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We consider the one-dimensional steady fin problem with the Dirichlet boundary condition at one
end and the Neumann boundary condition at the other. Both the thermal conductivity and the heat
transfer coefficient are given as arbitrary functions of temperature. We perform preliminary group
classification to determine forms of the arbitrary functions appearing in the considered equation
for which the principal Lie algebra is extended. Some invariant solutions are constructed. The
effects of thermogeometric fin parameter and the exponent on temperature are studied. Also, the
fin efficiency is analyzed.

1. Introduction

A search for exact and numerical solutions for models arising in heat flow through extended
surfaces continues to be of scientific interest. The literature in this area is sizeable (see,
e.g., [1] and references cited therein). Perhaps such interest has been instilled by frequent
encounters of fin problems in many engineering applications to enhance heat transfer. Fins
play an important role in enhancing heat dissipation from a hot surface. They are used in air
conditioning, air-cooled craft engines, refrigeration, cooling of computer processors, cooling
of oil carrying pipe line, and so on.

In recent years, many authors have been interested in the steady-state problems [2–
5] describing heat flow in one-dimensional longitudinal rectangular fins. The symmetry
analysis, in particular, group classification of the unsteady fin problem has attracted some
interest (see, e.g., [6–10]).
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Few exact solutions exist for one-dimensional problems. Perhaps this is due to highly
nonlinearity of the fin models. In fact, existing solutions are constructed only when both
thermal conductivity and heat transfer coefficient are given as constant [2]. Recently, in [5],
exact solutions of the one-dimensional fin problem given nonlinear thermal conductivity and
heat transfer coefficient have been constructed.

In this paper, we determine the cases of thermal conductivity and heat transfer
coefficient terms for which extra symmetries are admitted. We then select the realistic cases
and analyze the problem. In Section 2, we provide the mathematical formulation of the
problem. Symmetry analysis is performed in Section 3. We determine the principal Lie
algebra, equivalence transformations, and list the cases for which the principal Lie algebra is
extended. In Section 4, we employ symmetry techniques to determine wherever possible, the
invariant solutions.

2. Mathematical Models

Consider longitudinal rectangular one-dimensional finwith a cross-sectional areaAc = δ ×W
as shown in Figure 1. The perimeter and length are given by P and L, respectively. The fin is
attached to a fixed base surface of temperature Tb and extends into a fluid of temperature Ta.
The fin is insulated at the tip. The steady energy balance equation is given by [4]

Ac
d

dX

(
K(T)

dT

dX

)
= PH(T)(T − Ta), 0 ≤ X ≤ L, (2.1)

where K and H are temperature-dependent thermal conductivity and heat transfer coeffi-
cient, respectively (see, e.g., [2, 3]). The spatial variable is X.

The relevant boundary conditions are given by

T(L) = Tb,
dT

dX

∣∣∣∣
X=0

= 0. (2.2)

Introducing the dimensionless variables

x =
X

L
, θ =

T − Ta
Tb − Ta , h(θ) =

H(T)
hb

, k(θ) =
K(T)
ka

, M2 =
PhbL

2

kaAc
(2.3)

reduces (2.1) to the relevant dimensionless energy equation

d

dx

[
k(θ)

dθ

dx

]
−M2h(θ)θ = 0, 0 ≤ x ≤ 1, (2.4)

and the boundary conditions become

θ(1) = 1, θ′(0) = 0. (2.5)

Setting P/Ac = 1/δ leads to the equivalent definition of thermogeometric fin parame-
terM = (Bi)1/2E, where Bi = δhb/ka is the Biot number, and E = L/δ is the extension factor
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Figure 1: Schematic representation of a one-dimensional fin.

