
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 740194, 14 pages
http://dx.doi.org/10.1155/2013/740194

Research Article
Wu’s Characteristic Set Method for SystemVerilog
Assertions Verification

Xinyan Gao,1 Ning Zhou,2,3 Jinzhao Wu,4 and Dakui Li1

1 School of Software of Dalian University of Technology, Dalian 116620, China
2 School of Computer and Information Technology, Beijing Jiaotong University, Beijing 10044, China
3 School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
4Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis, Guangxi University for Nationalities,
Nanning 530006, China

Correspondence should be addressed to Xinyan Gao; tyler.gxy@hotmail.com and Jinzhao Wu; himrwujz@yahoo.com.cn

Received 8 February 2013; Revised 9 April 2013; Accepted 9 April 2013

Academic Editor: Xiaoyu Song

Copyright © 2013 Xinyan Gao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We propose a verification solution based on characteristic set ofWu’smethod towards SystemVerilog assertion checking over digital
circuit systems.Wedefine a suitable subset of SVAs so that an efficient polynomialmodelingmechanism for both circuit descriptions
and assertions can be applied. We present an algorithm framework based on the algebraic representations using characteristic
set of polynomial system. This symbolic algebraic approach is a useful supplement to the existent verification methods based on
simulation.

1. Introduction

Currently, functional verification becomes an intensive chal-
lenge phase in the state-of-the-art digital systems devel-
opment process. Assertion-based verification (ABV) has
emerged as a promising solution to express and verify design
properties.

SystemVerilog [1–3], the industry’s first unified hard-
ware description and verification language (HDVL), was
developed originally by Accellera and can be viewed as an
extension of the Verilog language with the added benefit of
supporting object orientated constructs and assertions.

SystemVerilog was adopted as IEEE Standard 1800–2005
firstly in 2005, and the latest version is IEEE standard 1800–
2009, the current version. SystemVerilog has been accepted by
a wide variety of companies and has been supported by most
EDA companies in their tools in practice which has totally
changed the way designers specify and verify functional re-
quirements and properties of digital systems.

Many efforts have been devoted to assertion checking
solvers in recent years includingmodel checking [4], theorem
proving [5], and other simulation-based checking methods.
In [6], an efficient approach to model check safety properties

expressed in assertion property is studied. Proving SVA safety
properties using induction-based BMC is studied in [7]. All
these methods can be classified into two categories: formal
and informal aspects.

On the one hand, formal method such as model checking
often suffers from “state explosion” problem and cannot be
applied to large scale cases. Model checking of SVAs is
PSPACE complete even for a “simple subset.” If more elab-
orated features, like intersection of regular expressions or
instantiation of properties, are used, the problem becomes
EXPSPACE complete.

On the other hand, informal methods such as conven-
tional simulation for assertion checking is a well-understood
and most commonly used technique, but only feasible for
very small scale systems and cannot provide exhaustive
checking.

A promising semiformal technique, symbolic simulation,
proposed by Darringer [8] as early as 1979, can provide
exhaustive checking by covering many conditions with a
single simulation sequence.

In our work, to address the challenge, we propose
an alternative implementation mechanism based on Wu’s
characteristic set by combining symbolic computation with

2 Journal of Applied Mathematics

symbolic simulation for assertions checking.This paper aims
to verify whether an expected SVA property holds or not on
the finite traces produced after several cycles running over a
given sequential circuit.

The underlying idea is that, for any combinational circuit
model, we can derive its data flow based on polynomial re-
presentation model. Meanwhile, for any sequential circuit
model and a given running cycle number, we can also derive
its polynomial representation by unrolling this sequential
circuit for several times into a pure combinationalmodel. In a
similar way, we can get polynomial set representation model
of a temporal assertion written in SVA.

By suitable restrictions of SVA and defining a constrained
subset of SVA, we can get the polynomial set representations
of the subset. Based on the polynomial set model, cycle-based
symbolic simulation can be performed to produce symbolic
traces. We then apply Wu’s method symbolic algebra ap-
proach to check the zeros set relation between their poly-
nomial representations and determine whether the expected
assertion holds or not at current running cycle.

The rest of this paper is structured as follows. Preliminary
knowledge with regarding to SystemVerilog used throughout
this paper is introduced in Section 2. Section 3 introduces
polynomial representation modeling for synchronous digital
systems. Section 4 describes the cycle-based model and
sequential unrolling. Section 5 will discuss sequential asser-
tions modeling with polynomials. In Section 6, we will pro-
pose a complete verification algorithm framework based on
Wu’s characteristic set. Section 7will demonstrate an example
using MMP tool based on our method. In the last section, we
make a short summary of our research and discuss the future
work.

2. SystemVerilog Preliminary

In this section, we will give some preliminary knowledge
which may be used in later sections of the paper.

SystemVerilog, as an IEEE approved hardware descrip-
tion language, has combinedmany of the best features of both
VHDL andVerilog and provided superior capabilities for sys-
tem architecture, design, and verification.

Therefore, on the one hand, VHDL users will recognize
many of the SystemVerilog constructs, such as enumerated
types, records, and multidimensional arrays.

On the other hand, Verilog users can reuse existing de-
signs: SystemVerilog is a superset of Verilog so no modifica-
tion of existing Verilog code is required.

SystemVerilog provides special language constructs and
assertions [9, 10], to verify design behavior. An assertion is a
statement that a specific condition, or sequence of conditions,
in a design is true. If the condition or sequence is not true, the
assertion statement will generate an error message.

One important capability of SystemVerilog is the ability
to define assertions outside of the Verilog modules and then
bind them to a specific module or module instance. This
feature allows test engineers to add assertions to existing Ver-
ilog models, without having to change the model in any way.
One of the goals of SystemVerilog assertions is to provide

a common semantic meaning for assertions so that they can
be used to drive various design and verification tools.

In SystemVerilog, there are two types of assertions: imme-
diate assertions and concurrent assertions.

Immediate assertions are primarily intended to be used
with simulation and evaluate using simulation event-based
semantics. While concurrent assertions are based on clock
semantics and use sampled values of variables.

Concurrent assertions can be used in always block or ini-
tial block as a statement, a module as a concurrent block, an
interface block as a concurrent block, a program block as a
concurrent block.

An example of a property using sequence and formal
argument is demonstrated as the following.

property 𝑡𝑒𝑠𝑡 [(𝑟𝑒𝑎𝑑𝑦, 𝑑𝑜𝑛𝑒,𝑚 𝑏𝑢𝑠, 𝑥 𝑏𝑢𝑠)];
𝑖𝑛𝑡 V 𝑑𝑎𝑡𝑎;
(𝑟𝑒𝑎𝑑𝑦, V 𝑑𝑎𝑡𝑎 = 𝑚 𝑏𝑢𝑠) ##[3 : 5]
(𝑑𝑜𝑛𝑒 && 𝑥 𝑏𝑢𝑠 == V 𝑑𝑎𝑡𝑎);

endproperty [: 𝑡𝑒𝑠𝑡]

The property 𝑡𝑒𝑠𝑡 states that if 𝑟𝑒𝑎𝑑𝑦 holds then local
variable V 𝑑𝑎𝑡𝑎 gets assigned the value of𝑚 𝑏𝑢𝑠.Then within
3 to 5 cycles later, 𝑑𝑜𝑛𝑒 is TRUE and 𝑥 𝑏𝑢𝑠 should be equal to
the contents of the saved local variable V 𝑑𝑎𝑡𝑎. The property
fails if 𝑟𝑒𝑎𝑑𝑦 is FALSE or if it follows a successful 𝑟𝑒𝑎𝑑𝑦; the
expression “𝑑𝑜𝑛𝑒 && 𝑥 𝑏𝑢𝑠 == V 𝑑𝑎𝑡𝑎” fails to be TRUE
within the range from 3 to 5 cycles after 𝑟𝑒𝑎𝑑𝑦.

As shown in this example, a concurrent assertion prop-
erty in SystemVerilog will never be evaluated by itself except
it is invoked by a verification statement. Therefore, only
the statement assert property 𝑡𝑒𝑠𝑡(𝑎, 𝑏, 𝑐, 𝑑) can cause the
checker to perform assertion checking.

The verification statement in SVA has three forms: assert,
assume, and cover. In this paper, only assume and assert are
involved: the statement assert to specify the property as a
checker to ensure that the property holds for the design; the
statement assume to specify the property as an assumption
for the environment. The purpose of the assume statement is
to allow properties to be considered as assumptions for for-
mal analysis as well as for dynamic simulation tools.

Basically, SVA has four language layers: Boolean, se-
quence, property, and statement.

