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A B-spline collocation method is developed for solving boundary value problems which arise
from the problems of calculus of variations. Some properties of the B-spline procedure required
for subsequent development are given, and they are utilized to reduce the solution computation
of boundary value problems to some algebraic equations. The method is applied to a few test
examples to illustrate the accuracy and the implementation of the method.

1. Introduction

Minimization problems that can be analyzed by the calculus of variations serve to
characterize the equilibrium configurations of almost all continuous physical systems,
ranging between elasticity, solid and fluid mechanics, electromagnetism, gravitation,
quantum mechanics, string theory, many, many others. Many computational methods as
motivated by optimization problems use the technique of minimization. Methods of search,
finite elements, and iterative schemes are part of optimization theory. The classical calculus
of variation [1, 2] answers the question: what conditions must the minimizer satisfy? while
the computational techniques are concerned with the question: how to find or approximate
the minimizer? The list of main contributors to the calculus of variations includes the most
distinguished mathematicians of the last three centuries such as Leibnitz, Newton, Bernoulli,
Euler, Lagrange, Gauss, Jacobi, Hamilton, and Hilbert. In recent years, many different
methods have been used to estimate the solution of problems in calculus of variations [3–
12]. In this work, we consider collocation method based on using B-spline basis functions, for
finding approximate solution of differential equations which arise from problems of calculus
of variations. The application of the method to differential equations leads to an algebraic
system.
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The organization of this paper is as follows: in Section 2, we introduce the general form
of problems in calculus of variations, and their relations with ordinary differential equations
are highlighted. In Section 3, we describe the cubic B-spline function and basic formulation
of B-spline collocation method required for our subsequent development and present a clear
overview of this method. Also in this section, we illustrate how the cubic B-spline method
may be used to replace boundary value problems by explicit systems of algebraic equations.
In Section 4, we report our numerical results and demonstrate the efficiency and accuracy of
the proposed numerical scheme by considering some numerical examples. Section 5 ends this
paper with a conclusion. Note that we have computed the numerical results by Mathematica
(7) programming.

2. Calculus of Variation Problems and Their Relations with BVPs

The general form of a variational problem can be considered as finding the extremum of the
functional

J[u1(t), u2(t), . . . , un(t)] =
∫b

a

G
(
t, u1(t), u2(t), . . . , un(t), u′

1(t), u
′
2(t), . . . , u

′
n(t)
)
dt. (2.1)

To find the extreme value of J , the boundary points of the admissible curves are known
in the following form:

ui(a) = γi, i = 1, 2, . . . , n,

ui(b) = δi, i = 1, 2, . . . , n.
(2.2)

The necessary condition for (2.1) to extremize J[u1(t), u2(t), . . . , un(t)] is that it should
satisfy the Euler-Lagrange equations

∂G

∂ui
− d

dt

(
∂G

∂u′
i

)
= 0, i = 1, 2, . . . , n, (2.3)

with boundary conditions given in (2.2). The system of boundary value problems (2.3)
does not always have a solution, and if the solution exists, it may not be unique. Note that
in many variational problems, the existence of a solution is obvious from the physical or
geometrical meaning of the problem, and if the solution of Euler’s equation satisfies the
boundary conditions, it is unique. Also this unique extremal will be the solution of the given
variational problem [2]. Thus, another approach for solving the variational problem (2.1) is
finding the solution of the system of ordinary differential equations (2.3) which satisfies the
boundary conditions (2.2). The simplest form of the variational problem (2.1) is

J[u(t)] =
∫b

a

G
(
t, u(t), u′(t)

)
dt, (2.4)
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with the given boundary conditions

u(a) = γ, u(b) = δ. (2.5)

Here, the necessary condition for the extremum of the functional (2.4) is to satisfy the
following second-order differential equation:

∂G

∂u
− d

dt

(
∂G

∂u′

)
= 0, (2.6)

with boundary conditions given in (2.5). In the present work, we find the variational
problems by applying cubic B-spline collocation method on the Euler-Lagrange equations.

3. Cubic B-Spline Method

3.1. B-Spline Preliminaries

Consider the partition Δ = {t0, t1, t2, . . . , tN} of [a, b] ⊂ R. Let Sk(Δ) denote the set of
piecewise polynomials of degree k on subinterval Ij = [xj−1, xj] of partition Δ. In this work,
we consider cubic B-spline method for finding approximate solution of variational problems.
B-spline functions are discussed thoroughly in [13].

