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A new controller design method is proposed to synchronize the fractional-order hyperchaotic
system through the stability theory of fractional calculus; the synchronization between two
identical fractional-order Chen hyperchaotic systems is realized by designing only two suitable
controllers in the response system. Furthermore, this control scheme can be used in secure
communication via the technology of chaotic masking using the complex nonperiodic information
as trial message, and the useful information can be recovered at the receiver. Numerical
simulations coincide with the theoretical analysis.

1. Introduction

It is well known that the fractional calculus has a long mathematical history, but its appli-
cations to physics and engineering are just recent subject of interest [1]. In recent years,
more and more researchers focused on the control of fractional-order chaotic systems and
its dynamic behavior [2–4]. In [5], chaos and hyperchaos in the fractional-order Rŏssler
equations were studied, in which chaos can exist in the fractional-order Rŏssler equation
with order as low as 2.4, and hyperchaos exists in the fractional-order Rŏssler hyperchaos
equation with order as low as 3.8. In [6], the chaotic behavior with the lowest order 3.72 in
the fractional-order hyperchaotic Chen system is presented.

For decades, the complex dynamics and synchronization of chaotic systems have
attracted much attention [7–21] since the seminal paper by Pecora and Carroll in 1990
[22]. The chaotic control and synchronization of fractional-order systems are concerned
extremely [23–27]. The fractional-order system, compared to the integer-order system,
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has more universality, large key space, and more complex dynamic behaviors than the
low-dimensional chaotic system [28], turning into a more challenging work to solve the
problem of its control, synchronization, and antisynchronization. In [29], the synchronization
of fractional-order hyperchaotic Lorenz system with unknown parameters is realized
via designing adaptive tracking controller. In [30], the antisynchronization of different
hyperchaotic systems is studied based on the method of active control. In nature, the usual
way to synchronize nonlinear fractional-order hyperchaotic systems is to design controller
generally needing three or more based on the stability theory of fractional calculus [9, 29–32].
Therefore, such designed controller must result in unnecessarily complicated structure, to a
certain extent, which limits to the application in practice.

More recently, studies have been intensively focused on fractional-order hyperchaotic
system due to its potential applications in secure communication and control processing.
However, to our best knowledge, in literature [33–35], the authors are all concerned with
its applications to secure communication with regular or periodic signals. Yet, the normal
signals are too simple, and they are easy to be decoded evenmingling the chaotic signals with
transmission channel. Usually, the actual signal transmission is irregular; therefore, research
on the synchronization of fractional-order hyperchaotic systems holds great significance for
its application to secure communication with nonperiodic information signals.

In this paper, we propose a new control design method using only two controllers in
response system to synchronize a class of fractional-order hyperchaotic system. The example,
the two identical fractional-order hyperchaotic Chen systems, is utilized to illustrate how to
design the controllers to simplify the existing control scheme, and the proposed procedure
can be applied to secure communication via the technology of chaotic masking.

2. Fractional Derivative and Its Approximation

There are several definitions of fractional derivatives [1]. In our work, we use the best known
Caputo derivative [30] defined by

Dα
∗x(t) = Jn−αx(n)(t), α > 0, (2.1)

where n is the first integer which is not less than α, and Jβ is the β-order Riemann-Liouville
integer operator which is described as follows:

Jβy(t) =
1

Γ
(
β
)
∫ t

0

y(τ)

(t − τ)1−β
dτ, (2.2)

where Γ(·) is the gamma function and 0 < β � 1.
Given a fractional-order chaotic system, the drive (master) system is

dqX1

dtq
= F(X1). (2.3)
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Here X1 ∈ �n×1, F(X1) = (f(X1), f(X2), . . . , f(Xn))
T , and q ∈ (0, 1]. The fractional-order

q ∈ �n×1 may be unequal. The equilibrium points of system (2.3) can be derived by solving
following equation:

F(X1) = 0. (2.4)

The stability of fractional-order system has been thoroughly investigated, and necessary and
sufficient conditions have been presented in [26]:

dqX2

dtq
= F(X2) + u(t), (2.5)

whereX2 ∈ �n×1, and u(t) is the control functions. Suppose that the error between the system
(2.3) and the system (2.5) is e(t) = X1(t) − X2(t); then the fractional error system can be
obtained as

dqe

dtq
= F(X1) − F(X2) − u(t). (2.6)

The master-slave synchronization of two chaotic systems is tightly associated with
stability of the error dynamics; in this paper, the control function method is presented. Before
discussing the method, we first give some useful preliminaries which are of great help to the
proof of the forthcoming theorem.