(1) Boolean layer. The boolean layer consists of boolean
expressions inwhich each variable referenced is either
a design variable or a local variable of the assertion.

(2) Sequence layer. The sequence layer consists of regular
expressions over the boolean layer.

(3) Property layer. The property layer combines se-
quences to create temporal logic formulas.

(4) Statement layer. The statement layer defines whether
a property is to be evaluated as an obligation, an
assumption, or a coverage goal.

Moreover, SVA provides local variables as one of its
distinguishing features. A local variable is used to capture the
value of an expression at one point within a property and

Journal of Applied Mathematics 3

hold it for later reference, after which the local variable may
be reassigned. We will provide an efficient way to handle this
feature in later section of this paper.

3. Synchronous Digital System and Its
Polynomial Representation

In this section, we will discuss polynomial set expressions for
elementary units of combinational and sequential circuits.

We mainly focus on the register transfer level (RTL)
description of the circuit systems. Previous work [11, 12] has
shown that any combinational circuit can be uniquely repre-
sented by a minimum order polynomial.

Here, we give an alternative dataflow-based polynomial
set representationmodel for our assertions checking purpose
whose zero set can make such a data-flow model work well.

3.1. Combinational Logic Modeling. In this paper, we only
focus on arithmetic unit for calculating fixed-point opera-
tions. For any arithmetic unit, integer arithmetic operations
(addition, subtraction, multiplication, and division) and
basic logical operations, like “AND”, “OR”, and “NOT”, can be
modeled by the following polynomial forms in Table 1.

We will then discuss another important control structure
in digital system,multiplexer, which can be used to joinmany
small datapaths together to make bigger datapaths.

Basically, multiplexer provides a set of condition bits,
𝑏
𝑖
(0 ≤ 𝑖 ≤ 𝐵), a set of target identifiers, (0, . . . , 𝑇 − 1), and a

mapping from condition bit values to target identifiers. This
mapping takes the form of a condition tree:

𝑦 = 𝑀𝑈𝑋(𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
, 𝑠), 𝑖 = 𝑠 ⇒ 𝑦 = 𝑥

𝑖
, (0 ≤

𝑖 ≤ 𝑛)

⇒ 𝑦 − ∑
𝑛−1

𝑖=1
(∏
𝑗∈{0,1,...,𝑛−1}{𝑖}

((𝑠 − 𝑗)/(𝑖 − 𝑗))) ∗ 𝑥
𝑖
, with

∏
𝑖=0

𝑛−1
(𝑠 − 𝑖) = 0.

Note that for any bit-level variable 𝑥
𝑖
(0 ≤ 𝑖 ≤ 𝑛), a

limitation {𝑥
𝑖
∗ 𝑥
𝑖
− 𝑥
𝑖
} should be added for each.

3.2. Sequential Unit Modeling. In sequential circuits, flip-
flops (FF) and latches are fundamental building blocks which
are used as data storage elements. In this paper, wewill reduce
all sequential units to a simple unifiedmodel described below.

The flip-flop can be equivalently modeled as a multi-
plexer. We have the following proposition to state this model.

Proposition 1. For a 𝐷-typed flip-flop model (𝐷󸀠 is the next
state of 𝐷 and 𝑦 is the output signal of the flip-flop) with an
enable signal 𝑐, then its equivalent combinational formal is𝑦󸀠 =
𝑀𝑈𝑋(𝐷,𝐷

󸀠
, 𝑠) : 𝑖 = 𝑠 → 𝑦

󸀠
= 𝑥
𝑖
, (0 ≤ 𝑖 < 2, 𝑥

0
= 𝐷, 𝑥

1
=

𝐷
󸀠
), whose polynomial representation form can be described as

{(𝑦
󸀠
−𝐷)∗(𝑐−1), (𝑦󸀠−𝐷󸀠)∗𝑐, (𝑦󸀠−𝐷)∗(𝑦󸀠−𝐷󸀠)} or

{𝑦
󸀠
− 𝐷 ∗ (𝑐 − 1) − 𝐷

󸀠
∗ 𝑐}.

Proof. Let𝐷 be the current state and 𝑦󸀠 denote the next state
of the flip-flop.When the signal 𝑐 is 0,𝑦󸀠 has the same value as
𝐷 so that the FF maintains its present state; when the signal 𝑐

Table 1: Polynomial representation for arithmetic and logical units.

Arithmetic or logical operation Polynomial set representation
𝑦 = 𝑎 + 𝑏 {𝑦 − 𝑎 − 𝑏}

𝑦 = 𝑎 − 𝑏 {𝑦 − 𝑎 + 𝑏}

𝑦 = 𝑎 ∗ 𝑏 {𝑦 − 𝑎 ∗ 𝑏}

𝑦 = 𝑎/𝑏 {𝑦 ∗ 𝑏 − 𝑎}

𝑦 = NOT 𝑥 {1 − 𝑥 − 𝑦}

𝑦 = 𝑥
1
AND 𝑥

2
{𝑥
1
∗ 𝑥
2
− 𝑦}

𝑦 = 𝑥
1
OR 𝑥

2
{𝑥
1
+ 𝑥
2
− 𝑥
1
∗ 𝑥
2
− 𝑦}

is 1, 𝑦󸀠 takes a new value from the𝐷󸀠 input (where𝐷󸀠 denotes
the new value of next state of the FF). Therefore, we have
the 2-value multiway branch model and its polynomial set
representation for FF.

This establishes the proposition.

Proposition 2. Let𝐷 be an FFmodel (𝐷󸀠 is the next state of𝐷
and 𝑦 is the output signal of the flip-flop) without enable signal;
then its equivalent combinational formal polynomial algebraic
model can be described as {𝑦󸀠 − 𝐷}.

Proof. Straightforward.

Proposition 3. Let 𝐷 be an FF model (𝐷󸀠 is the next state of
𝐷 and 𝑦 is the output signal of the flip-flop) with a reset signal;
then its equivalent combinational formal polynomial algebraic
model can be described as {𝑦󸀠 − 𝐷 ∗ (1 − 𝑟𝑒𝑠𝑒𝑡)}.

Proof. Straightforward.

4. Cycle-Based Simulation and
Sequential Unrolling

In this section, we will sketch the underlying system model
for symbolic simulation used in our work.

Basically, symbolic simulation takes in variables
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
), as shown in Figure 1, called free variables,

as input and produces output expressions in terms of the
variables (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
). The free variable can be either

bit-level, integer, or constant 0 and 1. The symbolic simulator
simulates simultaneously the entire set of the points that the
input variables can take on.

Cycle-based symbolical simulation of a circuit for 𝑛 cycles
can be regarded as unrolling the circuit 𝑛 times.The unrolled
circuit is a pure combinational one, and the 𝑖th copy of the
circuit represents the circuit at cycle 𝑖. Thus, the unrolled
circuit contains all the symbolic results for 𝑛 cycles.

The simulation process can be described as follows.
Firstly, cycle-based symbolical simulation is initialized by
setting the state of the circuit to the initial vector. Each of
the primary input signals will be assigned a distinct symbolic
variable or a symbolic constant. Then, at the end of a simu-
lation step, the expressions representing the next-state func-
tions generally undergo a transformation-based optimiza-
tion. Afterwards the newly generated functions are used as
present state for the next state of simulation.

4 Journal of Applied Mathematics

FFs FFs

Comb.
logic

Comb.
logic

{𝑥1, 𝑥2, 𝑥𝑚} {𝑦1, 𝑦2, 𝑦𝑛}
Inputs Outputs Inputs Outputs

· · ·

. . . , . . . , {. . . , } {. . . , }

Figure 1: Symbolic simulation model.

Generally, for a sequential circuit, one time frame of a
sequential circuit is viewed as a combinational circuit in
which each flip-flopwill be converted into two corresponding
signals: a pseudo primary input (PPI) and a pseudo primary
output (PPO). Time-frame expansion is achieved by connect-
ing the PPIs of the current time frame to the corresponding
PPOs of the previous time frame.

5. SVA Expressions with Polynomial Set

In this section, wewill discuss concurrent assertions and their
temporal layer representation models.

As mentioned previously, concurrent assertions express
functional design intent and can be used to express assumed
input behavior, expected output behavior, and forbidden
behavior. That is, assertions define properties that the design
must meet. Many properties can be expressed strictly from
variables available in the design, while properties are often
constructed out of sequential behaviors.

We begin with the introduction of polynomial notions for
various layers modeling.

5.1. Polynomial Notions and Algebraization. For clarity, we
introduce the following symbolic notions for algebraic rep-
resentation used in the rest of this paper.

(1) For any symbolic (circuit, unit, signal, sequence,
property, etc.) 𝑓, its algebraic representation form is
denoted by ⟦𝑓⟧.