Consider the grid points ti on the interval [a, b] as follows:

a = t0 < t1 < t2 < · · · , tN−1 < tN = b, (3.1)

tj = t0 + jh, j = 0, 1, 2, . . . ,N, (3.2)

where h = (b − a)/N. Let Bk,j be the B-spline function of degree k, where j ∈ Z, and satisfy
the following conditions:

(i) Supp(Bk,j) = [tj , tj+k+1],

(ii) Bk,j(t) ≥ 0, for all t ∈ R,

(iii)
∑∞

j=−∞ Bk,j(t) = 1, for all t ∈ R.

The zero-order polynomial B-spline is defined as

B0,j(t) =

{
1, t ∈ [tj , tj+1),
0, otherwise,

(3.3)

and also, the general-order B-spline is given by

Bk,j(t) =
t − tj

tk+j − tj
Bk−1,j(t) +

tk+j+1 − t

tk+j+1 − tj+1
Bk−1,j+1(t). (3.4)
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Note that this definition means that Bk,j(t) is nonzero only in the range tj ≤ t ≤ tk+j+1.
The cubic B-splines Bk,j(t), at the grid points tj , are defined as

B3,j(t) =
1
6h3

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
t − tj

)3
, t ∈ [tj , tj+1],

h3 + 3h2(t − tj+1
)
+ 3h

(
t − tj+1

)2 − 3
(
t − tj+1

)3
, t ∈ [tj+1, tj+2],

h3 + 3h2(tj+3 − t
)
+ 3h

(
tj+3 − t

)2 − 3
(
tj+3 − t

)3
, t ∈ [tj+2, tj+3],(

tj+4 − t
)3
, t ∈ [tj+3, tj+4].

(3.5)

3.2. Approximate Solution of the Problems in Calculus of Variation

Now let us consider the general form of the variational problem (2.1). Finding the solution
of the problem (2.1) needs to solve the corresponding ordinary differential equations (2.3)
with boundary conditions (2.2). We assume (u1(t), u2(t), . . . , un(t)) be the exact solution of
the boundary value problem (2.3). By considering (3.5), the functions (u1(t), u2(t), . . . , un(t))
defined over the interval [a, b] are approximated by the following linear combinations of the
cubic B-spline functions:

u1(t) � u1,N(t) =
N−1∑
j=−3

w1,jB3,j(t), (3.6)

u2(t) � u2,N(t) =
N−1∑
j=−3

w2,jB3,j(t),

...

(3.7)

un(t) � un,N(t) =
N−1∑
j=−3

wn,jB3,j(t), (3.8)

where wi,j , i = 1, 2, . . . , n, j = −3,−2, . . . ,N − 1 are unknown coefficients and B3,j(t) are cubic
B-spline functions which are defined in (3.5). For convenience, consider the second-order
boundary value problem (2.3) as follows:

F
(
u1(t), u2(t), . . . , un(t), u′

1(t), . . . , u
′
n(t), u

′′
1(t), . . . , u

′′
n(t)
)
= 0, (3.9)

and also consider B3,j(t) = Bj(t). By using (3.6)–(3.8), we can approximate ui(t), u′
i(t) and

u′′
i (t), i = 1, 2, . . . , n as follows:

ui(t) �
N−1∑
j=−3

wi,jBj(t), u′
i(t) �

N−1∑
j=−3

wi,jB
′
j(t), u′′

i (t) �
N−1∑
j=−3

wi,jB
′′
j (t). (3.10)
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By substituting in (3.9) and setting t = tl, l = 0, 1, 2, . . . ,N, as collocation points, we
obtain

F

⎛
⎝N−1∑

j=−3
w1,jBj(tl), . . . ,

N−1∑
j=−3

wn,jBj(tl),
N−1∑
j=−3

w1,jB
′
j(tl), . . . ,

N−1∑
j=−3

wn,jB
′′
j (tl)

⎞
⎠ = 0. (3.11)

the system (3.11) consists of n(N + 1) equations with n(N + 3) unknowns {wj}n−1j=−3. Now,
consider the 2n equations from boundary conditions (2.2) as follows:

N−1∑
j=−3

wi,jBj(t0) = γi, i = 1, 2, . . . , n, (3.12)

N−1∑
j=−3

wi,jBj(tN) = δi, i = 1, 2, . . . , n. (3.13)

