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The fact that most of the physical phenomena are modelled by nonlinear differential equations
underlines the importance of having reliable methods for solving them. This work presents the
rational biparameter homotopy perturbation method (RBHPM) as a novel tool with the potential
to find approximate solutions for nonlinear differential equations. The method generates the
solutions in the form of a quotient of two power series of different homotopy parameters. Besides,
in order to improve accuracy, we propose the Laplace-Padé rational biparameter homotopy
perturbationmethod (LPRBHPM), when the solution is expressed as the quotient of two truncated
power series. The usage of the method is illustrated with two case studies. On one side, a
Ricatti nonlinear differential equation is solved and a comparison with the homotopy perturbation
method (HPM) is presented. On the other side, a nonforced Van der Pol Oscillator is analysed and
we compare results obtained with RBHPM, LPRBHPM, and HPM in order to conclude that the
LPRBHPM and RBHPMmethods generate the most accurate approximated solutions.

1. Introduction

Solving nonlinear differential equations is an important issue in sciences because many
physical phenomena are modelled using such classes of equations. One of the most
powerful methods to approximately solve nonlinear differential equations is the homotopy
perturbation method (HPM) [1–45]. The HPM method is based on the use of a power series,
which transforms the original nonlinear differential equation into a series of linear differential
equations. In this work, we propose a generalization of the aforementioned concept by using
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a quotient of two power series of different homotopy parameters, which will be denominated
as the rational biparameter homotopy perturbation method (RBHPM). In the same fashion,
like HPM, the use of this quotient transforms the nonlinear differential equation into a series
of linear differential equations. The generated solutions are expressed as the quotient of two
truncated power series and they constitute the approximate solutions. Besides, we propose
an after-treatment to the approximate solutions with the Laplace-Padé (LP) transform [46]
in order to improve the accuracy of the solutions. This coupled method will be denominated
as the LPRBHPM. In addition, the method is applied to two case studies, a Ricatti nonlinear
differential equation [47] and a Van der Pol Oscillator [8, 48], without external forcing.

This paper is organized as follows. In Section 2, the basic idea of the RBHPM method
is given. Section 3 presents a convergence analysis for the proposed method. In Section 4,
the basic concept of Padé approximants is explained. In Section 5, the coupling of the
RBHPMmethod with the Laplace-Padé transform is recast. In Section 6, the first case study, a
Riccati nonlinear differential equation, is solved by using the proposed method and HPM. In
Section 7, the second case study, a nonlinear oscillator problem, is treated. Section 8 is devoted
to discuss the resulting solutions and some numeric analysis issues. Finally, a brief conclusion
is given in Section 9.

2. Basic Concept of RBHPM

The RBHPM and HPM methods share common foundations. For both methods, it can be
considered that a nonlinear differential equation can be expressed as

A(u) − f(r) = 0, where r ∈ Ω (2.1)

with the boundary condition given by

B

(
u,

∂u

∂η

)
= 0, where r ∈ Γ, (2.2)

where A is a general differential operator, f(r) is a known analytic function, B is a boundary
operator, Γ is the boundary of the domain Ω, and ∂u/∂η denotes differentiation along
the normal drawn outwards from Ω [49]. In most cases, the A operator can be split into
two operators, namely L and N, which represent the linear and the nonlinear operators,
respectively. Hence, (2.1) can be rewritten as

L(u) +N(u) − f(r) = 0. (2.3)

Now, a homotopy formulation can be given as

H
(
v, p
)
=
(
1 − p

)
[L(v) − L(u0)] + p

(
L(v) +N(v) − f(r)

)
= 0, p ∈ [0, 1], (2.4)

where u0 is the trial function (initial approximation) for (2.3) that satisfies the boundary
conditions, and p is known as the perturbation homotopy parameter.
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The equation above exhibits specific behaviors at the limit values p = 0 and p = 1, as
given in

H(v, 0) = L(v) − L(u0) = 0,

H(v, 1) = L(v) +N(v) − f(r) = 0.
(2.5)

For the HPM method [11–14], we assume, without loss of generality, that the solution
for (2.4) can be expressed as a power series of p

v = p0v0 + p1v1 + p2v2 + · · ·. (2.6)

In the limit, when p → 1, the approximate solution for (2.1) is give as

u = lim
p→ 1

v = v0 + v1 + v2 + · · ·, (2.7)

where v0, v1, v2, . . . are unknown functions to be determined by the HPM method. The series
in (2.7) is convergent in most cases [1, 2, 11, 14, 36].

For the RBHPM method, the homotopy in (2.4) can be rewritten as

H
(
v, p
)
= (1 −Q)[L(v) − L(u0)] +Q

(
L(v) +N(v) − f(r)

)
= 0, p ∈ [0, 1], q ∈ [0, 1],

(2.8)

Q = ap + (1 − a)q, 0 < a < 1, (2.9)

where p and q are the homotopy parameters, and a is a weight factor that affects them in
complementary proportions.