Lemma 2.1 (see [36]). System (2.3) is locally asymptotically stable if all the eigenvalues (λ1, . . . , λn)
of the Jacobian matrix of all equilibrium point satisfy

∣∣arg(λ)
∣∣ > q >

2
π
. (2.7)

In nature, if q > (2/π)| arctan(Im(λ)/Re(λ))|, the system (2.3) is locally asymptot-
ically stable and behave chaotic for all the variations where the eigenvalues of the matrix
satisfy | arg(λ)| > qπ/2. The stable and unstable regions for q ∈ (0, 1] are depicted in
Figure 1. Obviously, the stable region of a fractional-order system is normally larger than
its corresponding integer-order system:

Ẋ1 = F(X1), (2.8)

whose stable region is the left half plane. Based on this, we obtain the following corollary
immediately.

Corollary 2.2. The fractional-order system (2.3) with order q ∈ (0, 1] is asymptotically stable if the
corresponding integer system (2.8) is stable.
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Figure 1: Stability region of fractional-order system.

3. The Fractional-Order Chen System

Now, consider the fractional-order hyperchaotic Chen system as follows:

dαx

dtα
= a

(
y − x

)
+w,

dαy

dtα
= bx − xz + cy,

dαz

dtα
= xy − dz,

dαw

dtα
= yz + rw,

(3.1)

where a = 35, b = 7, c = 12, d = 3, and r = 0.5. This system has five equilibria:

S0 = (0, 0, 0, 0),

S1 = (−82.0531 − 284.8306i,−6.6181 − 1.2245i,−4.2737 + 6.9135i, 12.2500 − 13.5069i),

S2 = (−82.0531 + 284.8306i,−6.6181 + 1.2245i,−4.2737 − 6.9135i, 12.2500 + 13.5069i),

S3 = (82.0531 − 284.8306i, 6.6181 − 1.2245i, 4.2737 + 6.9135i, 12.2500 + 13.5069i),

S4 = (82.0531 + 284.8306i, 6.6181 + 1.2245i, 4.2737 − 6.9135i, 12.2500 − 13.5069i).

(3.2)

The corresponding Jacobian matrix is as follows:

J =

⎛

⎜⎜
⎝

−35 35 0 1
7 12 −x 0
y x −3 0
z 0 x r

⎞

⎟⎟
⎠. (3.3)
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Figure 2: The phase portrait of system (3.1) chaotic attractor (α = 0.96) with (a) x, y, z and (b) y, z,w.

Then, the eigenvalues of the Jacobian matrix are obtained:

S0: λ1 = −39.7356, λ2 = 16.7356, λ3 = −3.0000, λ4 = 0.5000;

S1: λ1 = 289.93 − 82.25i, λ2 = −280.64 + 81.49i, λ3 = −35.29 + 0.77i, λ4 = 0.50 − 0.01i;

S2: λ1 = 289.93 + 82.25i, λ2 = −280.64 − 81.49i, λ3 = −35.29 − 0.77i, λ4 = 0.50 + 0.01i;

S3: λ1 = 289.93 + 82.25i, λ2 = −280.64 − 81.49i, λ3 = −35.29 − 0.77i, λ4 = 0.50;

S4: λ1 = 289.93 − 82.25i, λ2 = −280.64 + 81.49i, λ3 = −35.29 + 0.77i, λ4 = 0.50.
(3.4)

It is easy to show that eigenvalues from S0 to S4 hold if they satisfy q >
(2/π)| arctan(82.25/289.93)| based on Lemma 2.1, and the fractional-order hyperchaotic
Chen is chaotic. From the phase portrait of chaotic attractor at α = 0.96 as shown in Figure 2
we can find that the system (3.1) exists with chaotic behavior indeed.

4. The Synchronization of the Two Identical Incommensurate
Fractional-Order Chen Systems

Now, we will study synchronization between two identical fractional-order hyperchaotic
Chen systems. The fractional-order hyperchaotic Chen system as the drive system is ex-
pressed by

dαx1

dtα
= a

(
y1 − x1

)
+w1,

dαy1

dtα
= bx1 − x1z1 + cy1,

dαz1
dtα

= x1y1 − dz1,

dαw1

dtα
= y1z1 + rw1.

(4.1)
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And the corresponding response system is written by

dαx2

dtα
= a

(
y2 − x2

)
+w2,

dαy2

dtα
= bx2 − x2z2 + cy2 + u1,

dαz2
dtα

= x2y2 − dz2,

dαw2

dtα
= y2z2 + rw2 + u2.

(4.2)

Here, u = [u1, u2]
T is the control function. Our aim is to design the controller u =

[u1, u2]
T that will make the system (4.2) achieve synchronization with the system (4.1). In

order to facilitate the following analysis, we set the errors between the system (4.2) and
system (4.1):

e1 = x2 − x1,

e2 = y2 − y1,

e3 = z2 − z1,

e4 = w2 −w1.