Adding (3.12) and (3.13) to the system of (3.11), we obtain n(N + 3) equations with
n(N+3) unknownswi,j , i = 1, 2, . . . , n, j = −3,−2, . . . ,N−1. Solving the system (3.11)–(3.13),
the coefficients wi,j , i = 1, 2, . . . , n, j = −3,−2, . . . ,N − 1 are obtained. Then, we can obtain an
approximation to the solution of (3.9) that is equivalent to the solution of the variational
problem (2.1) as

ui(t) � ui,N(t) =
N−1∑
j=−3

wi,jBj(t), i = 1, 2, . . . , n. (3.14)

4. Numerical Examples

In order to illustrate the performance of the cubic B-spline collocation method and the
efficiency of the method, the following examples are considered. The examples have been
solved by the presented method with different values of N. We define the error function
E(t) = u(t)−uN(t)where u(t) and uN(t) denote exact and approximate solutions, respectively.
The errors are reported on the set of uniform grid points with step size hU = (b − a)/100,

U = {z0, z1, . . . , z100},
zj = a + jhU, j = 0, 1, . . . , 100.

(4.1)

The error on this grid is

‖E‖ = max
0≤j≤100

∣∣E(zj)∣∣. (4.2)

Tables 1–3 exhibit the absolute errors.
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Table 1: Results for Example 4.1.

N h ‖E‖
8 1/8 6.9109 × 10−2

16 1/16 1.7165 × 10−2

32 1/32 4.2845 × 10−3

64 1/64 1.0707 × 10−3

128 1/128 2.6764 × 10−4

256 1/256 6.6906 × 10−5

Table 2: Results for Example 4.2.

N h ‖E‖
8 1/8 2.1846 × 10−6

16 1/16 5.4396 × 10−7

32 1/32 1.3544 × 10−7

64 1/64 3.3500 × 10−8

128 1/128 8.0172 × 10−9

256 1/256 1.6469 × 10−9

Example 4.1. Wefirst consider the following variational problemwith the exact solution u(t) =
e3t [11]:

min J =
∫1

0

(
u(t) + u′(t) − 4e3t

)2
dt, (4.3)

subject to boundary conditions

u(0) = 1, u(1) = e3. (4.4)

Considering (4.3), the Euler-Lagrange equation of this problem can be written in the
following form:

u′′(t) − u(t) − 8e3t = 0. (4.5)

By considering (3.6), (3.10), and (3.11) and also substituting in (4.5) and setting t =
tl, l = 0, 1, 2, . . . ,N, we obtain

N−1∑
j=−3

wj

[
B′′
j (tl) − Bj(tl)

]
= 8e3tl , l = 0, 1, 2, . . . ,N, (4.6)
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Table 3: Results for Example 4.3.

N h ‖E1‖ ‖E2‖
8 π/16 8.9855 × 10−4 8.9855 × 10−4

16 π/32 2.2507 × 10−4 2.2507 × 10−4

32 π/64 5.6321 × 10−5 5.6321 × 10−5

64 π/128 1.4082 × 10−5 1.4082 × 10−5

128 π/256 3.5207 × 10−6 3.5207 × 10−6

256 π/512 8.8018 × 10−7 8.8018 × 10−7

where tl = t0 + lh, h = 1/N. The linear system (4.6) consists of (N + 1) equations with (N + 3)
unknowns {wj}N−1

j=−3. Now, consider the two equations from (3.12) to (3.13) and boundary
conditions (4.4) as follows:

N−1∑
j=−3

wjBj(t0) = 1, (4.7)

N−1∑
j=−3

wjBj(tN) = e3. (4.8)

Adding (4.7) and (4.8) to the system of (4.6), we obtain (N +3) equations with (N +3)
unknowns wj, j = −3,−2, . . . ,N − 1. In order to determine these (N + 3) unknowns, we can
now rewrite (4.6)–(4.8) in the matrix form

AW = P, (4.9)

where A is a square matrix of order (N + 3) × (N + 3) and is defined as follows:

A = [ak,l], k = 1, 2, . . . ,N + 3, l = 1, 2, . . . ,N + 3,

a1,l = Bj(0), j = l − 4, l = 1, 2, . . . ,N + 3,

ak,j = B′′
j (ti) − Bj(ti), i = k − 2, k = 2, 3, . . . ,N + 2, j = l − 4, l = 1, 2, . . . ,N + 3,

an+3,j = Bj(1), j = l − 4, l = 1, 2, . . . , n + 3,

W = [w−3, w−2, . . . , wN−1]T ,

P =
[
1, e3t0 , e3t1 , . . . , e3tN−1 , e3tN , e3

]T
.