Now, we assume that the solution for (2.8) can be written as the quotient of the power
series of both homotopy parameters:

v =
p0v0 + p1v1 + p2v2 + · · ·
q0w0 + q1w1 + q2w2 + · · · , (2.10)

where v0, v1, v2, . . . and w1, w2, . . . are unknown functions to be determined by the RBHPM
method. In addition,w0 is an arbitrary trial function, which is chosen in order to improve the
RBHPM convergence in the same way as the trial function u0 does for the HPMmethod [50].

On one side, the order of the approximation for the HPM method is determined by
the highest power of p considered in the formulation. On the other side, the order for the
RBHPM method is given as [i, k], where i and k are the highest power of p and q employed
in the numerator and denominator of (2.10), respectively.

The limit of (2.10), when p → 1 and q → 1, provides an approximate solution for
(2.3) given as

u = lim
p→ 1
q→ 1

v =
v0 + v1 + v2 + · · ·
w0 +w1 +w2 + · · · . (2.11)
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The limit above exists in the case that both limits

lim
p→ 1

( ∞∑
i=0

vi

)
,

lim
q→ 1

( ∞∑
i=0

wi

)
, where

∞∑
i=0

wi /= 0

(2.12)

exist.

3. Convergence of RBHPM Method

In order to analyse the convergence of the RBHPM method, (2.8) is rewritten as

L(v) = L(u0) +Q
[
f(r) −N(v) − L(u0)

]
= 0. (3.1)

After applying the inverse operator, L−1, on both sides of (3.1), we obtain

v = u0 +Q
[
L−1f(r) − L−1N(v) − u0

]
. (3.2)

By assuming that (see (2.10))

v =
∑∞

i=0 p
ivi∑∞

i=0 q
iwi

, (3.3)

and after substituting (3.3) in the right-hand side of (3.2) in the following form:

v = u0 +Q

[
L−1f(r) −

(
L−1N

)[∑∞
i=0 p

ivi∑∞
i=0 q

iwi

]
− u0

]
. (3.4)

The exact solution of (2.3) is obtained in the limit when p → 1 and q → 1 in (3.4),
which results in

u = lim
p→ 1
q→ 1

(
QL−1f(r) −Q

(
L−1N

)[∑∞
i=0 p

ivi∑∞
i=0 q

iwi

]
+ u0 −Qu0

)
,

= L−1f(r) −
[ ∞∑

i=0

(
L−1N

)(vi

β

)]
, β =

∞∑
i=0

wi,

(3.5)

where

lim
p→ 1
q→ 1

Q = lim
p→ 1
q→ 1

(
ap + (1 − a)q

)
= 1.

(3.6)
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In order to study the convergence of the RBHPMmethod, we use the Banach Theorem
as reported in [1, 2, 7, 36]. This theorem relates the solution of (2.3) to the fixed point problem
of the nonlinear operator N.

Theorem 3.1 (Sufficient Condition for Convergence). Suppose that X and Y are Banach spaces
and N : X → Y is a contractive nonlinear mapping, that is,

∀w,w∗ ∈ X; ‖N(w) −N(w∗)‖ ≤ γ‖w −w∗‖; 0 < γ < 1. (3.7)

Then, according to Banach Fixed Point Theorem,N has a unique fixed point u, that is,
N(u) = u. Assume that the sequence generated by the RBHPM method can be written as

Wn = N(Wn−1), Wn−1 =
n−1∑
i=0

(
vi

β

)
, n = 1, 2, 3 . . . , (3.8)

and suppose thatW0 = v0/β ∈ Br(u), where Br(u) = {w∗ ∈ X|‖w∗ −u‖ < r}, then, under these
conditions:

(i) Wn ∈ Br(u),

(ii) limn→∞Wn = u.

Proof. (i) By inductive approach, for n = 1 we have

‖W1 − u‖ = ‖N(W0) −N(u)‖ ≤ γ‖w0 − u‖. (3.9)

Assuming that ‖Wn−1 − u‖ ≤ γn−1‖w0 − u‖, as induction hypothesis, then

‖Wn − u‖ = ‖N(Wn−1) −N(u)‖ ≤ γ‖Wn−1 − u‖ ≤ γn‖w0 − u‖. (3.10)

Using (i), we have

‖Wn − u‖ ≤ γn‖w0 − u‖ ≤ γnr < r =⇒ Wn ∈ Br(u). (3.11)

(ii) Because of ‖Wn − u‖ ≤ γn‖w0 − u‖ and limn→∞γn = 0, limn→∞‖Wn − u‖ = 0, that is,

lim
n→∞

Wn = u. (3.12)
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4. Padé Approximants

A rational approximation to f(x) on [a, b] is the quotient of two polynomials PN(x) and
QM(x) of degrees N and M, respectively. We use the notation RN,M(x) to denote this
quotient. The RN,M(x) Padé approximations [51, 52] to a function f(x) are given by

RN,M(x) =
PN(x)
QM(x)

, for a ≤ x ≤ b. (4.1)

The method of Padé requires f(x) and its derivative to be continuous at x = 0. The
polynomials used in (4.1) are expressed as

PN(x) = p0 + p1x + p2x
2 + · · · + pN(x),

QM(x) = q0 + q1x + q2x
2 + · · · + qM(x).

