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Modulation instability is one of the most ubiquitous types of instabilities in nature. As one of the
key characteristics of modulation instability, the most unstable condition attracts lots of attention.
The most unstable condition is investigated here with two kinds of initial wave systems via a
numerical high-order spectral method (HOS) for surface water wave field. Classically, one carrier
wave and a pair of sidebands are implied as the first kind of initial wave system: “seeded” wave
system. In the second kind of initial wave system: “un-seeded”wave system, only one carrier wave
is implied. Two impressive new results are present. One result shows that the grow rates of lower
and upper sideband are different within the “seeded” wave system. It means that, for a given wave
steepness, the most unstable lower sideband is not in pair with the most unstable upper sideband.
Another result shows the fastest growing sidebands are exactly in pair from “unseeded” wave
system. And the most unstable conditions of “unseeded” wave system are more or less the mean
value of those derived from the lower sidebands and upper sidebands within the “seeded” wave
system.

1. Introduction

As a typical nonlinear mechanism, the modulation instability (hereinafter referred as “MI”),
also called Benjamin-Feir instability or self-modulation, has been observed and studied
in numerous physical fields including water waves, plasma waves, laser beams, and
electromagnetic transmission lines. As mentioned by Zakharov and Ostrovsky [1], there are
between one and two million entries on MI in any internet search websites, for example,
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Figure 1: Sketch of initial surface elevation and wave number spectrum of Stokes modulated wave train
for ε0 = 0.05, k0 = 10, r1 = 0.1, M = 4, N = 1024, T0/Δt = 64.

Yahoo. Even these references are not all equally relevant, the numbers are still enough to
show the importance of MI. A recent usage of MI is to explain the possible reason for the
occurrence of Freak waves [2], which may cause catastrophic damage to offshore structures
and surface vessels due to exceptionally large amplitudes [3]. From this viewpoint, the
Freak waves will appear at modulation peaks along the water wave evolution process. And
it is well known that the water wave evolution process will reach the modulation peak
within shortest time duration if the initial condition satisfies the most unstable condition
(hereinafter referred as “MUC”). Generally, the MUC refers to the imposed wave train
formed by a carrier wave and a pair of sidebands which will grow with the largest
growth rate along the water wave evolution process. The latest comprehensive review and
research work on MI we can refer to is Tulin and Waseda [4]. They reviewed nearly all the
previous valuable works, including theoretical analysis, numerical simulation, and physical
experiments. Particularly, based on a series delicate experiments, they explained the dynamic
mechanisms of the sideband behavior in both the breaking and nonbreaking cases. The
MUC they used in the experiments is calculated based on Krasitskii equation [5]. They
mentioned that the results from Krasitskii equation are different with the previous results
from Benjamin and Feir [6], Longuet-Higgins [7] and Dysthe [8]. But they did not discuss
on that in details. The latest detailed experiments for MI were performed by Chiang [9] in
a large wave tank (300m long, 5.0m wide, 5.2m deep). The initial wave systems for his
experiments are not only the imposed sidebands wave (“seeded”) but also uniform wave
(“un-seeded”). The initial uniform wave system has only the carrier wave. The sidebands
will evolve and grow from background noises due to nonlinear wave interaction. As one
of the Chiang’s conclusions, the fastest growing modes of the naturally evolved sidebands
in the experiments confirm the prediction of Tulin and Waseda [4] and that of Longuet-
Higgins [7]. However, it is just roughly confirmed, especially for wave steepness less than
0.17. Due to physical experiment facility limitations, which include the tank length and
the sidewall damping, the carrier wave steepness of all the previous experiments results
is large than 0.1. However, the energetic wave steepness in the ocean is in the vicinity
(ε ∼ 0.1). Thus, it seems useful to do a detailed discussion on the determination of
MUC.