(2) If a running cycle 𝑡 is given, its algebraic representa-
tion form can be denoted by ⟦𝑓⟧

[𝑡]
.

(3) Furthermore, if a time range [𝑚 ⋅ ⋅ ⋅ 𝑛] is specified, its
algebraic representation form can then be denoted by
⟦𝑓⟧
[𝑚⋅⋅⋅𝑛]

[𝑡]
.

Note that more detailed description of time range will be
discussed in next subsection.

For a given sequential circuit, to illustrate the sequential
modeling for a given cycle number clearly, we will define the
following indexed polynomial representation model for the
𝑖th cycle by using the above notions.

Definition 4 (indexed polynomial representation). Let 𝑥
[𝑟][𝑙]

(0 ≤ 𝑟 ≤ 𝑅, 𝑅 ∈ N) denote the input signals for the 𝑙th clock
cycle, 𝑚

[𝑠][𝑙]
(0 ≤ 𝑠 ≤ 𝑆, 𝑆 ∈ N) denote the intermediate

signals, and 𝑦
[𝑡][𝑙]

(0 ≤ 𝑡 ≤ 𝑇, 𝑇 ∈ N) denote the output
signals. We define the time-frame expansion model ⟦𝑀⟧ as

indexed polynomial representation for the sequential cir-
cuit 𝐶 as the following:

⟦𝑀⟧

= {

𝑛

⋃

𝑖=0

⟦C⟧ (. . . , ⟦𝑥
[𝑟][𝑖]

⟧ , . . . , ⟦𝑚
[𝑠][𝑖]

⟧ , . . . , ⟦𝑦
[𝑡][𝑖]

⟧ , . . .)} ,

(1)

where, ⟦C⟧(. . . , ⟦𝑥
[𝑟][𝑖]

⟧, . . . , ⟦𝑚
[𝑠][𝑖]

⟧, . . . , ⟦𝑦
[𝑡][𝑖]

⟧, . . .) de-
notes the 𝑖th time-frame model of the original circuit and 𝑛
denotes the number of clock cycle.

In the following, we will discuss Boolean layer modeling
based on above polynomial notions.

The Boolean layer of SVA forms an underlying basis for
the whole assertion architecture which consists of Boolean
expressions that hold or do not hold at a given cycle.

In SVA, the following are valid Boolean expressions:

𝑎𝑟𝑟𝑎𝑦𝐴 == 𝑎𝑟𝑟𝑎𝑦𝐵

𝑎𝑟𝑟𝑎𝑦𝐴! = 𝑎𝑟𝑟𝑎𝑦𝐵

𝑎𝑟𝑟𝑎𝑦𝐴[𝑖] >= 𝑎𝑟𝑟𝑎𝑦𝐵[𝑗]

𝑎𝑟𝑟𝑎𝑦𝐵[𝑖][𝑗+ : 2] == 𝑎𝑟𝑟𝑎𝑦𝐴[𝑘][𝑚− : 2]

(𝑎𝑟𝑟𝑎𝑦𝐴[𝑖]&(𝑎𝑟𝑟𝑎𝑦𝐵[𝑗])) == 0

For example, assertion (𝑎[15 : 0] == 𝑏[15 : 0]) is also a
valid Boolean expression stating that the 16-bit vectors 𝑎[15 :
0] and 𝑏[15 : 0] are equal.

The state of a signal variable in current cycle 𝑖 will be
viewed as a zero of a set of polynomials. We have the zero set
building rules.

ZS-1 : for any signal 𝑥 which holds at a given time-
frame 𝑖, thus, the state of 𝑥 == 1 (𝑥 is active high at
cycle 𝑖) can be represented by polynomial {𝑥

[𝑖]
− 1}.

That is, ⟦𝑥
[𝑖]
⟧ = {𝑥

[𝑖]
− 1}.

ZS-2 : alternatively, the state of 𝑥 == 0 (𝑥 is active
low at time-frame 𝑖) can be represented by polynomial
{𝑥
[𝑖]
}. That is, ⟦𝑥

[𝑖]
⟧ = {𝑥

[𝑖]
}.

ZS-3 : For any signal 𝑥 and 𝑦, we have: ⟦𝑥
[𝑖]
∧ 𝑦
[𝑗]
⟧ =

{(𝑥
[𝑖]
−1), (𝑦

[𝑗]
−1)} and ⟦𝑥

[𝑖]
∨𝑦
[𝑗]
⟧ = {(𝑥

[𝑖]
−1)(𝑦

[𝑗]
−

1)} hold. Where 𝑖 and 𝑗 are time frames.

5.2. Time Range and Its Unrolled Model. Wewill then discuss
the important feature of SVA, time range, and its signal
constraint unrolled model.

In SVA, for each sequence the earliest time step for the
evaluation and the latest time step should be determined
firstly. The sequence is then unrolled based on above infor-
mation. Finally, the unrolled sequence will be modeled with
polynomial set.

In [7], a time range calculating algorithm is provided.
Here, we will introduce some related definition and special
handling for algebraization purpose. The syntax of “time

Journal of Applied Mathematics 5

range” can be described as follows:

𝑐𝑦𝑐𝑙𝑒 𝑑𝑒𝑙𝑎𝑦 𝑐𝑜𝑛𝑠𝑡 𝑟𝑎𝑛𝑔𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ::=

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 : 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

|𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 : $

Note that 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 is computed at compiling
time, must result in an integer value, and can only be 0 or
greater.

In this paper, we only focus on constant time range case.
Thus, its form can be simplified as

(1) 𝑎##[𝑚 : 𝑛] 𝑏 (𝑚, 𝑛 ∈ N and 𝑛 ≥ 𝑚 ≥ 0),
(2) 𝑆
1
##[𝑚 : 𝑛] 𝑆

2
(𝑚, 𝑛 ∈ N and 𝑛 ≥ 𝑚 ≥ 0),

where, 𝑎, 𝑏 are signals and 𝑆
1
, 𝑆
2
are sequences.

Let 𝑆 := “𝑎##[𝑚 : 𝑛]𝑏” (𝑚, 𝑛 ∈ N and 𝑛 ≥ 𝑚 ≥ 0) be a
sequence; we will demonstrate how to equivalently derive its
polynomial representation step by step through this example.

Assume the starting time frame is 𝑡; then: the sequence 𝑆
will start (𝑛 − 𝑚 + 1) sequences of evaluation which are

󳨐⇒

{{{{{

{{{{{

{

𝑎##𝑚𝑏
𝑎## (𝑚 + 1) 𝑏

...
𝑎## (𝑛 − 𝑚 + 1) 𝑏,

respectively. (2)

Correspondingly, we can derive their algebraic forms as
follows:

󳨐⇒

{{{{{{{{

{{{{{{{{

{

⟦𝑎##𝑚𝑏⟧
[𝑡]
= ⟦𝑎
𝑡
∧ 𝑏
𝑡+1
⟧

⟦𝑎##(𝑚 + 1)𝑏⟧
[𝑡]
= ⟦𝑎
𝑡
∧ 𝑏
𝑡+2
⟧

...
⟦𝑎##(𝑛 − 𝑚 + 1)𝑏⟧

[𝑡]

= ⟦𝑎
𝑡
∧ 𝑏
𝑡+𝑛−𝑚+1

⟧ ,

respectively.

(3)

Thenwe have the equivalent form of above representation
set as

󳨐⇒ ⟦𝑆⟧
[𝑡]
= ⟦(𝑎
𝑡
∧ 𝑏
𝑡+𝑚

) ∨ ⋅ ⋅ ⋅ ∨ (𝑎
𝑡
∧ 𝑏
𝑡+𝑛
)⟧ . (4)

Finally, we can have their polynomial set forms by fol-
lowing the zero set building rules discussed previously:
ZS-1, ZS-2, and ZS-3.

Similarly, we can also derive the equivalent algebraic
representation of ⟦𝑆

1
##[𝑚 : 𝑛]𝑆

2
⟧
[𝑡]

by following the same
steps.

5.3. Sequential Depth Calculation. The time range of a se-
quential is a time interval during which an operation or a
terminal of a sequence has to be considered and is denoted by
a closed bounded set of positive integers:

𝑇 = [𝑙 ⋅ ⋅ ⋅ ℎ] = {𝑥𝑙 ≤ 𝑥 ≤ ℎ} (here, 𝑥, 𝑙, ℎ ∈ N) . (5)

Furthermore, the maximum of two intervals 𝑇
1
and 𝑇

2
is

defined by𝑚𝑎𝑥(𝑇
1
, 𝑇
2
) = [𝑚𝑎𝑥(𝑙

1
, 𝑙
2
) ⋅ ⋅ ⋅ 𝑚𝑎𝑥(ℎ

1
, ℎ
2
)].