(4.2)

The polynomials in (4.2) are constructed so that f(x) and RN,M(x) agree at x = 0 as
well as their derivatives up to N + M agree at x = 0. A special case occurs for Q0(x) = 1,
wherein the approximation in (4.1) becomes the Maclaurin expansion for f(x). For a fixed
value of N +M the error is smallest when PN(x) and QM(x) have the same degree or when
PN(x) has degree one higher than QM(x).

Notice that the constant coefficient of QM is q0 − 1. This is permissible, because it can
be noted that 0 and RN,M(x) are not changed when both PN(x) and QM(x) are divided by
the same constant. Hence the rational function RN,M(x) hasN +M+ 1 unknown coefficients.
Assume that f(x) is analytic and has the Maclaurin expansion

f(x) = a0 + a1x + a2x
2 + · · · + akx

k + · · · . (4.3)

And from the difference f(x)QM(x) − PN(x) = Z(x)

⌈ ∞∑
i=0

aix
i

⌉⌈
M∑
i=0

qix
i

⌉
−
⌈

N∑
i=0

pix
i

⌉
=

⌈ ∞∑
i=N+M+1

cix
i

⌉
. (4.4)

The lower index j = N + M + 1 in the summation on the right side of (4.4) is chosen
because the firstN +M derivatives of f(X) and RN,M(x) should agree at x = 0.

When the left side of (4.4) is multiplied out and the coefficients of the powers of xi are
set equal to zero for k = 0, 1, 2, . . . ,N +M, the result is a system ofN +M+1 linear equations:

a0 − p0 = 0,

q1a0 + a1 − p1 = 0,

q2a0 + q1a1 + a2 − p2 = 0,
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q3a0 + q2a1 + q1a2 + a2 − p3 = 0,

qMaN−M
∣∣qM−1aN−M−1

∣∣aN − pN = 0,

(4.5)

qMaN−M+1 + qM−1aN−M+2 + · · · + q1aN + aN+2 = 0,

qMaN−M+2 + qM−1aN−M+3 + · · · + q1aN+1 + aN+3 = 0,

...

qMaN + qM−1aN+1 + · · · + q1aN+M+1 + aN+M = 0.

(4.6)

Notice that the sum of the subscripts of the terms of each product is the same in each
equation, and it increases consecutively from 0 to N +M. The M equations in (4.6) involve
only the unknowns q1, q2, . . . , qM and must be firstly solved. Then the equations in (4.5) are
used successively to find p1, p2, . . . , pN [51].

5. Laplace-Padé Transform and RBHPM Method Coupling

The coupling of Laplace transform and Padé approximant [46] is used in order to recover
part of the lost information due to the truncated power series [51, 53–60]. The process can be
recast as follows.

(1) First, Laplace transformation is applied to power series.

(2) Next, s is substituted by 1/x in the resulting equation.

(3) After that, we convert the transformed series into a meromorphic function by
forming its Padé approximant of order [N/M]. N and M are arbitrarily chosen,
but they should be of smaller value than the order of the power series. In this step,
the Padé approximant extends the domain of the truncated series solution to obtain
better accuracy and convergence.

(4) Then, x is substituted by 1/s.

(5) Finally, by using the inverse Laplace s transformation, we obtain the modified
approximate solution.

In order to improve the approximate rational solutions generated by the RBHPM
method, we propose to apply the Laplace-Padé method, separately, to the denominator and
the numerator in (2.11), only when they are expressed as power series. We will denominate
to this process as the Laplace-Padé rational biparameter homotopy perturbation method
(LPRBHPM).