In Section 2, the theoretical background of MI and the related modulated wave train
are summarized. Section 3 introduces the research approach via numerical HOS method. The
detailed numerical results are present in Section 4. And some discussions are listed in the last
section.
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2. Modulation Instability and Modulated Stoke Wave Train

Modulation instability (MI), can also be called Benjamin and Feir instability, was discovered
by Lighthill [10], while it was proved analytically and validated experimentally by Benjamin
and Feir [6]. The related milestone works have been reviewed by a lot of people, especially
Tulin and Waseda [4], as already mentioned. Basically, a Stokes wave train is unstable to
the perturbations or noises due to MI. Specifically, Benjamin and Feir [6] found that the
unstable sideband components would grow exponentially with a time rate which depends
on the dimensionless frequency difference between the carrier wave and unstable sideband
and the initial wave steepness. Usually, the modulated Stokes wave train is defined by (2.1).
As an example, the initial wave surface and the corresponding wave number spectrum are
shown in Figure 1.

ς(x, 0) = ς0[ε0, k0] + r−a0 cos(k−x − θ−) + r+a0 cos(k+x − θ+),

φs(x, 0) = −φs
0[ε0, k0] +

r−√
k−

a0e
k−ς cos(k−x − θ−) +

r+√
k+

a0e
k+ς cos(k+x − θ+).

(2.1)

Here, ς(x, 0) and φs(x, 0) are the surface elevation and surface potential at initial time t = 0.
ς0[ε0, k0] and φs

0[ε0, k0] are calculated for the carrier wave according to Schwartz [11] with
respect to wave steepness ε0 and wave number k0. All the subscripts 0, +, − mentioned in
this paper represent the carrier wave, upper sideband, and lower sideband, respectively. θ
is the initial phase. It has been proved that the wave train evolution only vary with a phase
combination θ′ ≡ θ++θ−−2θ0. r is the ratio between the amplitudes of the sideband and carrier
wave. As the detailed discussion by Tao [12], there are no fundamental different effects to the
wave train evolution for different r− and r+. Then we define r ≡ r− = r+.

According to results of Benjamin and Feir, MI works only when (2.2) is satisfied.

r1 < 2
√
2ε0, (2.2)

where r1 ≡ Δk/k0, Δk ≡ k+ − k0 = k0 − k− and k is the wave number. For a given ε0, there
should be a corresponding r1 which can induce the fastest sidebands growth and this can be
called the most unstable condition (MUC), which is the emphasis of this paper. Including the
choice of MUC, there are still some parameters for the modulated Stokes wave train that need
to be determined, including the normalized carrier wave number (k0), the nonlinear order of
the carrier Stokes wave (Ms), the ratio (r) between the sidebands amplitudes and the carrier
wave, and the initial phase (θ).

2.1. The Determination of k0

The determination of k0 is also related to numerical HOSmethod, which will be introduced in
Section 3. In the calculation process of numerical HOS method, both the temporal and spatial
parameters, including the wave numbers, have been normalized. Usually, the calculation
domain is normalized to 2π . Then there would be 40 single harmonic waves present in the
whole calculation domain 2π , if k0 = 40, as shown in Figure 1. In order to keep enough
precision for the depicture for the surface elevation in the physical domain, the number of
wave modes N used in the numerical HOS method has to be large enough for large k0, then
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Figure 2: The maximum wave crest histories (a) and scatter diagram (b) of Stokes-modulated wave train
for ε0 = 0.05, r1 = 0.1 with different k0 = 10, 20 and 40.

the calculation time would increase. Fortunately, as discussed by Tao et al. [13], there is no
essential difference for different k0 with the same r1, at least for time to O(T0ε−30 ). In another
word, for ε0 = 0.05 with MUC (r1 = 0.1), choosing k0 = 10 and Δk = 1, k0 = 20 and Δk = 2
or k0 = 40 and Δk = 4, there would be exact no difference for investigation of the wave train
evolution, as shown in Figure 2. In Figure 2 and the following paper, the maximum wave
crest amplitude, denoted by ζM, is used frequently as a typical signal for the large wave. Due
to this reason, the smallest k0 is selected in this research only if it can allow the most unstable
condition can be satisfied.