with δ being the fin thickness. Since h(θ) is an arbitrary function of temperature, we equate
the product h(θ)θ to G(θ). Note that the thermogeometric fin parameterM is specified. The
parameters hb and ka are the heat transfer coefficient at the fin base and the fluid thermal
conductivity. The analysis of (2.4)was conducted in [5], wherein the heat transfer coefficient
was assumed to be given by the power law function of temperature. In this paper, we
allow both the heat transfer coefficient and thermal conductivity to be arbitrary functions of
temperature and employ preliminary group classification techniques to determine the forms
which lead to exact solutions. We consider the governing equation

d

dx

[
k(θ)

dθ

dx

]
−M2G(θ) = 0, 0 ≤ x ≤ 1. (2.6)

We note that (2.6) is linearizable provided thatG is a differential consequence of k. The
proof of this statement follows from chain rule [11]. This implies that (2.6)may be linearizable
for any k such that its derivative is G. Also, the linearization of (2.6) was performed in [12]
wherein approximate techniqueswere employed to solve the problem. In this paper, we apply
Lie point symmetry techniques to analyze the problem.

3. Symmetry Analysis

The theory and applications of symmetry analysis may be found in excellent text such as
those of [13–18]. In the next subsections, we construct the equivalence algebra and hence
equivalence group of transformations admitted by (2.6). Furthermore we determine the Lie
point symmetries admitted by (2.6) with arbitrary functions k and G; that is, we seek the
principal Lie algebra. Symmetry technique are algorithmic and tedious. Here we utilize the
interactive computer software algebra REDUCE [19] to facilitate the calculations.
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3.1. Equivalence Transformations

In brief, an equivalence transformation of a differential equation is an invertible transforma-
tion of dependent and independent variables which leave the form of the equation in question
unchanged [20]. However the form of the arbitrary functions appearing in the transformed
equation may be distinct from those of the original equation. To determine the equivalence
transformation, one may seek the equivalence algebra generated by the vector field

X̃ = ξ(x, θ)∂x + η(x, θ)∂θ + μ1(x, θ, k,G)∂k + μ2(x, θ, k,G)∂G. (3.1)

The second prolongation is given by

X̃[2] = X̃ + ζx∂θ′ + ζxx∂θ′′ +ω1
x∂kx +ω

1
θ∂k′ +ω

2
x∂Gx , (3.2)

where

ζx = Dx

(
η
) − θ′Dx(ξ),

ζxx = Dx(ζx) − θ′′Dx(ξ),

ω1
x = D̃x

(
μ1
)
− kxD̃x(ξ) − k′D̃x

(
η
)
,

ω2
x = D̃x

(
μ2
)
−GxD̃x(ξ) −G′D̃x

(
η
)
,

ω1
θ = D̃θ

(
μ1
)
− kxD̃θ(ξ) − k′D̃θ

(
η
)
,

(3.3)

with Dx and D̃x being the total derivative operator defined by

Dx = ∂x + θ′∂θ + θ′′∂θ′ + · · · ,
D̃x = ∂x + kx∂k +Gx∂G + kxx∂kx + · · · = ∂x,

D̃θ = ∂θ + k′∂k + · · · ,
(3.4)

respectively. The prime implies differentiation with respect to θ. The invariance surface
condition is given by

X̃[2](2.6)| (2.6) = 0, X̃[2](kx = 0)|kx=0 = 0, X̃[2](Gx = 0)|Gx=0 = 0. (3.5)

This system of equations yields the infinite dimensional equivalence algebra spanned by the
base vectors

X̃1 = ∂x, X̃2 = x∂x − 2G∂G, X̃3 = u(θ)∂θ − u′(θ)k∂k, X̃4 = v(G)(k∂k +G∂G), (3.6)

admitted by (2.6). Here u and v are arbitrary functions of θ and G, respectively.
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3.2. Principal Lie Algebra

In this subsection, we seek classical Lie point symmetries generated by the vector field

X = ξ(x, θ)
∂

∂x
+ η(x, θ)

∂

∂θ
(3.7)

admitted by the governing equation for any arbitrary functions k and G. We seek invariance
in the form

X[2](2.6)|(2.6) = 0. (3.8)