6. Case Study 1: Riccati Nonlinear Differential Equation

Consider the Riccati nonlinear differential equation [7, 47]

y′(x) − y(x)2 + 1 = 0, y(0) = 0, (6.1)
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having the exact solution given as

y(x) = − tanh(x). (6.2)

6.1. Solution Calculated by RBHPM

We establish the following homotopy equation:

(
1 − (ap + (1 − a)q

))
(L(v) − L(u0)) +

(
ap + (1 − a)q

)(
v′ − v2 + 1

)
= 0, (6.3)

where we have chosen a = 0.25. Besides, the linear operator L is given as

L(v) = v′ + v + 1, (6.4)

and the trial function is

u0 = −1 + exp(−x). (6.5)

We suppose that the solution of (6.3) is of order [2, 2], which is expressed as follows

v =
v0 + v1p + v2p

2

w0 +w1q +w2q2
, (6.6)

where the trial w-function is chosen as w0 = 1.
After substituting (6.6) into (6.3), regrouping, and equating the terms having the

following powers: p0q0, p1, p2, q1, and q2, it can be solved for v0, v1, v2, w1, and w2. In order
to fulfil the initial conditions of (6.1), it follows that v0(0) = 0, v1(0) = 0, v2(0) = 0, w1(0) = 0,
and w2(0) = 0.

The results are recast in the following system of differential equations:

p0q0 : w0v
′
0+ v0w0 − v0w

′
0 +w2

0 = 0, v0(0) = 0,

p1 : w0v
′
1+ v1w0 − v1w

′
0 − av0w0 − av2

0 = 0, v1(0) = 0,

p2 : w0v
′
2− 2av0v1 + v2w0 − v2w

′
0 − av1w0 = 0, v2(0) = 0,

q1 : −v0w
′
1− v0w0 − v2

0 + 2w0w1 + v′
0w1 + av2

0 + av0w0 + v0w1 = 0, w1(0) = 0,

q2 : −v0w
′
2+ 2w0w2 + av0w1 +w2

1 + v0w2 + v′
0w2 − v0w1 = 0, w2(0) = 0.

(6.7)

Solving (6.7) yields

v0 = − 1 + exp(−x),
v1 = a

(−x − exp(−x) + 1
)
exp(−x),
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v2 = − a2
(
−1
2
x2 + exp(−x) + x − 2x exp(−x) − exp(−2x)

)
exp(−x),

w1 =
(1 − a)

(−x − exp(−x)) − a + 1
exp(x) − 1

,

w2 =

⎧⎪⎪⎨
⎪⎪⎩
0, x = 0,(
(x − 2) exp(x) + x + 2

)
(−1 + a)2x

2
(
exp(x) − 1

)2 , x /= 0.

(6.8)

By substituting (6.8) into (6.6), and calculating the limits when p → 1 and q → 1, we
obtain

y(x) = lim
p→ 1
q→ 1

v =
v0 + v1 + v2

w0 +w1 +w2
. (6.9)

6.2. Solution by HPM

We establish the following homotopy equation:

(
1 − p

)
(L(v) − L(u0)) + p

(
v′ − v2 + 1

)
= 0, (6.10)

where the linear operator L and the trial function u0 are (6.4) and (6.5), respectively.
Substituting (2.6) into (6.10), regrouping, and equating the terms with identical

powers of p, it can be solved for v0, v1, v2, and so on (in order to fulfil initial conditions
from v(0) = y(0) = 0, it follows that v0(0) = 0, v1(0) = 0, v2(0) = 0 and so on).

The result is recast in the following system of differential equations:

p0 : v′
0 + v0 + 1 = 0, v0(0) = 0,

p1 : v′
1 + v1 − v2

0 − v0 = 0, v1(0) = 0,

p2 : v′
2 + v2 − 2v0v1 − v1 = 0, v2(0) = 0,

p3 : v′
3 + v3 − v2

1 − v2 − 2v0v2 = 0, v3(0) = 0,

p4 : v′
4 + v4 − 2v1v2 − v3 − 2v0v3 = 0, v4(0) = 0,

....

(6.11)

By solving (6.11), we obtain

v0 = −1 + exp(−x),
v1 = −(x + exp(−x) − 1

)
exp(−x),

v2 =
1
2

(
(4x − 2) exp(−x) + 2 exp(−2x) + x2 − 2x

)
exp(−x),
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v3 = −1
6

(
−12x exp(−x) + x3 − 3x2 − 6 exp(−2x) + 12x2 exp(−x)
+ 18x exp(−2x) + 6 exp(−3x)

)
exp(−x),

v4 =
1
24

(
−4x3 − 48x2 exp(−x) − 72x exp(−2x) − 24 exp(−3x)
+ x4 + 96x exp(−3x) + 108x2 exp(−2x) + 32x3 exp(−x) + 24 exp(−4x)

)
exp(−x),

....

(6.12)

By using (6.12) and (2.6) and calculating the limit when p → 1, we obtain the second
and four order approximations

y(x) = lim
p→ 1

(
2∑
i=0

vip
i

)
= v0 + v1 + v2, (6.13)

y(x) = lim
p→ 1

(
4∑
i=0

vip
i

)
= v0 + v1 + v2 + v3 + v4, (6.14)

respectively.