2.2. The Selection of Ms

Physically, the initial wave train, even a monochromatic Cosine wave, can be adjusted to
nonlinear wave train by the nonlinear water wave equations within O(T0ε−10 ). Dommermuth
[14] has studied the adjustment process of numerical HOS method in details and he advised
a considerable adjustment scheme in order to make the adjustment process smooth. To
make sure the potential influence results from different initial carrier wave, four cases are
performed here. As shown in the left picture of Figure 3, there are no fundamental differences
for the dominant property of the wave train evolution. Although the carrier uniform cosine
wave or lower Stokes wave do present the vibration phenomenon as shown in the right
picture of Figure 3, there are nearly no difference if the order of carrier Stokes wave, denoted
asMs, is higher than 3. Then in all the following research cases, Ms = 4.

2.3. The Selection of the Amplitude Ratio r and Initial Phase θ

As mentioned by Tao [12], if r is small enough, with an experimental criterion being r ×
ε0 < 0.02, there would be no different effects to the sideband growth rate. Obviously, for a
give carrier wave, larger r corresponds to large system energy, then the recurrence period is
shorter and the maximum wave height is larger. Although it would be more relevant to lab
freak wave generation, it is not the emphasis of this paper. A general value r = r −= r + = 0.1 is
employed in the whole research of this paper.
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Figure 3: The maximum wave crest histories (a) and scatter diagram (b) of Stokes-modulated wave train
for ε0 = 0.05, r1 = 0.1 with different initial carrier wave.

As one of the milestone works of modulation instability, Benjamin and Feir [6] showed
that the initial phase corresponding to MUC is θ′ ≡ θ+ + θ− − 2θ0 = 90◦. Based on a fully
nonlinear irrational flow solver, Henderson et al. [15]mentioned that θ′ would be some value
between 15◦ and 35◦. Tao [12] reinvestigated the effects of initial phase and deduced the same
result in Benjamin and Feir [6]. This point will be of further research in another paper related
to MUC determination. However, the initial phase is of no concern here, since it only takes
action to the occurrence time for the first modulation peak and the recurrence period. There
are no effects to the strength of the freak waves, which is the emphasis of this paper, as shown
in Figure 4. Then it does make sense to choose any initial phase. Simply, we use θ+ = θ− = 45◦

and θ0 = 0◦.

3. High Order Spectra Method and Necessary Calibration Processes

The main research approach here is a high-order spectral method, which was developed
by Dommermuth and Yue [16]. This method is capable of following nonlinear evolution
of a large number of wave modes (N) with a minimum computation requirement. For
convenience, we call this approach as HOS. The method includes nonlinear interactions of all
wave components up to an arbitrary order (M) in wave steepness. The computational effort
is almost linearly proportional to M and the large number of wave modes (N). Exponential
convergence of the solution with M and N is also obtained. Unlike the phase-averaged and
model-equation-based approaches, HOS accounts for physical phase-sensitive effects in a
direct way. These include the initial distribution of wave phases in the wave-field specified
by wave spectrum and energy dissipation due to wave breaking. The validity and efficacy
of HOS have been established in the study of basic mechanisms of nonlinear wave-wave
interactions in the presence of atmospheric forcing [17], long-short waves [18], finite depth
and depth variations [19], submerged/floating bodies [20], and viscous dissipation [21].

The feasibility of HOS to reveal the characteristics of MI has been fully proved by
Dommermuth and Yue [16]. While the determination of some key parameters, including the
nonlinear wave orderM, the wave modes numberN and the numerical integral time stepΔt
still need to be discussed in details.
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Figure 4: The maximum wave crest histories of Stokes modulated wave train for ε0 = 0.05, r1 = 0.1 with
different initial phases.

A general approach for the determination of M, N, and Δt has been provided by
Dommermuth and Yue [16] for practical computations. For a desired accuracy δ, M can be
chosen to satisfy δ = εM. For example, M = 4 can reach the accuracy δ = 10−4 for ε = 0.05 to
0.07.N andΔt can be got from the two tables provided by Dommermuth and Yue [16]. Based
on this approach, ten numerical cases are performed to determine the suitable M, N, and Δt
for this research. As shown in Figure 5, M = 2 cannot capture the physical evolution process,
while the results of M = 3 and 4 are almost the same. Considering the accuracy, M = 4 is
employed here. From Figure 6, it can be seen clearly that all of these three cases can be used.
N = 1024 is selected here. All the chosen values of dt can satisfy the Courant condition
Δt2 � 8Δx/π ; however, the precision depends on the evolution time, as shown in Figure 7.
T0/Δt = 64 is employed here.