In the samemanner, the sum of two time range, of 𝑇
1
and

𝑇
2
is defined as 𝑇

1
+ 𝑇
2
= [(𝑙
1
+ 𝑙
2
) ⋅ ⋅ ⋅ (ℎ

1
+ ℎ
2
)].

Definition 5 (maximum sequential depth). The maximum
sequential depth of a SVA expression 𝐹 or a sequence, written
𝑑𝑒𝑝(𝐹), is defined recursively:

(1) 𝑑𝑒𝑝(𝑎) = [1 ⋅ ⋅ ⋅ 1], if 𝑎 is a signal;
(2) 𝑑𝑒𝑝(¬𝑎) = [1 ⋅ ⋅ ⋅ 1], if 𝑎 is a signal;
(3) 𝑑𝑒𝑝(𝐹

1
##𝐹
2
) = 𝑑𝑒𝑝(𝐹

1
) + 𝑑𝑒𝑝(𝐹

2
), if 𝐹

1
, 𝐹
2
are

sequences of SVA;
(4) 𝑑𝑒𝑝(𝐹

1
##[𝑚 : 𝑛]𝐹

2
) = 𝑑𝑒𝑝(𝐹

1
) + 𝑑𝑒𝑝(𝐹

2
) + [𝑚 ⋅ ⋅ ⋅ 𝑛],

if 𝐹
1
, 𝐹
2
are sequences of SVA;

(5) 𝑑𝑒𝑝(𝐹
1
and 𝐹

2
) = 𝑚𝑎𝑥(dep(𝐹

1
), 𝑑𝑒𝑝(𝐹

2
)), if 𝐹

1
, 𝐹
2

are sequences of SVA;
(6) 𝑑𝑒𝑝(𝐹

1
or 𝐹
2
) = 𝑚𝑎𝑥(𝑑𝑒𝑝(𝐹

1
), 𝑑𝑒𝑝(𝐹

2
)), if 𝐹

1
, 𝐹
2
are

sequences of SVA;
(7) 𝑑𝑒𝑝(𝐹

1
intersect 𝐹

2
) = 𝑑𝑒𝑝(𝐹

1
) + 𝑑𝑒𝑝(𝐹

2
) − 1, if 𝐹

1
,

𝐹
2
are sequences of SVA;

(8) 𝑑𝑒𝑝(𝐹[𝑛]) = 𝑛 ∗ 𝑑𝑒𝑝(𝐹), if 𝐹 is a sequence of SVA.

Note that if 𝑑𝑒𝑝(𝐹) = [𝑚 ⋅ ⋅ ⋅ 𝑛], we have 𝑑𝑒𝑝(𝐹) ⋅ 𝑙 = 𝑚 and
𝑑𝑒𝑝(𝐹) ⋅ ℎ = 𝑛.

5.4. Sequence OperatorModeling. Temporal assertions define
not only the values of signals but also the relationship bet-
ween signals over time.The sequences are the building blocks
of temporal assertions and can express a set of linear behavior
lasting one or more cycles. These sequences are usually used
to specify and verify interface and bus protocols.

A sequence is a regular expression over the boolean
expressions that concisely specifies a set of linear sequences.
The Boolean expressions must be true at those specific clock
ticks for the sequence to be true over time.

SystemVerilog provides several sequence composition
operators to combine individual sequences in a variety of
ways that enhance code writing and readability which can
construct sequence expressions from Boolean expressions.

In this paper, throughout operator, [1 : $] operator, and
the first match operator are not supported by our method.

In the following, we will discuss the algebraic representa-
tion of the supported sequence operators.

(1) cycle delay operator. In SystemVerilog, the ## con-
struct is referred to as a cycle delay operator.

“##1” and “##0” are concatenation operators: the former
is the classical regular expression concatenation; the latter is
a variant with one-letter overlapping. The cycle delay in SVA
has two basic forms.

(a) A “##𝑛” followed by a number 𝑛 specifies the 𝑛 cycles
delay from the current clock cycle to the beginning of
the sequence that follows.

(b) A “##[𝑚 ⋅ ⋅ ⋅ 𝑛]” followed by a rang [𝑚 ⋅ ⋅ ⋅ 𝑛] specifies
the [𝑚 ⋅ ⋅ ⋅ 𝑛] cycles delay from the current clock cycle
to the beginning of the sequence that follows.

It is easy to derive the algebraic representation forms
for this operator by following the method discussed in
Section 5.2.

6 Journal of Applied Mathematics

(2) intersect operator. The two operands of intersect
operator are sequences. The requirements for match of the
intersect operation are as follows:

(a) both operands must match,
(b) the lengths of the two matches of the operand

sequences must be the same.

“𝑅
1
intersect 𝑅

2
” denotes that 𝑅

1
starts at the same time as

𝑅
2
.The intersection will match if𝑅

1
, starting at the same time

as 𝑅
2
, matches at the same time as 𝑅

2
matches.

The sequence length matching intersect operator con-
structs a sequence like the and nonlength matching operator,
except that both sequences must complete in same cycle.

(3) and operator. This operation “𝑅
1
and 𝑅

2
” states that

𝑅
1
starts at the same time as 𝑅

2
and the sequence expression

matches with the later of 𝑅
1
and 𝑅

2
matching. This binary

operator is used when both operands are expected to match,
but the end times of the operand sequences can be different.

That is, “𝑅
1
and 𝑅

2
” denotes that both𝑅

1
and𝑅

2
hold for

the same number cycles. Then, the matches of “𝑅
1
and 𝑅

2
”

must satisfy the following:

(a) the start point of the match of 𝑅
1
must not be earlier

than the start point of the match of 𝑅
2
;

(b) the end point of thematch of𝑅
1
must not be later than

the end point of the match of 𝑅
2
.

The sequence nonlength matching and operator con-
structs a sequence in which two sequences both hold at the
current cycle regardless of whether they complete in the same
cycle or in different cycles.

(4) or operator. The sequence or operator constructs a
sequence in which one of two alternative sequences holds at
the current cycle. Thus, the sequence “(𝑎##1 𝑏) or (𝑐##1 𝑑)”
states that either sequence “𝑎, 𝑏” or sequence “𝑐, 𝑑” would
satisfy the assertion.

(5) repetition operator. SystemVerilog allows the user to
specify repetitions when defining sequences of Boolean ex-
pressions. The repetition counts can be specified as either a
range of constants or a single constant expressions.

The syntax of repetition operator can be illustrated as the
following:

𝑛𝑜𝑛 𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖V𝑒 𝑟𝑒𝑝 ::= [= 𝑐𝑜𝑛𝑠𝑡 𝑜𝑟 𝑟𝑎𝑛𝑔𝑒 𝑒𝑥𝑝𝑟].

The number of iterations of a repetition can be specified by
exact count.

From above discussion, we have the following rules for
polynomial set-based representation.

Rule 1. Assume that 𝑅, 𝑅
1
, and 𝑅

2
are valid SVA sequences;

the rules in Table 2 can be used to construct the correspond-
ing polynomial set representations.

5.5. Local Variables Representation. An important feature in
SVA is that variables can be used in assertions which is highly
useful in pipelined designs. These local variables are optional
and local to properties. They can be initialized, assigned or
reassigned a value, operated on, and compared to other ex-
pressions.

Table 2: Polynomial representation for sequence operators.

NO. Sequence Polynomial set representation

1 𝑎##𝑛 𝑏 ({⟦𝑎⟧
[𝑡]
, ⟦𝑏⟧
[𝑡+𝑛]

})

𝑎##[𝑚 ⋅ ⋅ ⋅ 𝑛] 𝑏 ∨
𝑛

𝑖=𝑚
({⟦𝑎⟧

[𝑡]
, ⟦𝑏⟧
[𝑡+𝑖]

})

2 𝑅
1
intersect 𝑅

2 {⟦𝑅
1
⟧
𝑑𝑒𝑝(𝑅1)

[𝑡]
} ∧ {⟦𝑅

2
⟧
𝑑𝑒𝑝(𝑅1)

[𝑡]
}

3 𝑅
1
and 𝑅

2

∨
ℎ1

𝑖=𝑙1
∨
ℎ2

𝑗=𝑙2
({⟦𝑅
1
⟧
𝑖

[𝑡]
} ∧ {⟦𝑅

2
⟧
𝑗

[𝑡]
})

Here, 𝑙
𝑖
= 𝑑𝑒𝑝(𝑅

𝑖
) ⋅ 𝑙; ℎ

𝑖
= 𝑑𝑒𝑝(𝑅

𝑖
) ⋅ ℎ

(1 ≤ 𝑖 ≤ 2)

4 𝑅
1
or 𝑅
2

∨
ℎ1

𝑖=𝑙1
∨
ℎ2

𝑗=𝑙2
({⟦𝑅
1
⟧
𝑖

[𝑡]
} ∨ {⟦𝑅

2
⟧
𝑗

[𝑡]
})

Here, 𝑙
𝑖
= 𝑑𝑒𝑝(𝑅

𝑖
) ⋅ 𝑙; ℎ

𝑖
= 𝑑𝑒𝑝(𝑅

𝑖
) ⋅ ℎ

(1 ≤ 𝑖 ≤ 2)

5 𝑅 [= 𝑛] ∨
𝑛

𝑖=0
({⟦𝑅
1
⟧
𝑖∗𝑑𝑒𝑝(𝑅)

[𝑡]
})

The dynamic creation of a variable and its assignment are
achieved by using the local variable declaration in a sequence
or property declaration and making an assignment in the se-
quence.