7. Case Study 2: Van Der Pol Oscillator

Consider the Van der Pol Oscillator problem [8, 48] without external forcing

u′′ + u′ + u + u2u′ = 0, u(0) = 0, u′(0) = 1, (7.1)

7.1. Solution by the RBHPM Method

We establish the following homotopy equation:

(
1 − (ap + (1 − a)q

))
(L(v) − L(u0)) +

(
ap + (1 − a)q

)(
v′′ + v′ + v + v2v′

)
= 0, (7.2)

where the linear operator L is

L(v) = v′′, (7.3)

and the trial function is

u0 = t. (7.4)

We assume that the solution for (7.2) is order [2, 2], which is expressed as follows:

v =
v0 + v1p + v2p

2

w0 +w1q +w2q2
, (7.5)

where the trial w-function is chosen as w0 = 1.
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Substituting (7.5) into (7.2), regrouping, and equating the terms having the following
powers: p0q0, p1, p2, q1, and q2, it can be solved for v0, v1, v2, w1, and w2. In order to fulfil
the initial conditions of (7.1), it follows that v0(0) = 0, v′

0(0) = 1 and the rest are vi(0) = 0,
v′
i(0) = 0, wi(0) = 0 and w′

i(0) = 0, (i = 1, 2, 3, . . .). Then, considering that w0 = 1, we establish
the following system:

p0 : v′′
0 = 0, v0(0) = 0, v′

0(0) = 1,

p1 : v′′
1 + av2

0v
′
0 + av0 + av′

0 = 0, v1(0) = 0, v′
1(0) = 0,

p2 : v′′
2 + av2

0v
′
1 + av′

1 + 2av0v1v
′
0 + av1 = 0, v2(0) = 0, v′

2(0) = 0,

q1 : −v0w
′′
1 + 3v′′

0w1 + v′
0 + v0 − 2v′

0w
′
1 − av2

0v
′
0

− av0 − av′
0 + v2

0v
′
0 = 0, w1(0) = 0, w′

1(0) = 0,

q2 : −v0w
′′
2 + v2

0v
′
0w1 + av3

0w
′
1 − v3

0w
′
1 − av2

0v
′
0w1 + av0w

′
1 − 3av0w1 − 4v′

0w
′
1w1

− 2v0w
′′
1w1 − 3av′

0w1 − 2v′
0w

′
2 + 2v0

(
w′

1

)2 + 3v0w1 + 3v′
0w1

+ 3v′′
0w

2
1 − v0w

′
1 + 3v′′

0w2 = 0, w2(0) = 0, w′
2(0) = 0.

(7.6)

By solving (7.6), we obtain

v0 = t,

v1 = − 1
12

at2
(
t2 + 2t + 6

)
,

v2 =
1

2520
a2t3
(
30t4 + 77t3 + 315t2 + 210t + 420

)
,

w1 =
1
12

(1 − a)t3 +
1
6
(1 − a)t2 − 1

2
at + k1,

w2 = − 5
1008

(−1 + a)2t6 − 1
360

(−1 + a)2t5

+
1

5040

(
−28a + 98 − 70a2

)
t4 +

1
12

(−1 + a)
(
a − 1

6
+ k1

)
t3

+
1

5040

(
420a2 + (−840 − 840k1)a + 840k1

)
t2 − 1

2
k1(a − 3)t + k2,

(7.7)

where k1 and k2 are integration constants.
Substituting (7.7) into (7.5), and calculating the limits when p → 1 and q → 1, we

obtain

u(t) = lim
p→ 1
q→ 1

v =
v0 + v1 + v2

w0 +w1 +w2
. (7.8)
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We select the parameters as a = 27/100, k1 = 22/53, and k2 = −17/39 by using the
numerical procedure reported in [35–37].

In order to guarantee the validity of the approximate solution (7.8) for large t,
the quotient of series solutions is transformed by the Laplace-Padé after-treatment. The
procedure is applied separately to numerator and denominator of the expression in (7.8).
First, Laplace transformation is applied to numerator of (7.8) and then 1/t is written in place
of s in the equation. Then, the Padé approximant [3/3] is applied and 1/s is written in place of
t. Finally, by using the inverse Laplace s transformation, we obtain the modified approximate
solution for numerator

un(t) = − 0.0566603453624 exp(−1.71426194764t)

+ 0.0566603453622 exp(−0.0402536974457t) cos(0.736244931229t)

+ 1.22941439189 exp(−0.0402536974457t) sin(0.736244931229t).

