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Hidden symmetries entered the literature in the late Eighties when it was observed that there
could be gain of Lie point symmetry in the reduction of order of an ordinary differential equation.
Subsequently the reverse process was also observed. Such symmetries were termed “hidden”. In
each case the source of the “new” symmetry was a contact symmetry or a nonlocal symmetry,
that is, a symmetry with one or more of the coefficient functions containing an integral. Recent
work by Abraham-Shrauner and Govinder (2006) on the reduction of partial differential equations
demonstrates that it is possible for these “hidden” symmetries to have a point origin. In this paper
we show that the same phenomenon can be observed in the reduction of ordinary differential
equations and in a sense loosen the interpretation of hidden symmetries.

1. Introduction

The concept of hidden symmetries (According to Abraham-Shrauner the original observation
was due to Peter Olver (private communication).) was largely developed by Barbara
Abraham-Shrauner, partially in association with her student, Ann Guo, in the early Nineties.
There was a number of papers [1–6] chronicling their occurrence and characteristics. Further
papers [7–11], to list a few, devoted to the subject have appeared over the years. A hidden
symmetry is a Lie point symmetry which appears in the target differential equation after a
change of order using a nonlocal transformation andwhich does not have a point counterpart
in the source equation. If the symmetry appears on an increase of order, it is termed a Type
I hidden symmetry and, if the symmetry appears on a decrease of order, it is termed a Type
II hidden symmetry. The potential for the origin of a hidden symmetry is simply explained.
Suppose that a differential equation has two Lie point symmetries, Γ1 and Γ2, with the Lie
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Bracket [Γ1,Γ2]LB = λΓ2, where λ may be zero. Then reduction of order using Γ1, the so-
called nonnormal subgroup, results in Γ2 becoming a nonlocal symmetry (In the case of an
equation having more than two Lie point symmetries the situation is the same if the Lie
Bracket gives a third symmetry. The point-like nature of a symmetry is preserved only if
reduction is performed using the normal subgroup. See also [12].) of the reduced equation.
Reduction of order is a nonlocal transformation, and the variables of the reduced equation
are expressed in terms of the two invariants of the once-extended symmetry. If one increases
the order of an equation by means of a nonlocal transformation, this transformation is due to
the presence of a symmetry in the higher-order equation. If it happens that the higher-order
equation has a symmetry with the “wrong” Lie Bracket with this symmetry, then it becomes a
nonlocal symmetry of the equation of lower order. Consequently in the process of the increase
of order this symmetry is not a consequence of the existence of a Lie point symmetry of the
lower-order equation. The symmetry appears, as it were, from nowhere which one can easily
accept as a sufficient reason to term it a “hidden symmetry,” and is classified as a Type I
hidden symmetry. In the reverse process, that is, in the reduction of order, the presence of
an unexpected Lie point symmetry in the reduced equation gives rise to a Type II hidden
symmetry.

Abraham-Shrauner and Govinder [13] have recently shown a new potential source
of hidden symmetries for partial differential equations. The symmetries do not come from
nonlocal symmetries but are a result of the possibility that several partial differential
equations could lead to the same partial differential equation on reduction using one of
the Lie point symmetries of the original equation. (Subsequently, other sources of hidden
symmetries for partial differential equations have been indicated in the literature [14, 15].)

An immediate question which comes to mind is whether a similar result holds for
reduction of order of different ordinary differential equations to the same equation. Equally
one can think of increase of order from a variety of lower-order equations to the same higher-
order equation. However, the latter is a somewhat more trivial matter [16].

The purpose of this paper is to show how different equations which can be reduced to
the same equation provide point sources for each of the Lie point symmetries of the reduced
equation even though any particular of the higher-order equations may not provide the full
complement of Lie point symmetries. Thus we see that the set of Lie point symmetries of the
reduced equation can be viewed as having two sources. Firstly the Lie point symmetries of
the reduced equation can be obtained from a combination of point and nonlocal symmetries
of a given higher-order equation. Secondly the same set of Lie point symmetries are obtained
from the point symmetries of a variety of higher-order equations. In so doing we do not
wish to detract from the originality of the work of Abraham-Shrauner and Govinder [13].
Rather we wish to demonstrate that the same effect can be found in the consideration
of ordinary differential equations. It often happens that new ideas, concepts, and objects
originate in esoteric contexts, perhaps byway of example arising accidentally, as it were, in an
investigation requiring deep thought. The commonplace does not invite deep thinking since
the solution of problems there proceeds viamethods uponwhich the experienced practitioner
need not dwell for their execution. This does not mean that new ideas, concepts, and objects
cannot be found in the commonplace. One is sometimes pushed to think uncommonly in the
context of the commonplace to see that the new has been under our noses since the beginnings
of time, if not earlier. In a pedagogical context the elimination of the esoteric origin is essential
to lead the neophyte to understanding. So it is with hidden symmetries. Indeed we wish to
stress the fact that a point symmetry can be both hidden and not hidden depending upon
one’s approach to its determination through reduction of order.
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2. The Case for a Partial Differential Equation

