclidean distance to represent similarity between high-frequency image blocks. The
similarity is represented by w(x, y), which is defined as

w
(
x, y

)
=

1
Z(x)

e−(‖G[Dk(x)]−G[Dk(y)]‖2/h2),

Z(x) =
∑

x,y∈I
e−(‖G[Dk(x)]−G[Dk(y)]‖2/h2),

(4.2)

where h is a constant used to control the exponential decay rate. Compared with the original
NLM filter, the contourlet transform decomposes the image at different resolutions and the
proposed approach uses different algorithm to process an image: threshold decomposition
is used for the low-frequency part, and an improved Bayesian NLM filter is used for the
high-frequency part. The NLM filter involves time-consuming calculations. If an image is
decomposed by the contourlet transform for k levels, the improved algorithm only has to
process 1/2k of the original size. This not only reduces the computational complexity but
also greatly improves the accuracy of feature extraction.

5. Experimental Results

Spatial image can directly influence the success of spatial rendezvous and docking. We
must ensure that the most accurate image feature can be extracted from spatial images.
The proposed algorithm can also be applied to general image processing. To verify the
performance of the algorithm, we carried out experiments both on Spatial images and
standard images.

5.1. Performance Evaluation Based on Spatial Images

Tests were carried out on image I and image II for an image size of 512 × 512. Multidi-
mensional contourlet and curvelet decomposition algorithms were used for comparison. The
same parameters were used for all algorithms.

Image feature extraction results were evaluated according to subjective and objective
standards. Figure 6 shows the processing results for image I, and Figure 7 shows the results
for image II. It is evident that the proposed algorithm yields a better subjective visual effect
compared with the curvelet and contourlet algorithms.

The results show that feature extraction with the curvelet transform leads to confusion
for some background information, and the contourlet transform yields a blurry image. By
contrast, the proposed algorithm effectively suppresses noise and displays the main features
of the image. Finer image details are shown in Figure 8.
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(a) Original image (b) Curvelet transform

(c) Contourlet transform (d) Contourlet + NL-means

Figure 6: Process results for image I.

(a) Original image (b) Curvelet transform

(c) Contourlet transform (d) Contourlet + NL-means

Figure 7: Process results for image II.
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(a) Original (b) Noisy (c) Curvelet (d) Contourlet
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means

Figure 8: Process results for image II.

5.2. Performance Evaluation Based on Standard Images

Figures 9 and 10 show the processing results for image as III, IV. Image as III and IV are
standard images for an image size of 512 × 512. It is shown that our algorithm also provides
better performance than that of Curvelet transform and Contourlet transform.

Results are objectively evaluated using the peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM), defined as follows:

PSNR = 10 log10
(L − 1)2

∑M
i=1

∑N
j=1

[
R
(
i, j

) − F
(
i, j

)]2
,

SSIM
(
x, y

)
=

(
2uxuy + C1

)(
2σxy + C2

)

(
u2
x + u2

y + C1
)(
σ2
x + σ2

y + C2
) ,

MSSIM(X,Y ) =
1
W

W∑

r=1

SSIM(Xr, Yr),

(5.1)

where ux and uy are the mean and σx and σy are the standard deviation for the original and
processed images, respectively, σxy is the covariance for the original and processed images,
and C1 and C2 are constants. MSSIM is mean SSIM, and W is the number of image subblocks.
For greater PSNR and MSSIM (0 ≤ MSSIM ≤ 1), the processed image is closer to the
original.
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(a) Original image (b) Curvelet transform

(c) Contourlet transform (d) Contourlet + NL-means

Figure 9: Process results for image III.

Table 1 compares the feature extraction performance for images I and II for several
algorithms and different noise levels. The PSNR results show that the contourlet transform
is superior to the curvelet transform for image I by almost 0.5 dB. Both the contourlet and
curvelet transforms provide good edge detection. The proposed CT+NLM algorithm showed
even better performance (∼1.1 dB) compared with the contourlet transform but retained the
good edge detection of the latter method (Table 1).The proposed algorithm uses an NLM
filter for adaptive image expression. The MSSIM results show that the proposed algorithm
yields the best performance for Gaussian, Poisson, Salt and Pepper and Speckle noise
(Table 2).