(7.9)

Now, we repeat the same process to the denominator by changing the order of the Padé
approximant to [3/4], to obtain

ud(t) = 0.003937675067 exp(−0.535832417112t) cos(2.71442186582t)

+ 0.003048633725 exp(−0.535832417112t) sin(2.71442186582t)

+ 0.228229226307 exp(−0.192147218554t) + 0.747030002351 exp(0.628210432031t).
(7.10)

Then, the approximate solution calculated by LPRBHPM is

u(t) =
un(t)
ud(t)

. (7.11)

7.2. Solution by HPM

We establish the following homotopy equation:

(
1 − p

)
(L(v) − L(u0)) + p

(
v′′ + v′ + v + v2v′

)
= 0, (7.12)

where the linear operator L and the trial function u0 are (7.3) and (7.4), respectively.
Substituting (2.6) into (7.12), regrouping, and equating the terms with identical

powers of p. In order to fulfil initial conditions of (7.1), it follows that v0(0) = 0, v′
0(0) = 1,
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and the rest are vi(0) = 0 and v′
i(0) = 0 (i = 1, 2, 3, . . .). Then, we establish the following

system:

p0 : v′′
0 = 0, v0(0) = 0, v′

0(0) = 1,

p1 : v′′
1 + v0 + v2

0v
′
0 + v′

0 = 0, v1(0) = 0, v′
1(0) = 0,

p2 : v′′
2 + v2

0v
′
1 + v1 + 2v0v1v

′
0 + v′

1 = 0, v2(0) = 0, v′
2(0) = 0,

p3 : v′′
3 + v2

0v
′
2 + 2v0v1v

′
1 + v2

1v
′
0 + v′

2 + v2 + 2v0v2v
′
0 = 0, v3(0) = 0, v′

3(0) = 0,

p4 : v′′
4 + 2v1v2v

′
0 + v2

1v
′
1 + 2v0v3v

′
0 + v′

3 + v2
0v

′
3

+ 2v0v1v
′
2 + 2v0v2v

′
1 + v3 = 0, v4(0) = 0, v′

4(0) = 0.

(7.13)

By solving (7.13), we obtain

v0 = t,

v1 = − 1
12

t4 − 1
6
t3 − 1

2
t2,

v2 =
1
84

t7 +
11
360

t6 +
1
8
t5 +

1
12

t4 +
1
6
t3,

v3 = − 19
10080

t10 − 67
10080

t9 − 53
1680

t8 − 31
720

t7 − 67
720

t6 − 1
40

t5 − 1
24

t4,

v4 =
737

2358720
t13 +

1889
1330560

t12 +
8347

1108800
t11 +

14039
907200

t10

+
13921
362880

t9 +
11
336

t8 +
25
504

t7 +
1

180
t6 +

1
120

t5.

(7.14)

By substituting the solutions from (7.14) into (2.6) and calculating the limit when p →
1, we can obtain the second order approximation

u(t) = lim
p→ 1

(
2∑
i=0

vip
i

)
= t − 1

2
t2 +

1
84

t7 +
11
360

t6 +
1
8
t5. (7.15)

In the same way, we obtain the four order approximation

u(t) = lim
p→ 1

(
4∑
i=0

vip
i

)
= t − 1

2
t2 +

31
1680

t7 − 41
720

t6 +
13
120

t5 +
12329
907200

t10

+
11509
362880

t9 +
1
840

t8 − 1
24

t4 +
737

2358720
t13

+
1889

1330560
t12 +

8347
1108800

t11.

(7.16)
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Figure 1: Exact solution (6.2) (diagonal cross) for (6.1) and its approximate solutions (6.9) (solid line),
(6.13) (solid circles), and (6.14) (solid diamonds).

Table 1: Comparison between exact solution (6.2) for (6.1) to the results of approximations (6.9), (6.13),
and (6.14).

Homotopy (6.3) Homotopy (6.10) Homotopy (6.10)
Order [2, 2] 2 4
x Exact (6.2) RBHPM (6.9) HPM (6.13) HPM (6.14)
0.00 0.000000000000 0.000000000000 0.000000000000 0.000000000000
0.50 −0.462117157260 −0.462720433177 −0.462402288846 −0.462119211588
1.50 −0.905148253645 −0.918326771288 −0.911212665075 −0.90475203875
2.00 −0.964027580076 −0.975747936207 −0.960889970046 −0.965901380964
2.50 −0.986614298151 −0.991622046961 −0.968972449805 −0.992586779171
3.50 −0.998177897611 −0.989972317008 −0.961440997373 −1.00443324553
4.00 −0.999329299739 −0.98793701472 −0.961349802243 −1.0000486249
4.50 −0.999753210848 −0.987368801973 −0.96441914623 −0.993370392728
5.00 −0.999909204263 −0.988053048524 −0.969315733164 −0.986865576296
5.50 −0.999966597156 −0.98949557545 −0.974818141376 −0.981957532724
6.00 −0.999987711651 −0.991249069742 −0.980108525233 −0.979148093068
6.50 −0.999995479351 −0.993004075085 −0.984752811149 −0.97832221949
7.00 −0.999998336944 −0.994584980578 −0.988591496328 −0.979053617564

A.A.E. 8.15 (−3) 1.84 (−2) 8.93 (−3)

8. Numerical Simulation and Discussion

On one hand, Figure 1 and Table 1 show a comparison between the exact solution (6.2) for
the Riccati nonlinear differential equation (6.1) and the analytic approximations (6.9), (6.13),
and (6.14). The RBHPM method of order [2, 2] gives the smallest average absolute error
(A.A.E.) of all solutions, followed by the solutions obtained with HPM of order 4 and 2. It is
remarkable to observe that the RBHPMmethod generates an accurate rational approximation
that successfully replicates the asymptotic behaviour of (6.2).