We illustrate the method with a simple example [13, equation (2.1)],

uxxx + u(ut + cux) = 0, (2.1)

which possesses the Lie point symmetries

Γ1 = ∂t,
Γ2 = ∂x,
Γ3 = 3t∂t + (x + 2ct)∂x,
Γ4 = t∂t + ct∂x + u∂u.

(2.2)

We reduce (2.1) to an ordinary differential equation using the symmetry cΓ2 + Γ1 for
which the invariants arew = u and y = x−ct; that is, we seek a travelling-wave solution. Note
that this is not an invertible point transformation, and so preservation of point symmetries is
not guaranteed. The reduced equation is simply the ordinary differential equation

wyyy = 0, (2.3)

which has the seven Lie point symmetries

Υ1 = ∂y, Υ5 = y∂w,
Υ2 = ∂w, Υ6 = w∂w,

Υ3 = y2∂w, Υ7 =
1
2
y2∂y + yw∂w,

Υ4 = y∂y.

(2.4)

Equation (2.1) is not the only source of (2.3) under reduction. Equally it can be
obtained from

uxxx = 0, uttt = 0, uxxt = 0, uxtt = 0, (2.5)

where u is still a function of t and x, by means of the same invariants. For example, the first
of (2.5) has an eightfold infinity of Lie point symmetries. They are

Δ1 = F1(t)∂x, Δ5 = F5(t)x∂x,
Δ2 = F2(t)∂u, Δ6 = F1(t)x∂u,
Δ3 = F3(t)∂t, Δ7 = F7(t)u∂u,

Δ4 = F4(t)x2∂u, Δ8 = F8(t)
(
1
2
x2∂x + xu∂u

)
,

(2.6)
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where the Fi(t), i = 1, 8, are arbitrary functions. A subset of these symmetries is obtained by
making specific choices for the arbitrary functions, and in suitable combinations we have

Σ1 = ∂x, Σ5 = (x − ct)∂x,
Σ2 = ∂u, Σ6 = (x − ct)∂u,
Σ3 = ∂t, Σ7 = u∂u,

Σ4 = (x − ct)2∂u, Σ8 =
1
2
(x − ct)2∂x + (x − ct)u∂u,

(2.7)

which reduce to the seven Lie point symmetries of (2.3). Thus, the hidden symmetries of (2.3)
could have arisen from point symmetries of

uxxx = 0. (2.8)

In this example the invariants used for the reduction of order were the same. There is
no requirement for this to be the case, and Abraham-Shrauner and Govinder [13] discuss the
procedure for this more general case and show that the same type of result is found.

3. The Case for an Ordinary Differential Equation

We firstly show that the principle of the idea of Abraham-Shrauner and Govinder [13]
applied to ordinary differential equations is commonplace [16]—it is a simple matter to find
reductions of different nth-order ordinary differential equations to the same (n − 1)th-order
ordinary differential equation.

The two third-order equations

y′′′ = 0, (3.1)

2y′y′′′ − 3y′′2 = 0, (3.2)

can be reduced to the same second-order equation

Y ′′ = 0, (3.3)

(now the prime denotes differentiation with respect to the transformed independent variable,
X, which, in this case, happens to be the same as the original independent variable) by means
of the transformations

X = x, Y = y′, (3.4)

X = x, Y = y′−1/2, (3.5)

respectively.
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For (3.1) the symmetry generating the transformation (3.4) is Γ1 = ∂y. The remaining
six Lie point symmetries are transformed as

Γ2 = x∂y, Λ2 = ∂Y ,

Γ3 =
1
2
x2∂y, Λ3 = X∂Y ,

Γ4 = y∂y, Λ4 = Y∂Y ,
Γ5 = ∂x, Λ5 = ∂X,
Γ6 = x∂x + y∂y, Λ6 = ∂X,

Γ7 = x2∂x + 2xy∂y, Λ7 = X2∂X +
(
2
∫
YdX

)
∂Y ,

(3.6)

from which it is evident that we are missing three of the Lie point symmetries of (3.3). The
missing three are