A simple example of property with a local variable is
specified below:

property 𝑑𝑎𝑡𝑎𝑜𝑢𝑡;
𝑙𝑜𝑔𝑖𝑐[31 : 0] 𝑥;
@(posedge 𝑐𝑙𝑘)($rose(𝑙𝑜𝑎𝑑), 𝑥 = 𝑑𝑎𝑡𝑎) |=> ##[0 :
5]

(𝑟𝑒𝑎𝑑𝑦 && 𝑑𝑜𝑢𝑡 && 𝑑𝑎𝑡𝑎 == 𝑥) |=> ##[0 :

3]𝑑𝑜𝑛𝑒 && 𝑞 == 𝑥;
endproperty

Thus, local variables of a sequence (or property) may be
set to a value, which can be computed from a parameter or
other objects (e.g., arguments. constants, or objects visible by
the sequence (or property)).

For the algebraization of SVA properties with local
variables, in our method these local variables will be taken as
common signal variables (symbolic constant) without any
sequential information.

Thus, the polynomial set representation for property
𝑑𝑎𝑡𝑎𝑜𝑢𝑡 will be translated in the following form:

⟦𝑑𝑎𝑡𝑎𝑜𝑢𝑡⟧
[𝑡]
= {⋅ ⋅ ⋅ (⟦𝑑𝑎𝑡𝑎⟧

[𝑡]
− 𝑥) , . . . , (⟦𝑞⟧

[𝑡]
− 𝑥)} .

(6)

5.6. Property Operator Modeling. In SVA, a property that is a
sequence evaluates to true if, and only if, there is a nonempty
match of the sequence. Property expressions are built using
sequences, other sublevel properties, and simple Boolean
expressions via property connectives.

In general, property expressions are built using se-
quences, other sublevel properties, and simple Boolean ex-
pressions.

Journal of Applied Mathematics 7

These individual elements are combined using property
operators which are listed as follows:

𝑃 ::= 𝑅 (“sequence” form);
|(𝑃) (“parenthesis” form);
| NOT 𝑃 (“negation” form);
| (𝑃
1
OR 𝑃

2
) (“or” form);

| (𝑃
1
AND 𝑃

2
) (“and” form);

| (𝑅 | −> 𝑃) (“implication” form);
| (𝑅 | => 𝑃) (“implication” form);
| disable iff(𝑏) 𝑃 (“reset” form)

Note that disable iff will not be supported in this paper.
Property operators construct properties out of sequence ex-
pressions.

(1) Implication operators. The SystemVerilog implica-
tion operator supports sequence implication and provides
two forms of implication: overlapped using operator | −> and
nonoverlapped using operator | =>, respectively.

The implication operator takes a sequence as its
antecedent and a property as its consequent. For each success-
ful match of the antecedent sequence, the consequence se-
quence is separately evaluated, beginning at the end point of
the matched antecedent sequence. All matches of antecedent
sequence require a match of the consequence sequence.

(2) NOT operator. “NOT 𝑃” states that the evaluation of
the property returns the opposite of the evaluation of the
underlying 𝑃.

(3) AND operator. “𝑃
1
AND 𝑃

2
” states that the property

evaluates to true if, and only if, both 𝑃
1
and 𝑃

2
evaluate to

true.
(4) OR operator. “𝑃

1
OR 𝑃

2
” states that the property

evaluates to true if, and only if, at least one of 𝑃
1
and 𝑃

2

evaluates to true.
(5) IF-ELSE operator. This operator has two valid forms

which are listed as follows.

(a) IF (𝑑𝑖𝑠𝑡) 𝑃
1
. A property of this form evaluates to true

if, and only if, either 𝑑𝑖𝑠𝑡 evaluates to false or 𝑃
1

evaluates to true.
(b) IF (𝑑𝑖𝑠𝑡) 𝑃

1
ELSE 𝑃

2
. A property of this form evalu-

ates to true if, and only if, either 𝑑𝑖𝑠𝑡 evaluates to true
and 𝑃
1
evaluates to true or 𝑑𝑖𝑠𝑡 evaluates to false and

𝑃
2
evaluates to true.

From the previous discussion, we have the checking rules
for property reasoning.

Rule 2. Assume that 𝑃, 𝑃
1
, and 𝑃

2
are valid SVA properties,

𝑆 denotes a SVA sequence, and𝑀 denotes the system model
to be checked; the following transformation rules in Table 3
are used to construct the corresponding verification process,
where 𝐴𝑠𝑠𝐶ℎ𝑘(𝑀𝑜𝑑𝑒𝑙, 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦) : {ture, false} is a self-
defined justification function which can take either poly-
nomial sets or original models as input arguments and is
used to determine wether a given 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 holds or not with
respect to a circuitmodel𝑀𝑜𝑑𝑒𝑙. Additionally,¬,∨, and∧ are
standard logical connectives.

Table 3: Polynomial representation for property operators.

Property
operation Polynomial set representation

𝑃
1
OR 𝑃

2
𝐴𝑠𝑠𝐶ℎ𝑘 (⟦𝑀⟧ , ⟦𝑃

1
⟧) ∨ 𝐴𝑠𝑠𝐶ℎ𝑘 (⟦𝑀⟧ , ⟦𝑃

2
⟧)

𝑃
1
AND 𝑃

2
𝐴𝑠𝑠𝐶ℎ𝑘 (⟦𝑀⟧ , ⟦𝑃

1
⟧) ∧ 𝐴𝑠𝑠𝐶ℎ𝑘 (⟦𝑀⟧ , ⟦𝑃

2
⟧)

NOT 𝑃 ¬ 𝐴𝑠𝑠𝐶ℎ𝑘 (⟦𝑀⟧ , ⟦𝑃⟧)

IF (𝑑𝑖𝑠𝑡) 𝑃
1

¬ 𝐴𝑠𝑠𝐶ℎ𝑘 (⟦𝑀⟧ , 𝑑𝑖𝑠𝑡) ∨ 𝐴𝑠𝑠𝐶ℎ𝑘 (⟦𝑀⟧ , ⟦𝑃
1
⟧)

IF (𝑑𝑖𝑠𝑡) 𝑃
1

ELSE 𝑃
2

(𝐴𝑠𝑠𝐶ℎ𝑘 (⟦𝑀⟧ , 𝑑𝑖𝑠𝑡) ∧ 𝐴𝑠𝑠𝐶ℎ𝑘 (⟦𝑀⟧ , ⟦𝑃
1
⟧)) ∨

(¬ 𝐴𝑠𝑠𝐶ℎ𝑘 (⟦𝑀⟧ , 𝑑𝑖𝑠𝑡) ∧ 𝐴𝑠𝑠𝐶ℎ𝑘 (⟦𝑀⟧ , ⟦𝑃
2
⟧))

𝑆| −> 𝑃

𝑖𝑓 (¬ 𝐴𝑠𝑠𝐶ℎ𝑘 (⟦𝑀⟧ , ⟦𝑆⟧)) 𝑟𝑒𝑡𝑢𝑟𝑛 true
𝑒𝑙𝑠𝑒 (𝐴𝑠𝑠𝐶ℎ𝑘 (⟦𝑀⟧ , ⟦𝑆⟧

[𝑡]
) ∧

𝐴𝑠𝑠𝐶ℎ𝑘 (⟦𝑀⟧ , ⟦𝑃⟧
𝑑𝑒𝑝(𝑃)

[𝑡+𝑑𝑒𝑝(𝑆)−1]
))

𝑆| => 𝑃

𝑖𝑓 (¬ 𝐴𝑠𝑠𝐶ℎ𝑘 (⟦𝑀⟧ , ⟦𝑆⟧)) 𝑟𝑒𝑡𝑢𝑟𝑛 true
𝑒𝑙𝑠𝑒 (𝐴𝑠𝑠𝐶ℎ𝑘 (⟦𝑀⟧ , ⟦𝑆⟧

[𝑡]
) ∧

𝐴𝑠𝑠𝐶ℎ𝑘 (⟦𝑀⟧ , ⟦𝑃⟧
𝑑𝑒𝑝(𝑃)

[𝑡+𝑑𝑒𝑝(𝑆)]
))

5.7. Constrained Subset of SVAs. SystemVerilog assertions for-
mally define the syntax and grammar of an assertion language
that can define design properties and constraints, including
temporal (i.e., spread over several cycles) characteristics.
The atoms of the SVA concurrent assertions are so called
sequences. A sequence is a regular expression that describes
the behavior of signals over time. A property of SVA is
composed of sequences by property operators.