On the other hand, Figure 2 and Table 2 show a comparison between the Fehlberg
fourth-fifth order Runge-Kutta method with degree four interpolant (RKF45) [61, 62]
solution (built-in function of Maple software) for the Van der Pol Oscillator (7.1)



Journal of Applied Mathematics 15

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
u
(t
)

t

0 0.5 1 1.5 2 2.5 3

LPRBHPM (7.11)
RKF45 for (7.1)
RBHPM (7.8)

HPM (7.15)
HPM (7.16)

Figure 2: RKF45 solution for Van Der Pol Oscillator problem (7.1) (diagonal cross) and its approximate
solutions obtained by RBHPM (7.8) (asterisk), LPRBHPM (7.11) (solid line), HPM (7.15) (solid circles),
and HPM (7.16) (empty squares).

and the analytic approximations (7.8), (7.11), (7.15), and (7.16). The LPRBHPM method of
order [2, 2] (see (7.11)) yields the smallest A.A.E. of all solutions, followed by (7.8) obtained
by the RBHPM method of order [2, 2], and finally by approximations calculated by HPM
of order 4 and 2. In this case study, both LPRBHPM and RBHPM generate more accurate
solutions than HPM.

The coupling of Laplace and Padé with RBHPM was a key factor for improving
the accuracy in the Van der Pol problem. Both numerator and denominator of the rational
expression (7.8) were considered as truncated power series. Laplace-Padé after-treatment
[46] was successfully applied, and it yields better accuracy and it allows for larger ranges
of the domain. Additionally, the trial functions w0 and u0 play an important role in the
behaviour of the RBHPM and LPRBHPM methods; therefore, future research must be done
in order to understand what kinds of trial functions produce better results; in this context,
the operators L and N will be a key aspect to consider. Furthermore, it is important to point
out that the RBHPM and LPRBHPM methods do not resort to linearization, a perturbation
parameter, or assumptions of weak nonlinearity, and it clearly results that the generated
solution has a general character and it is more realistic compared to themethod of simplifying
the physical problems.

Finally, the homotopy in (2.4) can be replaced by homotopy schemes such as those
reported in the literature [63–93]. This future line of research can lead us to improve the
performance of RBHPM or LPRBHPM methods.

9. Conclusions

This paper presented the RBHPM and LPRBHPM methods as a novel tool with high
potential to solve nonlinear differential equations. Furthermore, a comparison between the
results of applying the proposed methods and HPM was given. For the Riccati nonlinear
asymptotic problem, a comparison between the RBHPM and HPM methods was presented,
showing how the RBHPM method generates highly accurate approximate solutions, similar
to the results obtained when using the HPM method. Additionally, a Van der Pol Oscillator
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Table 2: Comparison numerical solution (RKF45) for (7.1) and its first order approximate solutions given
by RBHPM (7.8), LPRBHPM (7.11), HPM (7.15), and HPM (7.16).

Order [2, 2] [2, 2] 2 4
t RKF45 for (7.1) RBHPM (7.8) LPRBHPM (7.11) HPM (7.15) HPM (7.16)