4. Numerical Experiments and Results

In order to investigate the detailed information of MUC, two kinds of numerical experiments
are performed based on HOS. The first kind of initial wave system, hereinafter calling it
“seeded” wave system, is formed by a carrier wave and a pair of sidebands. This corresponds
to the imposed or “seeded” wave system in physical experiments. The second kind of initial
wave system, hereinafter calling it “un-seeded” wave system, has only a carrier wave, while
this carrier wave is calculated based on Stokes wave theory. This is similar to the uniform
or “un-seeded” wave system in physical experiments. For the “un-seeded” wave system, the
background noises in the tank are mainly from the multiple reflections of the wave front,
while those noises in the numerical experiments are from computer round of errors. Because
there are no pure zero can be gotten from the computer. Even using the double-precision
floating-point format, the zero is still stored as ∼10−16, as shown in Figure 8, which is the
Fourier spectra of a “un-seeded” initial wave train for case ε0 = 0.05. To show the background
noise, the vertical Log coordinate is used.

Based on the preliminary works listed in Sections 2 and 3 , some common parameters
are selected for both kinds of initial wave systems listed in Table 1. There are nine cases
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Figure 5: The maximum wave crest histories (a) and scatter diagram (b) of Stokes-modulated wave train
for ε0 = 0.05, r1 = 0.1, N = 1024, T0/Δt = 64 with differentM.
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Figure 6: The maximum wave crest histories (a) and scatter diagram (b) of Stokes-modulated wave train
for ε0 = 0.05, r1 = 0.1, M = 4, T0/Δt = 64 with different N.
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Figure 7: The maximum wave crest histories (a) and scatter diagram (b) of Stokes-modulated wave train
for ε0 = 0.05, r1 = 0.1, M = 4, N = 1024 with different Δt.
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Table 1: Common parameters for both kinds of numerical experiments.

k0 Ms M N T/Δt
100 4 4 1024 64

Table 2: Parameters Δk/k0 for initial imposed wave system.

ε0 r1 ε0 r1

0.05 0.04, 0.05, . . . , 0.13 0.10 0.14, 0.15, . . . , 0.23
0.06 0.06, 0.07, . . . , 0.15 0.12 0.18, 0.19, . . . , 0.27
0.07 0.08, 0.09, . . . , 0.17 0.14 0.22, 0.23, . . . , 0.31
0.08 0.10, 0.11, . . . , 0.19 0.16 0.26, 0.27, . . . , 0.35
0.09 0.12, 0.13, . . . , 0.21

selected for both kinds. Each case is given a different carrier wave steepness, ε0 = 0.05,
0.06∼0.10, 0.12, 0.14, 0.16.

Each “seeded” wave train evolution, with specific carrier wave steepness, is simulated
with ten different sideband pairs to the first modulation peak. The related parameters r1 and
Δk/k0 are listed in Table 2. In addition, the initial phases are selected as θ+ = θ− = 45◦ and θ0 =
0◦. The amplitude ratio between sidebands and carrier wave are selected as r− = r+ = 0.1 at
t = 0. In all realizations, the k0 selected as 100. Generally, the growth rates of sidebands need
to be calculated and compared in order to get the fastest growing sideband. Here the growth
rate β satisfies:

r±
(
t̃
)
= r±(t = 0) exp

(
βt̃
)
, (4.1)