As described in [13], the total set of SVA can be divided
into 4 subgroups, namely, simple sequence expression
(SSE), interval sequence expression (ISE), complex sequence
expression (CSE), and unbounded sequence expression
(USE). Here, in our method, only a subset of these groups
can be supported.

Formally, we will give the following definition for this
subset.

Definition 6 (constrained subset of SVA). The constrained
subset of SVA supported by algebraic symbolic polynomial
representation is defined recursively as the following:

(1) 𝑅 ::= 𝑏|(V = 𝑒)|(𝑅)|(𝑅##𝑚)|(𝑅##[𝑚 ⋅ ⋅ ⋅ 𝑛]𝑅)|(𝑅 or 𝑅)|
(𝑅
1
intersect 𝑅

2
)|𝑅[= 𝑛]|(𝑅

1
and 𝑅

2
),

(2) 𝑃 ::= 𝑅|(𝑃)| NOT 𝑃 |(𝑃
1
AND 𝑃

2
) | (𝑃
1
OR 𝑃

2
|(𝑅 |

−> 𝑃)| (𝑅 |=> 𝑃)),
where 𝑏 denotes a Boolean expression and all Boolean
operators are supported,𝑅 (𝑅

1
,𝑅
2
) denotes a sequence,𝑃 (𝑃

1
,

𝑃
2
) denotes a property, V denotes a local variable name, and 𝑒

denotes an expression.

For sequence operators, unspecified upper bound time
range and first-match operator are excluded from the con-
strained subset. Additionally, property operator disable iff
will not be supported also.

In this paper, only a constrained subset of SVA language
defined above can be supported by our method.

Firstly, we translate the properties described by the con-
strained subset of SVA into flat sequences according to the
semantics of each supported operator.

8 Journal of Applied Mathematics

Secondly, the unrolled flat sequences will be added tem-
poral constraints to form proportional formulas with logical
connectives (∨, ∧, and ¬).

Finally, the resulted proportional formulas will be trans-
lated into equivalent finite polynomial set.

Then, the verification problem is reduced to proving zero
set inclusion relationship which can be resolved by character-
istic set-based algebraic approaches.

6. Characteristic Set Based Verification
Principle and Algorithm

In this section, we will discuss the checking algorithm based
on Wu’s characteristic set. We first recall some fundamental
knowledge in Wu’s method.

6.1. Wu’s Method Preliminary. Wu’s method [14, 15] is an
efficient algorithm for solving multivariate polynomial equa-
tions introduced by Wen-Tsun Wu. It also has succeeded in
mechanical geometry theorem proving. For further details
and elementary introduction, we refer the reader to [16].

Let 𝑃
𝑖
= k[𝑥

1
, . . . , 𝑥

𝑖
] denote the polynomial ring in

variables 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑖
with coefficient k, for every 𝑖 in the

range {1, . . . , 𝑛}, and k is an algebraically closed field.
In what follows, without loss of generality, we assume that

the given variables ordering is fixed as

𝑥
1
≺ 𝑥
2
≺ ⋅ ⋅ ⋅ ≺ 𝑥

𝑛
. (7)

Assume 𝑝 ∈ k[𝑥
1
, . . . , 𝑥

𝑛
] and let 𝑑𝑒𝑔(𝑝, 𝑥

𝑖
) be the maximum

degree of 𝑝 with respect to 𝑥
𝑖
.

Definition 7. Let𝑝 ∈ 𝑃
𝑖
; the greatest variable V ∈ {𝑥

1
, . . . , 𝑥

𝑖
} is

called themain variable of 𝑝 such that 𝑑𝑒𝑔(𝑝, V) ̸= 0, denoted
by 𝑚V𝑎𝑟(𝑝). The biggest index 𝑖 is called the class, denoted
by 𝑐𝑙𝑎𝑠𝑠(𝑝). If we assume 𝑝 as a univariate polynomial with
𝑚V𝑎𝑟(𝑝) = 𝑥

𝑖
, we can write𝑝 = 𝑐𝑥𝑑

𝑖
+𝑟, where 𝑑 = 𝑑𝑒𝑔(𝑝, 𝑥

𝑖
).

In this case, 𝑐 and 𝑑 are, respectively, the initial and themain
degree and are denoted by 𝑖𝑛𝑖𝑡(𝑝) and𝑚𝑑𝑒𝑔(𝑝).

Definition 8 (pseudo division). For any two polynomials
𝑓, 𝑔 ∈ 𝑃

𝑖
, with 𝑐𝑙𝑎𝑠𝑠(𝑓) = 𝑗. There exist a nonnegative

number 𝛼 and polynomials 𝑞 and 𝑟, such that 𝑖𝑛𝑖𝑡(𝑓)𝛼𝑔 =

𝑞𝑓 + 𝑟. Where 𝑟 is denoted by 𝑝𝑟𝑒𝑚(𝑔, 𝑓, 𝑥
𝑗
). We denote the

remainder 𝑟 on pseudo division (pseudo remainder) of 𝑓 by
𝑔 with respect to the variable 𝑦 by 𝑝𝑟𝑒𝑚(𝑓, 𝑔, 𝑦).

Definition 9 (Wu’s characteristic set). Let 𝑃𝑆 and 𝐶𝑆 be two
polynomial system, and 𝐶𝑆 is a triangular set; a triangular set
is called a characteristic set of 𝑃𝑆 if

∀𝑝 ∈ 𝑃𝑆, 𝑝𝑟𝑒𝑚 (𝑝, 𝐶𝑆) = 0. (8)

Theorem 10 (zero decomposition theorem). Let 𝑍𝑒𝑟𝑜(𝑃𝑆)
denote the zero set of 𝑃𝑆 and 𝐶𝑆 be a characteristic set of 𝑃;
then

𝑍𝑒𝑟𝑜 (𝑃𝑆) = 𝑍𝑒𝑟𝑜 (
𝐶𝑆

𝑖𝑛𝑖𝑡 (𝐶𝑆)
) ∪ 𝑍𝑒𝑟𝑜 (𝑃𝑆

𝑖
) , (9)

where 𝑃𝑆
𝑖
= 𝑃𝑆 ∪ init(𝐶𝑆)

𝑖
.

Now we briefly outline the essential steps about Wu’s
method on geometry theorem proving [17].

(1)Algebraize a geometric theoremby converting it into a
system of algebraic equations. We will translate the theorem’s
hypotheses into a set of hypotheses equations {𝑓

1
, . . . , 𝑓

𝑟
},

𝑓
1
= 𝑓
1
(𝑥
1
, . . . , 𝑥

𝑛
) ,

𝑓
2
= 𝑓
2
(𝑥
1
, . . . , 𝑥

𝑛
) ,

...

𝑓
𝑟
= 𝑓
𝑟
(𝑥
1
, . . . , 𝑥

𝑛
) ,

(10)

and the theorem’s conclusion into a polynomial 𝑔(𝑥
1
, . . . , 𝑥

𝑛
).

(2) Triangulize the system of hypotheses equations using
pseudo-division. Then we will obtain the hypothesis equa-
tions denoted as

𝑓
1
= 𝑓
1
(𝑢
1
, . . . , 𝑢

𝑑
, 𝑥
1
) ,

𝑓
2
= 𝑓
2
(𝑢
1
, . . . , 𝑢

𝑑
, 𝑥
1
, 𝑥
2
) ,

...

𝑓
𝑟
= 𝑓
𝑟
(𝑢
1
, . . . , 𝑢

𝑑
, 𝑥
1
, . . . , 𝑥

𝑟
) .