0.00 0.000000000000 0.000000000000 −2.04249011 (−13) 0.000000000000 0.000000000000
0.10 0.094996749389 0.0963305722762 0.0963305680033 0.095001281746 0.0949968616125
0.20 0.179964338949 0.181413957989 0.181413692649 0.180042107937 0.179964612584
0.30 0.254886117960 0.255755918036 0.255752978888 0.255328628571 0.254889069792
0.40 0.319824133934 0.319864038194 0.319847953401 0.321424660317 0.319850515572
0.50 0.374962243912 0.374261968751 0.374202151797 0.379476686508 0.3751195795
0.60 0.420620714410 0.419505461842 0.419331298484 0.431478857143 0.421336349604
0.70 0.457249830610 0.456198011306 0.455769940137 0.480583988889 0.459927483684
0.80 0.485408608033 0.485004250862 0.484075378004 0.531466565079 0.49405125938
0.90 0.505735525317 0.506659764874 0.504828319804 0.590743735714 0.53057647436
1.00 0.518917385708 0.521976574206 0.518630236646 0.66746031746 0.583931084348
1.10 0.525660073662 0.531844221386 0.526097880422 0.773643793651 0.683143422756
1.20 0.526664476070 0.537227026265 0.527855737463 0.924935314286 0.884097382101
1.30 0.522608206722 0.539158647966 0.524527343795 1.14130269603 1.2900013214
1.40 0.514133103782 0.538735520529 0.516726377800 1.44784142222 2.08441286596
1.50 0.501837942107 0.537111006964 0.505048313285 1.87566964286 3.58297069111
1.60 0.486275223293 0.535492254682 0.490063208382 2.4629231746 6.31238329453
1.70 0.467950980699 0.535141785803 0.472309972142 3.25585650079 11.128360908
1.80 0.447326548414 0.537385900716 0.452292231487 4.31005577143 19.3882241197
1.90 0.424821677896 0.54363212026 0.430475743238 5.69176980317 33.1990855168
2.00 0.400817960941 0.555398274173 0.407287171967 7.47936507937 55.769016169
2.10 0.375662771298 0.574356631824 0.383113985298 9.76491075 91.8967515218
2.20 0.349672525187 0.602397906631 0.358305196653 12.6558996317 148.645576503
2.30 0.323136129463 0.641722425466 0.333172699524 16.2771112079 236.259417439
2.40 0.296317411714 0.694969880802 0.307992974314 20.7726226286 369.394267712
2.50 0.269457558120 0.765406030734 0.28300899685 26.3079737103 568.756347393
2.60 0.242776634418 0.857196643743 0.258432227399 33.0724919365 863.260364544
2.70 0.216475028642 0.975820118585 0.234444603854 41.2817834571 1292.84749061
2.80 0.190734203918 1.12870912808 0.211200498849 51.1803960889 1912.13383476
2.90 0.165717437177 1.32628670185 0.188828626412 63.0446603151 2795.09702573
3.00 0.141570064350 1.58371504978 0.167433899647 77.1857142857 4041.05178634

A.A.E. 0.231 0.00641 12.1 401

problem was tackled with the proposed methods and compared to solutions obtained by
HPM. It resulted that the RBHPM and LPRBHPM methods produced the most accurate
approximated solutions. Because RBHPM, LPRBHPM, and HPM are closely related, it is
possible that differential equations solved by HPM can be solved by using RBHPM or
LPRBHPM. Besides, further research should be done to apply the proposed methods to the
calculation of approximate solutions of nonlinear partial differential equations, nonlinear
fractional equations, and boundary value problems, among others. An important remark is
that the RBHPM and LPRBHPMmethods do not resort to any kind of linearization procedure
or perturbation parameter. Thereupon, these methods promise to become important
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mathematical tools, useful for scientist and engineers working in the area of mathematical
modelling and computer simulation.

Acknowledgments

The authors gratefully acknowledge the financial support of the National Council for Science
and Technology of Mexico (CONACyT) through Grant CB-2010-01 no. 157024. The authors
would like to thank Roberto Castaneda-Sheissa, Rogelio-Alejandro Callejas-Molina, and
Roberto Ruiz-Gomez for their contribution to this project.

References

[1] J. Biazar and H. Aminikhah, “Study of convergence of homotopy perturbation method for systems
of partial differential equations,” Computers & Mathematics with Applications, vol. 58, no. 11-12, pp.
2221–2230, 2009.

[2] J. Biazar andH. Ghazvini, “Convergence of the homotopy perturbationmethod for partial differential
equations,” Nonlinear Analysis. Real World Applications, vol. 10, no. 5, pp. 2633–2640, 2009.
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[52] G. A. Baker, Essentials of Padé Approximations, Academic Express, London, UK, 1975.
[53] N. H. Sweilam and M. M. Khader, “Exact solutions of some coupled nonlinear partial differential

equations using the homotopy perturbation method,” Computers and Mathematics with Applications,
vol. 58, no. 11-12, pp. 2134–2141, 2009.

[54] S. Momani, G. H. Erjaee, andM. H. Alnasr, “Themodified homotopy perturbationmethod for solving
strongly nonlinear oscillators,” Computers and Mathematics with Applications, vol. 58, no. 11-12, pp.
2209–2220, 2009.

[55] Y. Khan andN. Faraz, “Application of modified Laplace decomposition method for solving boundary
layer equation,” Journal of King Saud University, vol. 23, no. 1, pp. 115–119, 2011.

[56] D. Bahuguna, A. Ujlayan, and D. N. Pandey, “A comparative study of numerical methods for solving
an integro-differential equation,” Computers and Mathematics with Applications, vol. 57, no. 9, pp. 1485–
1493, 2009.

[57] S. Momani and V. S. Ertürk, “Solutions of non-linear oscillators by the modified differential transform
method,” Computers and Mathematics with Applications, vol. 55, no. 4, pp. 833–842, 2008.
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