Σ1 = X2∂X +XY∂Y ,

Σ2 = Y∂X,

Σ3 = XY∂X + Y 2∂Y ,

(3.7)

and it is a simple calculation to show that they have their origins from the symmetries

Δ1 = x2∂x + 3
[
1
2
x2y′ − 1

6
x3y′′

]
∂y,

Δ2 = y′∂x +
1
2
y′2∂y,

Δ3 = xy′∂x +
[
2xy′2 − 3

2
x2y′y′′ +

1
2
x3y′′2

]
∂y

(3.8)

of (3.1). The symmetry Δ2 is one of the contact symmetries of (3.1). The other two are
generalised symmetries and have been written as such instead of the nonlocal version since
the integration of (3.1) is trivial.

In the case of (3.2) and the reduction (3.5) the Lie point symmetries of the former and
their expression as symmetries of (3.3) are

Γ1 = ∂x, Λ1 = ∂X,

Γ2 = x∂x, Λ2 = X∂X +
1
2
Y∂Y ,

Γ3 = x2∂x, Λ3 = X2∂X +XY∂Y ,
Γ5 = y∂y, Λ5 = Y∂Y ,

Γ6 = y2∂y, Λ6 = Y

∫
Y 2 dX∂Y .

(3.9)

The symmetry Γ4 = ∂y is the symmetry used for the transformation (3.5).
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The missing Lie point symmetries are

Σ1 = ∂Y ,

Σ2 = X∂Y ,

Σ3 = Y∂X,

Σ4 = XY∂X + Y 2∂Y .

(3.10)

Wenote that in both cases the noncartan symmetries of (3.3) are absent in the reduction
of the point symmetries of the third-order equations.

What we do wish to emphasise is that the two reductions gave us a different selection
of the Lie point symmetries of (3.3) which is precisely the same effect reported by Abraham-
Shrauner and Govinder [13] for partial differential equations. The main difference is that
their effect was as result of a point transformation of the original variables. Here we have a
nonlocal transformation of the original variables.

4. An Equation Arising in Cosmology

The equation

yy′′′′ +
5
2
y′y′′′ = y−3, (4.1)

arises in the analysis of shear-free spherically symmetric spacetimes [17]. It has the two Lie
point symmetries

Γ1 = ∂x, Γ2 = x∂x +
4
5
y∂y with [Γ1,Γ2] = Γ1. (4.2)

One reduces (4.1) by Γ1 (with characteristics u = y, v = y′) to obtain the third-order ordinary
differential equation

u
(
v3v′′′ + 4v2v′v′′ + vv′3

)
+
5
2
v
(
v2v′′ + vv′2

)
= u−3 (4.3)

with

Δ2 =
4
5
u∂u − 1

5
v∂v (inherited),

Δ3 = 2u2∂u + uv∂v,
(4.4)

whichwe now interpret as coming from a point symmetry of a different fourth-order ordinary
differential equation.

We note that

[Δ2,Δ3] =
4
5
Δ3 (4.5)
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and look for a fourth-order ordinary differential equation with Σ1,Σ2 and Σ3 such that
reduction using Σ1 leads to a Σ2 and Σ3 with a property as in (4.5), that is, the Lie algebra
A2. There are two realisations ofA2, but it is clear that we should use the realisation in which
the symmetries are unconnected. (If the two symmetries of the higher-order equation are
connected, the two symmetries of the lower-order equation are connected. This is not the
case for the reduced third-order equation (4.3), and so we use the unconnected realisation
of A2.) In addition, we realise that the most direct route to the Lie algebra A2 is if we start
with three point symmetries that form the Lie algebraA1⊕A2. Reduction using the symmetry
representing A1 results in the remaining symmetries as symmetries of the reduced equation
with the Lie algebra A2.