(11)

(3) Perform successive pseudo division on the trans-
formed hypotheses in triangular form {𝑓

1
, 𝑓
2
, . . . , 𝑓

𝑟
} by the

conclusion equation 𝑔(𝑥
1
, . . . , 𝑥

𝑛
), yielding a final remainder

𝑟
0
:

𝑟
0
= 𝑝𝑟𝑒𝑚 (⋅ ⋅ ⋅ 𝑝𝑟𝑒𝑚 (𝑔, 𝑓

𝑟
, 𝑥
𝑝
𝑟

) , . . . , 𝑓
1
, 𝑥
𝑝
1

) . (12)

If this final remainder 𝑟
0
≡ 0, we will say that the conclusion

𝑔 follows from the hypotheses {𝑓
1
, . . . , 𝑓

𝑟
}.

As mentioned above, the characteristic set of a polyno-
mial system is a special triangular form. We can use the
characteristic set of hypotheses equations as the triangular
form, denoted by 𝑐ℎ𝑎𝑟𝑠𝑒𝑡(𝑓

1
, . . . , 𝑓

𝑟
). Roughly speaking, the

soul of Wu’s method on theorem proving is to check whether
the zero set of the expected consequent equations includes
the zero set of hypotheses equations or not.

Our checkingmethod is based on algebraic geometry that
studies of geometric objects arising as the common zeros of
collections of polynomials. The aim is to find polynomials
whose zeros correspond to pairs of states in which the
appropriate assignments are made.

Let 𝑧𝑒𝑟𝑜(𝑃𝐶) and 𝑧𝑒𝑟𝑜(𝑃𝑆) denote the zero set for
circuit polynomial set 𝑃𝐶 and assertions polynomial set 𝑃𝑆
respectively. Let 𝐶 ⊨ 𝑠 denote that assertion 𝑠 holds under
model 𝐶.

We aim to attempt to determine whether assertion 𝑠 holds
or not. Therefore, we have

(𝑠 ⊨ 𝐶) ⇐⇒ 𝑍𝑒𝑟𝑜 (𝑃𝐶) ⊆ 𝑍𝑒𝑟𝑜 (𝑃𝑆) . (13)

Theorem 11. Suppose that 𝐺 = [A ⇒ C] is a property, A
is the precondition of C, and 𝑀 is a system model. Let 𝑃𝐴
and 𝑃𝑀 be the polynomial set representations for A and 𝑀,
respectively, constructed by previous mentioned rules. 𝑃𝐶 is the
polynomial set representation forC.

Journal of Applied Mathematics 9

Let 𝐻 = 𝐴 ∪ 𝑀, 𝑃𝐻 = 𝑃𝐴 ∪ 𝑃𝑀 = {ℎ
1
, ℎ
2
, . . . , ℎ

𝑠
} ⊆

𝑘[𝑥
1
, . . . , 𝑥

𝑛
], 𝐶𝑆 = 𝑐ℎ𝑎𝑟𝑠𝑒𝑡(𝑃𝐻); 𝑐ℎ𝑎𝑟𝑠𝑒𝑡(𝑃𝐻) denotes the

characteristic set of 𝑃𝐻, and 𝑝𝑟𝑒𝑚(𝑃𝐶, 𝐶𝑆) is the function
which computs the remainder by successive pseudo division;
then we have

𝑝𝑟𝑒𝑚 (𝑃𝐶, 𝐶𝑆) == 0 ⇐⇒ (𝑀 |= 𝐺) . (14)

Proof. Firstly, let 𝑧𝑒𝑟𝑜(𝑃𝐴) and 𝑧𝑒𝑟𝑜(𝑃𝑀) denote the zero sets
for circuit polynomial set A and assertions polynomial set
𝑀, respectively. Since 𝑃𝐻 = 𝑃𝐴 ∪ 𝑃𝑀 = {ℎ

1
, ℎ
2
, . . . , ℎ

𝑠
} ⊆

𝑘[𝑥
1
, . . . , 𝑥

𝑛
], let 𝑧𝑒𝑟𝑜(𝑃𝐻) denote the zero sets for 𝑧𝑒𝑟𝑜(𝑃𝐴∪

𝑃𝑀 = {ℎ
1
, ℎ
2
, . . . , ℎ

𝑠
}). Let𝐻 ⊨ 𝐶 denote that the assertion 𝐶

holds under model𝐻.
Our aim is to attempt to determine whether assertion 𝐶

holds or not. Thus, we have

(𝑀 ⊨ 𝐺) ⇐⇒ (𝐻 ⊨ 𝐶) ⇐⇒ 𝑧𝑒𝑟𝑜 (𝑃𝐻) ⊆ 𝑧𝑒𝑟𝑜 (𝑃𝐶) . (15)

As mentioned previously, Wu’s method can be used to
determine the inclusion relationship of zero sets. Thus we
have

𝑝𝑟𝑒𝑚 (𝑃𝐶, 𝑐ℎ𝑎𝑟𝑠𝑒𝑡 (𝑃𝐻)) == 0

⇐⇒ 𝑧𝑒𝑟𝑜 (𝑃𝐻) ⊆ 𝑧𝑒𝑟𝑜 (𝑃𝐶) .

(16)

Let 𝐶𝑆 = 𝑐ℎ𝑎𝑟𝑠𝑒𝑡(𝑃𝐻), which denotes the characteristic
set of 𝑃𝐻; according to (15) and (16), we have

(𝑝𝑟𝑒𝑚 (𝑃𝐶, 𝐶𝑆) == 0) ⇐⇒ (𝑀 |= 𝐺) . (17)

This establishes the theorem.

6.2. Checking Algorithm. From above discussion, we have the
following core decision algorithm.

Algorithm 12 (Assertion Checking: 𝐴𝑠𝑠𝐶ℎ𝑘(M, 𝐺)).
Input: CircuitmodelM, an assertion𝐺 = [A⇒ C];
Output: Boolean: 𝑡𝑟𝑢𝑒 or 𝑓𝑎𝑙𝑠𝑒;
BEGIN
/∗ Step 0: initialize input signals via testbench ∗/

00 𝐼𝑛𝑖𝑡𝑆𝑖𝑔𝑛𝑎𝑙𝑠();
01 M = 0; 𝑃𝑆

𝐴
= 0; 𝐻 = 0; 𝑃𝑆

𝐶
= 0;

/∗ Step 1: build polynomial set for antecedentA∗/
02 𝑃𝑆A = 𝐵𝑢𝑖𝑙𝑑𝑃𝑆(A);
/∗ Step 2: build polynomial set for consequentC∗/

03 𝑃𝑆C = 𝐵𝑢𝑖𝑙𝑑𝑃𝑆(C);
/∗Step 3: calculate the 𝑃𝑆A ∪M∗/

04 𝐻 = 𝑃𝑆A ∪M;
/∗Step 4: calculate the characteristic set of𝐻∗/

05 𝐶𝑆 := 𝐶ℎ𝑎𝑟𝑠𝑒𝑡(𝐻);
/∗Step 5: check the final remainder by successive

pseudo-division ∗/
06 if(𝑝𝑟𝑒𝑚(𝑃𝑆C, 𝐶𝑆) ̸= 0){

07 return false;
}

08 return true; /∗ Assertion does hold ∗/
END

7. Case Study and Experiment

In this section, we will firstly study a simple circuit to show
how the SVA properties are verified by polynomial represen-
tations and characteristic set computation-based approaches.
We then show a scalable experiment with the classic syn-
chronous arbiter circuit to evaluate the performance of our
approach.

7.1. Circuit and Assertion Modeling. As an example, consider
the synchronous circuit in Figure 2,whose polynomial set can
be constructed as follows:

𝑆𝑒𝑡
𝑎𝑑𝑑𝑒𝑟

= {

𝑓1 = {𝑚3
󸀠
− (1 − 𝑚1)} ,

𝑓2 = {𝑚2
󸀠
− 𝑚3} ,

𝑓3 = {𝑚1
󸀠
− 𝑚2} ,

𝑓4 = {𝑚4 − (1 − 𝑚1) ∗ 𝑚3} ,

𝑓5 = {𝑚5 − (1 − 𝑚3) ∗ (1 − 𝑚2)} ,

𝑓6 = {𝑚6 − 𝑚1 ∗ 𝑚2}} .

(18)

Throughout this paper, an internal variable name 𝑚
[𝑖]

refers to the corresponding signal 𝑚 in the original circuit,
and the subscript denotes the time-frame 𝑖 (or the 𝑖th clock
cycle). For convenient, variable 𝑚󸀠 (i.e., 𝑚

[𝑖+1]
) denotes the

next state of𝑚 (𝑚
[𝑖]
) by omitting time-frame 𝑖.