Our algorithm uses a nonsubsampled key point filter for which J+1 redundancy is the
most efficient. In pyramid decomposition, a lesser extent of image loss can be considered as an
effective means to reduce redundancy. The proposed algorithm, which uses a nonsubsampled
pyramid filter and a directional filter, leads to some image loss in reducing redundancy.
Search windows of 16 × 16, 32 × 32, and 64 × 64 were applied to images I and II. The size
of the search window can affect the computational complexity of the NLM filter.

Comparison of the experimental results for different window sizes reveals that the
proposed algorithm delivers better noise suppression and feature extraction than the other
algorithms. It provides a maximum PSNR value and a minimum MSSIM value for all
windows (Table 3).
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(a) Original image (b) Curvelet transform

(c) Contourlet transform (d) Contourlet + NL-means

Figure 10: Process results for image IV.

Table 1: PSNR results.

Noise σ
PSNR (dB)

Noisy Original Curvelet Contourlet CT + NLM

10 Image I 31.22 32.93 33.01 33.58 34.62
Image II 32.98 33.53 33.89 34.21 35.40

20 Image I 31.16 31.89 32.75 33.01 34.19
Image II 32.49 33.14 33.19 33.82 34.89

30 Image I 30.78 31.56 32.13 32.78 33.76
Image II 31.98 32.75 32.82 33.21 34.17

40 Image I 30.56 31.01 31.74 32.53 33.61
Image II 31.20 32.11 32.42 32.91 33.98

50 Image I 29.88 30.54 31.29 31.74 32.83
Image II 30.77 31.56 31.98 32.17 33.28

6. Conclusions

Focusing on the actual needs of spatial images analysis, an improved contourlet transform,
consisting of a nonsubsampled pyramid transform and nonsubsampled directional filter
banks, was used to reduce the filter design problem of spatial images. The improved
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Table 2: MSSIM results.

Noise MSSIM
Noisy Original Curvelet Contourlet CT + NLM

Gaussian Image I 0.2979 0.3128 0.3524 0.4277 0.5185
Image II 0.3014 0.3256 0.3688 0.4316 0.5220

Poisson Image I 0.5744 0.6231 0.6827 0.7173 0.8219
Image II 0.5891 0.6349 0.7028 0.7339 0.8551

Salt and pepper Image I 0.2948 0.3239 0.3740 0.4157 0.5255
Image II 0.3001 0.3398 0.3829 0.4254 0.5345

Speckle Image I 0.2953 0.3321 0.3974 0.4309 0.5312
Image II 0.3021 0.3476 0.4012 0.4452 0.5422

Table 3: Experimental results for different search windows.

Scheme
Search window 16 × 16 Search window 32 × 32 Search window 64 × 64
Image I Image II Image I Image II Image I Image II

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Original 30.53 0.658 31.45 0.679 30.09 0.669 31.21 0.685 29.89 0.675 31.09 0.703
Curvelet 30.78 0.697 31.66 0.722 30.12 0.701 31.39 0.737 29.91 0.688 31.15 0.749
Contourlet 31.23 0.759 31.98 0.784 30.35 0.762 31.65 0.791 30.17 0.744 31.23 0.806
CT + NLM 32.38 0.783 32.89 0.802 31.37 0.788 32.68 0.811 31.23 0.796 32.22 0.835

contourlet transform uses a mapping approach to solve the 2D filter design problem. The
algorithm uses a Bayesian NLM filter for high-frequency information to suppress noise and
improve the accuracy of image feature extraction. Experimental results confirm that the NLM
filter can effectively retain structural information and reduce the residual structure. In the
NSCT domain, the proposed algorithm showed better denoising and enhancement effects
compared with the contourlet transform. Moreover, in comparison with NSWT, the algorithm
is a more mature and sophisticated image-processing method.
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