where the t̃ = ωt and ω used in this research is the angular frequency of carrier wave. This
formula is transformed simply from the common space domain version. However, we find
that the growth rate is not so clear to showwhich sideband is faster, since it is not pure steady
with the time varying, even just for the initial stage. For an example, we list the varying
growth rate of lower and upper sideband for case ε0 = 0.05 with Δk/k0 = 0.09 in Table 3. It is
difficult to select the suitable time duration. So, instead of calculating the sidebands growth
rates, the amplitude evolution processes for all the lower sidebands and upper sidebands are
plotted together, respectively, for each case. Then the fastest growing sideband can be easily
seen. For instance, we plot in Figure 9 the evolution processes of all the lower sidebands for
case ε0 = 0.06 before the first modulation peak. In order to make the picture clearer, only the
sidebands close to the fastest one are showed. Obviously, the fastest growing sideband can
be captured directly. Particularly, Figure 9 reveals that the fastest growing lower sideband
corresponds to r1 = 0.1, while the fastest growing upper sideband corresponds to r1 = 0.11.
It is not in pair. According to this procedure, we can get the fastest growing sidebands for
all the cases. The results together with typical previous results are plotted in Figure 10. In
this figure, “Dysthe 1979” is the result calculated by Dysthe based on a modified Nonlinear
Schrödinger equation [8]. “Tulin andWaseda 1999” refers to the results calculated by Tulin
andWaseda [4] based onKrasitskii equation. “Benjamin and Feir 1967” is the result calculated
by Benjamin and Feir [6] based on the classical third-order Nonlinear Schrödinger equation.
“Chiang 2005” is the experiment results given by Chiang [9]. “Lower from seeded” and
“Upper from seeded” are the results from this research. The former one is the MUC based on
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Table 3: The growth rates varying with time for case ε0 = 0.05 with r1 = 0.09.

Time Modulation peak 300 295 290–115 110 100 95 80 60 40
Lower 0.08 0.08 0.08 0.09 0.08 0.08 0.08 0.08 0.04 0.04
Upper 0.09 0.08 0.08 0.07 0.04
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Figure 8: The Fourier spectra of the “un-seeded” initial wave system for case ε0 = 0.05.

the comparison of lower sidebands. And the latter one is based on the comparison of upper
sidebands. Clearly, the “Upper from seeded” matches both the theoretical result of Tulin and
the experimental result of Chiang.

For the “un-seeded” wave system, the fastest growing sidebands can be captured
straightforwardly. For an example, we plot the evolution processes of all the “naturally”
evolving sidebands for case ε0 = 0.06 in Figure 11. It is quite easy to assure the fastest growing
sideband is r1 = 0.11. Unlike the result from “seeded” wave system, the fastest growing lower
sideband is in pair with the upper sideband perfectly for all the nine cases. The final results
are also plotted in Figure 10 in order to make a detailed comparison. From Figure 10, it is easy
to conclude that the fastest growing sidebands from “un-seeded” wave system are more like
the mean of that of the lower and upper sideband from “seeded” wave system.

5. Conclusions

Focusing the determination of the most unstable conditions for modulation instability, a
series of numerical experiments were designed and performed via a robust phase-resolved
numerical model HOS for the surface water wave field. The key points of this paper can
be divided into three parts. The first is the detailed discussion for the parameters of both
MI and HOS, such as the normalized carrier wave number (k0). The second is the numerical
experiment design. In order to make a comprehensive comparison with previous works, both
the “seeded” and “un-seeded” initial wave systems are investigated. The third, and also the
main contribution, is that we find two new results. One result shows that the grow rates of
lower and upper sideband are different even at the very initial stage. It means that, for a
given wave steepness, the most unstable lower sideband is not exactly in pair with the most
unstable upper sideband. And the most unstable conditions derived from upper sidebands
are more close to the previous results, including both the numerical and experimental results.
Another result shows that the fastest growing sidebands are exactly in pair for the “un-
seeded” wave system. And the most unstable conditions of “un-seeded” wave system are
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Figure 9: The amplitude evolution processes of lower sidebands (a) and upper sidebands (b) for case
ε0 = 0.06.
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Figure 11: The sideband evolution processes from the background noise for “un-seeded” wave system
with case ε0 = 0.06.



Journal of Applied Mathematics 11

more or less the mean value of those derived from the lower sidebands and upper sidebands
within the “seeded” wave system. For a suitable explanation of these results further detailed
research is needed.
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