(4.10)

Solving the linear system (4.9), the coefficients wj, j = −3,−2, . . . ,N − 1 are obtained.
Then, we can obtain an approximation to the solution as

u(t) � uN(t) =
N−1∑
j=−3

wjBj(t). (4.11)



8 Journal of Applied Mathematics

The maximum absolute errors in numerical solution of Example 4.1 are tabulated in
Table 1.

These results show the efficiency and applicability of the presented method.

Example 4.2. In this example, we consider the following variational problem [2]:

min J =
∫1

0

1 + u2(t)
u′2(t)

dt, (4.12)

which satisfies the conditions

u(0) = 0, u(1) = 0.5. (4.13)

The exact solution of this problem is u(t) = sinh(0.4812118250t). In this case, the Euler-
Lagrange equation is written in the following form:

u′′(t) + u′′(t)u2(t) − u(t)u′2(t) = 0. (4.14)

Substituting (3.6) into (4.13)-(4.14) and evaluating the result at the B-spline grid points
(3.2), we obtain

N−1∑
j=−3

wjBj(t0) = 0,

N−1∑
j=−3

wjB
′′
j (ti) +

N−1∑
j=−3

wjB
′′
j (ti)

⎛
⎝N−1∑

j=−3
wjBj(ti)

⎞
⎠

2

−
N−1∑
j=−3

wjBj(ti)

⎛
⎝N−1∑

j=−3
wjB

′
j(ti)

⎞
⎠

2

= 0, i = 0, 1, 2, . . . ,N,

N−1∑
j=−3

wjBj(tN) = 0.5.

(4.15)

Solving (N + 3) nonlinear algebraic equations (4.15) by Newton’s method and
substituting the wj for j = −3,−2, . . . ,N − 1 to (4.11), the approximation solution can be
found. In Table 2, we give the maximum absolute errors for different values of N.

From Table 2, we see the errors decrease as N increases.

Example 4.3. In this example, consider the following problem of finding the extremals of the
functional [2, 11]:

J[u1(t), u2(t)] =
∫π/2

0

(
u

′2
1 (t) + u

′2
2 (t) + 2u1(t)u2(t)

)
dt, (4.16)
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with boundary conditions

u1(0) = 0, u1

(π
2

)
= 1,

u2(0) = 0, u2

(π
2

)
= −1.

(4.17)

The system of Euler’s differential equations is of the form

u′′
1(t) − u2(t) = 0,

u′′
2(t) − u1(t) = 0.

(4.18)

The exact solutions of the problem are u1(t) = sin(t) and u2(t) = − sin(t). In this
example, according to the general form of variational problem (2.1), we have i = 2. Thus,
we use (3.6) and (3.7) to approximate u1(t) and u2(t). Now substituting u1(t) and u2(t) into
(4.18) and evaluating the result at the grid points (3.2), we obtain

N−1∑
j=−3

w1,jBj(t0) = 0,
N−1∑
j=−3

w2,jBj(t0) = 0,

N−1∑
j=−3

w1,jB
′′
j (ti) −

N−1∑
j=−3

w2,jBj(ti) = 0, i = 0, 1, 2, . . . ,N,

N−1∑
j=−3

w2,jB
′′
j (ti) −

N−1∑
j=−3

w1,jBj(ti) = 0, i = 0, 1, 2, . . . ,N,

N−1∑
j=−3

w1,jBj(tN) = 1,
N−1∑
j=−3

w2,jBj(tN) = 1.

(4.19)

Solving 2(N+3) linear algebraic Equations (4.19) and by substituting thew1,j andw2,j

for j = −3,−2, . . . ,N − 1 to u1(t) and u2(t), the approximate solutions can be found. Suppose
that ‖E1‖ and ‖E2‖ are the maximum absolute errors for u1(t) and u2(t), respectively. Table 3
shows ‖E1‖ and ‖E2‖ for different values of N.

5. Conclusions

This paper described an efficient method for finding the minimum of a functional over
the specified domain. The main objective is to find the solution of an ordinary differential
equation which arises from the variational problem. Our approach was based on the cubic
B-spline method. Properties of the B-spline method are utilized to reduce the computation
of this problem to some algebraic equations. The method is computationally attractive, and
applications are demonstrated through illustrative examples. The obtained results showed
that this approach can solve the problem effectively.
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