(4.3)

From (4.3), (4.2), and (4.1), we obtain the following error dynamical system:

dαe1
dtα

= a(e2 − e1) + e4,

dαe2
dtα

= (b − z1)e1 + ce2 + x2(z1 − z2) + u1,

dαe3
dtα

= −de3 + x1e2 +
(
y1 + e2

)
e1,

dαe4
dtα

= re4 + z1e2 − y2(z1 − z2) + u2.

(4.4)

Then, consider the following control function:

u1 = (c + k1)e2 + (b − z1)e1 + x2(z1 − z2),

u2 = (r + k2)e4 − y2(z1 − z2).
(4.5)
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Substituting controllers (4.5) into (4.4), we have

dαe1
dtα

= a(e2 − e1) + e4,

dαe2
dtα

= −k1e2,
dαe3
dtα

= −de3 + x1e2 +
(
y1 + e2

)
e1,

dαe4
dtα

= −k2e4 + z1e2.

(4.6)

And its corresponding integer system is

de1
dt

= a(e2 − e1) + e4,

de2
dt

= −k1e2,
de3
dt

= −de3 + x1e2 +
(
y1 + e2

)
e1,

de4
dt

= −k2e4 + z1e2.

(4.7)

We can obtain the Jacobian matrix of the error system with linear system (4.7) as
follows:

A =

⎛

⎜⎜
⎝

−a a 0 1
0 −k1 0 0

y1 + e2 x1 + e1 −d 0
0 z1 0 −k2

⎞

⎟⎟
⎠. (4.8)

Obviously, the system (4.7), in which all eigenvalues −a,−k1,−d, and −k2 are
less than zero with k1 and k2 to positive constant, must be stable without a doubt.
And the corresponding fractional-order system (4.6) is asymptotically stable according to
Corollary 2.2 given in the second section. So, the errors lime1(t), lime2(t), lime3(t), and
lime4(t) will converge to zero when t → ∞. Therefore, synchronization of the two identical
fractional-order hyperchaotic systems is achieved.

4.1. Simulation Results

In the numerical simulations, we set the parameters of the system (4.1) and (4.2) as a = 35,
b = 3, c = 28, and r = 0.5 for drive system and response system with α = 0.96 and the
coefficient of control function k1 = 15 and k2 = 20. The initial conditions of the drive and
response systems are taken arbitrarily as x1(0) = 10, y1(0) = 10, z1(0) = 10, and w1(0) = 10;
and x2(0) = −10, y2(0) = −10, z2(0) = 3, and w2(0) = −10. Numerical results show that the
synchronization of two identical fractional-order hyperchaotic system is achieved as shown
in Figure 3. The experiments coincided with the theory analysis.
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Figure 3: The synchronization of system (4.2) and system (4.1) with α = 0.96: (a) the synchronization of
x1 − x2; (b) the synchronization of y1 − y2; (c) the synchronization of z1 − z2; (d) the synchronization of
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Figure 4: Chaotic masking technology for communication system.

5. Application to Secure Communication

In this section, to verify and demonstrate the effectiveness of the proposed method, we
will display the numerical results for fractional-order hyperchaotic Chen systems in secure
communication. Based on the theory of the communication, the block schematic of secure
communication scheme with the synchronization scheme is depicted in Figure 4, where x1(t)
is the chaotic state variable of drive system for the transmitter, x2(t) is the chaotic state
variable of response system, s(t) is the transmitted message signal with complex nonperiodic
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mode, which is added to the variable x1(t), mixed signal m(t) = s(t) + x1(t), and s0(t) is the
recovered signal after synchronization between the chaotic state variable x2(t) and x1(t) at
the receiver terminal end.

The complex nonperiodic information, which has the typical representative to accu-
rately simulate the real transmission signal with generally complex and disorder, is chosen
as the transmitted useful message during the numerical experiment in order to reinforce the
feasibility of the scheme. The mixed signals (Figure 6) have a good masking effectiveness,
are completely different from the original signals (Figure 5), which reached the purpose of
safety, and are not to be cracked on the processing of signal transmit. Simulation results show
that the system effectively restored the useful signals after about 1.2 s as depicted in Figure 7.
Therefore, we can find that, even adopting other irregular signals as transmitted information
by the synchronization and cover-up technology, the useful signals can be recovered with
no distortion at the receiver end; namely, the decoded information s0(t) coincides with the
transmitted signal s(t).

6. Conclusions

In this paper, a new method of designing controller to synchronize a class of fractional-
order hyperchaotic system is presented, and the synchronization between two identical
fractional-order systems has been realized via designing only two controllers. The simulation
results show that the control method is reliable. Moreover, the complex nonperiodic
information signals can be recovered with no distortion when the scheme is applied to secure
communication. Numerical experiments for the secure communication system indicate
that the synchronization works quite well, which may has potential applications in many
interdisciplinary fields. Future work on this topic should include transmission of high-
frequency digital signal as well as in-depth studies on application to secure communication.
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