Here X[2] is the second prolongation defined by

X[2] = X + ζx
∂

∂θ′
+ ζxx

∂

∂θ′′
, (3.9)

where the prolongation formulae are given above. The principal Lie algebra is one dimen-
sional and spanned by space translation. For nontrivial function k and G, we obtain the
determining equations

(1) k′ξθ − kξθθ = 0,

(2) k2ηθθ + kk
′ηθ + kk

′′η − (k′)2η − 2k2ξxθ = 0,

(3) 2kηxθ + 2k′ηx − kξxx − 3M2Gξθ = 0,

(4) k2ηxx +M2kGηθ −M2kG′η +M2Gk′η − 2M2kGξx = 0.

The determining equation (2.1) implies that ξ = φ(θ) + ψ(x) and k = φ′(θ), where φ
and ψ are arbitrary functions of θ and x, respectively. The determining equations (2.2), (2.3),
and (2.4) become

(2∗) ηθθφ′2 + φ′′φ′ηθ + (φ′′′φ′ − φ′′2)η = 0,

(3∗) 2ηxθφ′ + 2ηxφ′′ + φ′ψ ′′ − 3M2φ′G = 0,

(4∗) ηxxφ′2 +M2ηθφ
′G −M2G′φ′η +M2φ′′ηG − 2M2φ′ψ ′G = 0.

It appears that full group classification of (2.6) may be difficult to achieve. Hence, we
resort to the preliminary group classification techniques.

3.3. Preliminary Group Classification

We follow the sketch of the preliminary group classification technique as outlined in [20].
We note that the (2.6) admits an infinite equivalence algebra as given in Section 3.1. So
we are free to take any finite dimensional subalgebra as large as we desire and use it for
preliminary group classification. We choose a five-dimensional equivalence algebra spanned
by the vectors

X̃1 = ∂x, X̃2 = x∂x − 2G∂G, X̃3 = ∂θ, X̃4 = θ∂θ − k∂k, X̃5 = k∂k +G∂G. (3.10)
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Recall that k and G are θ dependent. Thus, we consider the projections of (3.10) on the space
of (θ, k,G). The nonzero projections of operators (3.10) are

v1 = pr
(
X̃2

)
= −2G∂G, v2 = pr

(
X̃3

)
= ∂θ, v3 = pr

(
X̃4

)
= θ∂θ − k∂k,

v4 = pr
(
X̃5

)
= k∂k +G∂G.

(3.11)

Proposition 3.1 (see, e.g., [20]). Let Lr be an r-dimensional subalgebra of the algebra L4. Denote
byZi, i = 1, . . . , r a basis ofLr and byWi the elements of the algebraL5 such thatZi is the projections
ofWi on (θ, k,G). If equations

k = ω(θ), G = ϕ(θ) (3.12)

are invariant with respect to the algebra Lr then the equation

d

dx

(
ω(θ)

dθ

dx

)
−M2ϕ(θ) = 0 (3.13)

admits the operator

Zi = projection of Wi on (x, θ). (3.14)

Proposition 3.2 (see, e.g., [20]). Let (3.13) and equation

d

dx

(
ω(θ)

dθ

dx

)
−M2ϕ(θ) = 0 (3.15)

be constructed according to Proposition 3.1 via subalgebras Lr and Lr , respectively. If Lr and Lr , are
similar subalgebras in L5 then (3.13) and (3.15) are equivalent with respect to the equivalence group
G5 generated by Lr . These propositions imply that the problem of preliminary group classification
of (2.6) is reduced to the algebraic problem of constructing nonsimilar subalgebras of L4 or optimal
system of subalgebras [20]. We explore methods in [13] to construct the one-dimensional optimal
systems. The set of nonsimilar one-dimensional subalgebras is

{
v1 + αv3 + βv4,v3 ± v2 + αv4,v3 + αv4,v4 + αv2,v2

}
. (3.16)

Here α and β are arbitrary constants.