Putting all of this together results in the following realisation of A1 ⊕A2:

Σ1 = t∂q, Σ2 = −t∂t − q∂q, Σ3 = ∂q (4.6)

with

[Σ1,Σ2] = 0, [Σ1,Σ3] = 0, [Σ2,Σ3] = Σ3. (4.7)

A general fourth-order ordinary differential equation is

....
q = f

(
t, q, q̇, q̈,

...
q
)
. (4.8)

Invariance under Σ3 gives

....
q = f

(
t, q̇, q̈,

...
q
)
, (4.9)

under Σ1 gives

....
q = f

(
t, q̈,

...
q
)
, (4.10)

and under Σ2 one has the form

....
q = t−3f

(
tq̈, t2

...
q
)
. (4.11)

The associated Lagrange’s system for reduction by Σ1 is

dt
0

=
dq
t

=
dq̇
1
, (4.12)
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for which x = t and y = tq̇ − q. The differential consequences are

dy
dx

= tq̈,

d2y

dx2
= t

...
q + q̈,

d3y

dx3
= t

....
q + 2

...
q,

(4.13)

so that the structure of the third-order differential equation is

x2y′′′ − 2xy′′ + 2y′ = f
(
y′, xy′′ − y′). (4.14)

The remaining symmetries are

Σ2 = −t∂t − q∂q + 0∂q̇ = −x∂x − tq̇∂y + q∂y = −x∂x − y∂y,

Σ3 = ∂q = −∂y.
(4.15)

We see that [Σ2,Σ3] = Σ3.
To maintain this structure one writes the given symmetries as

Δ2 = u∂u − 1
4
v∂v, Δ3 = 2u2∂u + uv∂v, (4.16)

so that we also have [Δ2,Δ3] = Δ3.
We need the transformation between

Σ2 = −x∂x − y∂y, Δ2 = u∂u − 1
4
v∂v,

Σ3 = −∂y, Δ3 = 2u2∂u + uv∂v.
(4.17)

Let

x = F(u, v), y = G(u, v). (4.18)

Then

u
∂F

∂u
− 1
4
v
∂F

∂v
= −F, u

∂G

∂u
− 1
4
v
∂G

∂v
= −G,

2u2 ∂F

∂u
+ uv

∂F

∂v
= 0, 2u2 ∂G

∂u
+ uv

∂G

∂v
= −1,

(4.19)
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from which it is easily seen that one has

x = v4/3u−2/3, y =
1
2u

. (4.20)

If we compare (4.3) and (4.14) it is evident that f in (4.14) must take the form

f
(
y′, xy′′ − y′) = f

(
α, β

)
=

32α4

3
+
3β2

α
+
7α
8

+
7β
4
. (4.21)

5. Summary

We can now summarise our result as follows. In the reduction of the fourth-order equation

yy′′′′ +
5
2
y′y′′′ = y−3 (5.1)

(which admits the symmetries Γ1 and Γ2) via u = y, v = y′ we obtain the third-order equation

u
(
v3v′′′ + 4v2v′v′′ + vv′3

)
+
5
2
v
(
v2v′′ + vv′2

)
= u−3 (5.2)

which admits

Γ3 = 2u2∂u + uv∂v (5.3)

as a hidden symmetry. In the past [4, 5] Γ3 was only interpreted as arising from a nonlocal
symmetry of (5.1). However, we now have the result that the fourth-order equation

t2
....
q =

7
4
t
...
q +

3t2

q̈

...
q
2
+
7
8
q̈ +

32
3
t3q̈4 (5.4)

(which admits the symmetries Σ1, Σ2 and Σ3) can be reduced to (5.2) via the reduction

u =
1

2
(
tq̇ − q

) , v =
t3/4√
2

(
tq̇ − q

)−1/2
. (5.5)

As a result a new interpretation of Γ3 is that it arises from the point symmetry Σ3 of (5.4).
We observe that this result relates (5.1) and (5.4) via the nonlocal transformation

y =
1

2
(
tq̇ − q

) , y′ =
t3/4√
2

(
tq̇ − q

)−1/2
. (5.6)

It is obvious that (5.1) and (5.4) are not related via a point transformation. It is suspected that
many equations are related via nonlocal transformations. However, no method is available
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to find these transformations in general. By investigating the point origins of Type II hidden
symmetries we have been able to provide a method to determine these nonlocal relations
between equations not previously thought to be related.

We have thus been able to show that hidden symmetries of ordinary differential
equations can also have a point origin—they are no longer confined to arise only as contact
or nonlocal symmetries of the original equation, but can arise as a point symmetry of another
equation of the same order as the original equation. In a sense, if one could prove the rather
strong result that there always exists a point origin for any so-thought hidden symmetry
(except for second-order equations), then the need for nonlocal symmetries for ordinary
differential equations falls away. The exception for second-order equations is due to the fact
that the maximal number of Lie point symmetries is eight while the maximal number for
third-order equations is only seven. It is not possible to relate every hidden symmetry of
second-order equations to point symmetries of third-order equations.
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