As an example, we apply 1 to one of the element of the optimal system. Since this
involves routine calculations of invariants, we list the rest of cases in Table 1, wherein λ, p,
and q are arbitrary constants. Note that the power law k was obtained in [5], therefore we
omit this case in this manuscript.

Consider the subalgebra

v2 + v4 = k∂k +G∂G + ∂θ, (3.17)
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Table 1: Extensions of the principal Lie algebra.

Forms Symmetries

k G X1 = ∂x.

epθ eqθ X2 = x∂x +
2

p − q∂θ, p /= q.

p eqθ X2 = x∂x − 2
q
θ∂θ .

(1 + λθ) (1 + λθ)p
X2 = x∂x +

2(1 + λθ)
λ(p − 2)

∂θ, p /= − 6

X2 = 2λx2∂x + x(1 + λθ)∂θ ,

X3 = 2λx∂x + (1 + λθ)∂θ, p = −6

where, without loss of generality, we have assumed α to be unity. A basis of invariants is
obtained from the equation

dk

k
=
dG

G
=
dθ

1
, (3.18)

and the forms of k and G are

k = eθ, G = eθ. (3.19)

For simplicity, we have allowed both integration constants to vanish. Further cases are listed
in Table 1. By applying Proposition 3.1, we obtain the symmetry generator X2 = ∂θ. We shall
show in Section 4.2 that, for these forms of k and G, one may obtain seven more Lie point
symmetry generators.

4. Symmetry Reductions and Invariant Solutions

The main use of symmetries is to reduce the number of independent variables of the given
equation by one. If a partial differential equation (PDE) is reduced to an ordinary differential
equation (ODE), one may or may not solve the resulting ODE exactly. If a second-order ODE
admits a two-dimensional Lie algebra, then one can use Lie’s method of canonical coordinates
to completely integrate the equation (see, e.g., [21]).

4.1. Example 1

As an illustrative example, we consider the case k = epθ and h = θ−1eqθ, where p /= q. In this
case (2.4) admits a non-Abelian two-dimensional Lie algebra spanned by the base vectors
listed in Table 1. This noncommuting pair of symmetries leads to the canonical variables

t = e((p−q)/2)θ, u = c1e((p−q)/2)θ + x, (4.1)
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where c1 is an arbitrary constant. We have two cases, the “particular” canonical variables
when c1 = 0 and the “general” canonical variables given a nonzero c1, say c1 = 1.

4.1.1. Particular Canonical Form

The corresponding canonical forms of X1 and X2 are

Γ1 = ∂u, Γ2 = t∂t + u∂u. (4.2)

Writing u = u(t) transforms (2.6) to

u′′ =
u′

t

[(
2p
p − q − 1

)
−
(
p − q
2

)
M2u

′2
]
, p /= q. (4.3)

Here prime is the total derivative with respect to t. Three cases arise.

Case 1. For u′ = 0, we obtain the constant solutionwhich is not related to the original problem.
Thus, we ignore it.

Case 2. If the term in the square bracket vanishes, thenwe obtain in terms of original variables
the exact “particular” solution

θ =
(

2
p − q

)
ln

⎡
⎢⎣

(
p − q)M

±
√
2
(
p + q

)
⎛
⎜⎝x − 1 ±

√
2
(
p + q

)
(
p − q)M e(p−q)/2

⎞
⎟⎠
⎤
⎥⎦. (4.4)

Note that this exact solution satisfies the boundary only at one end. TheNeumann’s boundary
condition leads to a contradiction since the thermogeometric fin parameter is a nonzero
constant.

Case 3. Solving the entire equation (4.3) we, obtain the solution in complicated quadratures,
and therefore we omit it.

4.1.2. General Canonical Form

In this case, the transformed equations are given by

u′′ =
(u′ − 1)

t

[(
2p
p − q − 1

)
−
(
p − q
2

)
M2(u′ − 1

)2]
, p /= q. (4.5)

Clearly u′ − 1 → y′ reduces (4.5) to (4.3). We herein omit further analysis.

4.2. Example 2

We consider as an example (2.6) with thermal conductivity given as exponential function of
temperature; that is, k = epθ and heat transfer coefficient is given as the quotient θ−1eqθ. Given
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p = q, then (2.6) admits a maximal eight-dimensional symmetry algebra spanned by the base
vectors

X1 = e
√
pMx+nθ

{
∂x +

M√
p
∂θ

}
,

X2 = e−
√
pMx+pθ

{
∂x − M√

p
∂θ

}
,

X3 = e
√
pMx−pθ∂θ, X4 =

√
pe2

√
pMx

M
∂θ,

X5 = ∂x, X6 = e−
√
pMx−pθ{∂x + ∂θ},

X7 = e−2
√
pMx

{
−
√
p

M
∂x + ∂θ

}
, X8 = ∂θ.

(4.6)

Equation (2.6) is linearizable or equivalent to y′′ = 0 (see, e.g., [21]). In fact, we note
that the point transformation ω = epθ, p ∈ R linearizes (2.6) given p = q. Following a
simple manipulation, we obtain the invariant solutions satisfying the prescribed boundary
conditions, namely,

θ = ln

[
ep cosh

(
M

√
px
)

cosh
(
M

√
p
)

]1/p

, p > 0. (4.7)

Solution (4.7) is depicted in Figures 2 and 3. Note that, for p = 0 and p < 0, we obtain solutions
which have no physical significance for heat transfer in fins. Therefore, we herein omit such
solutions.

The fin efficiency is defined as the ratio of actual heat transfer from the fin surface to
the surrounding fluid while the whole fin surface is kept at the same temperature (see, e.g.,
[1]). Given (4.7) fin efficiency (η) is given by

η =
∫1

0
ln

[
ep cosh

(
M

√
px
)

cosh
(
M

√
p
)

]1/p
dx. (4.8)

We use MAPLE package to evaluate this integral. The plot is depicted in Figure 4.

5. Some Discussions and Concluding Remarks

We considered a one-dimensional fin model describing steady-state heat transfer in lon-
gitudinal rectangular fins. Here, the thermal conductivity and heat transfer coefficient are
temperature dependent. As such the considered problem is highly nonlinear. This is a
significant improvement to the results presented in the literature (see, e.g., [2, 3]). Preliminary
group classification led to a number of cases of thermal conductivity and heat transfer
coefficient for which extra symmetries are obtained. Exact solutions are constructed when
thermal conductivity and heat transfer coefficient increase exponential with temperature.
We observed, in Figure 2, that temperature inversely proportional to the values of the
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Figure 2: Temperature profile in a fin with varying values of the thermogeometric fin parameter. Here, p is
fixed at unity.
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Figure 3: Temperature profile in a finwith varying values of the p. Here the thermogeometric fin parameter
is fixed at 1.85.
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Figure 5: Temperature profile in a fin of varying values of the thermogeometric fin parameter. Here p is
fixed at unity.
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thermogeometric fin parameter. Furthermore, we observe that for certain values of M, the
solution is not physically sound (see also, [22]). One may recall that the thermogeometric
fin parameter depends also on heat transfer coefficient at the base of the fin. We notice
that the exponential temperature-dependent heat transfer coefficient in this paper leads to
lower values of M for which the solutions are realistic. That is, the maximum values of
M, say Mmax for which the solutions are physically sound, is around 2. We observe, in
Figure 5, that as values of M increase beyond 2, the temperature profile becomes negative.
This contradicts the rescaling of temperature (the dimensionless temperature). Unlike [5, 23]
whereby heat transfer is given by a power law, this value is much higher. The reasons behind
this observation is studied elsewhere. In Figure 3, temperature increases with increased
values of the exponent p. Furthermore, fin efficiency decreases with increased values of the
thermogeometric fin parameter. We observed, in Figure 4, that the maximum value of the
thermogeometric fin parameter for which the fin efficiency is realistic is again around 2.
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