To illustrate the problem clearly, we define polynomial set
representation 𝑃𝑀

[𝑖]
for the 𝑖th time frame as follows:

⟦𝑃𝑀
[𝑖]
⟧ = {𝑓1

[𝑖]
, 𝑓2
[𝑖]
, 𝑓3
[𝑖]
, 𝑓4
[𝑖]
, 𝑓5
[𝑖]
, 𝑓6
[𝑖]
} . (19)

Assume 8 cycles are needed to check; therefore, we then
have the model representation: ⟦𝑃𝑀⟧ = ⋃

8

𝑖=0
⟦𝑃𝑀
[𝑖]
⟧.

For any boolean variable, wemust add an extra constraint
polynomial: for all 𝑎,V(𝑎) ∈ {0, 1} : {𝑎 ∗ 𝑎 − 𝑎}.

The circuit produces 3-phase nonoverlapping outputs,
which can decode the overlapping outputs V

1
, V
2
, and V

3
to

nonoverlapping outputs 𝐴, 𝐵, and 𝐶 as shown in Figure 3.
Assume the initial values of the registers 𝐴, 𝐵, and 𝐶 are

all 0, they will be {1, 0, 0}, respectively, after 1 cycle running
and {1, 1, 0} after 2 cycles. This property can be specified by
the following SVA assertions:

property 𝑃𝐴;
(𝑚3 = 0 && 𝑚2 = 0 && 𝑚1 = 0)

| => ##1(𝑚3 == 1 && 𝑚2 == 0 && 𝑚1 == 0)

| => ##1(𝑚3 == 1 && 𝑚2 == 1 && 𝑚1 == 0)

| => ##1(𝑚3 == 1 && 𝑚2 == 1 && 𝑚1 == 1);
endproperty

10 Journal of Applied Mathematics

Reset𝑚3 𝑚2 𝑚1

𝑚4

𝑚6

𝑚5

AND

AND

AND

�3 �2 �1

clk

𝐴

𝐵

𝐶

Figure 2: A 3-stage johnson counter.

property 𝑃𝐵;
𝑚6| => ##2 𝑚5 |=> ##2𝑚4;

endproperty
property 𝑃𝐶;
𝑚5##!𝑚5 | => ##[1 : 3] !𝑚5;

endproperty

Afterward, we will demonstrate the verification process
step by step.

7.2. Assertion Checking Using MMP. We ran this example
by using MMP [18] (Mathematics Mechanization Platform).
MMP is a group of symbolic computation and automated the-
orem proving softwares based on Wu’s Method. Before run-
ning, we manually translated all models into polynomials for
this example.

In this paper, all experiments are conducted on a PC
with an intel 2.40GHz CPU (intel i5M450) and 1024 MB of
memory.

As shown in MMP outputs, the given circuit has been
modeled as polynomial set 𝐶𝑀 (its characteristic set is
denoted by 𝑐𝑠), and the assertion results as (𝑚3

[2]
− 1). The

checking process is listed below:

[> 𝐶𝑀 := [⋅ ⋅ ⋅];
/∗{𝑓1

[𝑖]
, 𝑓2
[𝑖]
, 𝑓3
[𝑖]
, 𝑓4
[𝑖]
, 𝑓5
[𝑖]
, 𝑓6
[𝑖]
} Circuit

Model ∗/
[> V𝑎𝑟𝑠 := (𝑚1

[0]
, 𝑚2
[0]
, 𝑚3
[0]
, 𝑚4
[0]
, 𝑚5
[0]
, 𝑚6
[0]
,

𝑚1
[1]
, 𝑚2
[1]
, 𝑚3
[1]
, 𝑚4
[1]
, 𝑚5
[1]
, 𝑚6
[1]
,

𝑚1
[2]
, 𝑚2
[2]
, 𝑚3
[2]
, 𝑚4
[2]
, 𝑚5
[2]
, 𝑚6
[2]
, . . .

[> 𝑐𝑠 := 𝑐ℎ𝑎𝑟𝑠𝑒𝑡(𝐶𝑀, V𝑎𝑟𝑠);
[> 𝑐1 := (𝑚3

[2]
− 1);

[> 𝑟𝑒𝑡 := 𝑝𝑟𝑒𝑚𝑎𝑠(𝑐1, 𝑐𝑠, V𝑎𝑟𝑠) = 0

From the running result, the return value of 𝑟𝑒𝑡 is 0 which
means 𝑐𝑠 can be pseudo divided with no remainder by
(𝑚3
[2]
−1). Similarly, the expected polynomials (𝑚2

[2]
−1) and

(𝑚1
[2]
) both return 0. Thus, from the previously mentioned

verification principles, it is easy to conclude that the assertion
holds under this circuit model after 2 cycles.

The example took about 0.07 seconds and 810KBofmem-
ory when applying Wu’s method in MMP environment. This

0 4 8 12
�3(𝑚3)

�2(𝑚2)

�1(𝑚1)

𝐴(𝑚4)

𝐵(𝑚5)

𝐶(𝑚6)

Figure 3: A 3-stage johnson counter waveform.

case can be a fairly complete illustration of how the checking
algorithm works.

7.3. Experiment with Classic Arbiter Circuit. Thesynchronous
arbiter circuit [19], depicted in Figure 4, is one of the most
popular test cases of model checkers. We also test our
approach with this circuit currently to illustrate the perfor-
mance of our approach. The convert algorithm which can
automatically translate the circuit netlist into polynomial set
has been implemented in C++.

This arbiter circuit is used to grant access on each clock
cycle to a single client among a number of clients contending
for the use of common resources.

Here, we briefly explain how the arbiter works. For more
detailed information regards to the arbiter, please refer to
[19]. The basic part of the arbiter is the colored cell which is
repeated 𝑘 times to form a round robin chain. Each cell has a
request input 𝑟𝑒𝑞

𝑖
(1 ≤ 𝑖 ≤ 𝑘, here, 𝑘 denotes the number of

client) and an acknowledge output 𝑎𝑐𝑘
𝑖
. The grant output of

cell 𝑖 is passed to cell 𝑖 and indicates that no clients of index
less than or equal to 𝑖 are requesting. Hence a cell 𝑖may assert
its acknowledge output 𝑎𝑐𝑘

𝑖
if its grant input 𝑔𝑖

𝑖
is asserted.

Each cell has a register 𝑇 which stores one when the token
is present. The 𝑇 registers form a circular shift register which
shifts up one place each clock cycle.

Each cell also has a register𝑊 for waiting which is set to
one when the request input is asserted and the token is
present.

The register remains set while the request persists until
the token returns. At this time the cell’s override 𝑜𝑜

𝑖
and

acknowledge outputs 𝑎𝑐𝑘
𝑖
are asserted.

For clarity, we use the first subscript of a variable name
which denotes the cell number 𝑗 and the second subscript
which denotes the current time-frame 𝑖 in this example.

The corresponding polynomial set for each cell 𝑗 (0 ≤ 𝑗 ≤
𝑘 − 1) and time-frame 𝑖 (1 ≤ 𝑖 ≤ 𝑛) can then be constructed
as follows:

𝑓
1
: {𝑤
[𝑗][𝑖]

+ 𝑡
[𝑗][𝑖]

− 𝑤
[𝑗][𝑖]

∗ 𝑡
[𝑗][𝑖]

− 𝑚1
[𝑗][𝑖]

}

𝑓
2
: {𝑚2
[𝑗][𝑖]

∗ 𝑟𝑒𝑞
[𝑗][𝑖]

− 𝑚2
[𝑗][𝑖]

}

𝑓
3
: {𝑤
󸀠

[𝑗][𝑖]
− 𝑚2
[𝑗][𝑖]

}

Journal of Applied Mathematics 11

𝑡𝑜[𝑘−1]

0

𝑚1[𝑘−1] 𝑚2[𝑘−1]

𝑊

𝑊

𝑊

𝑇

𝑇

𝑇

𝑤[𝑘−1]

𝑚3[𝑘−1]

𝑚4[𝑘−1]𝑡[𝑘−1]

𝑜𝑖[𝑘−1]
𝑔𝑜[𝑘−1]

[𝑘−1]

𝑡𝑖[𝑘−1] 𝑔𝑖[𝑘−1]𝑜𝑜[𝑘−1]

[𝑘−1]

𝑚1[𝑗] 𝑚2[𝑗]
𝑤[𝑗]

𝑔𝑜[𝑗]

[𝑗]

𝑚3[𝑗]

𝑚4[𝑗]

[𝑗]

𝑜𝑜[𝑗] 𝑔𝑖[𝑗]𝑡𝑖[𝑗]

𝑡[𝑗]

𝑤[0]

𝑚1[0] 𝑚2[0]

𝑚3[0]

𝑚4[0]

𝑡𝑜[0]

𝑜𝑖[0] 𝑔𝑜[0]

𝑔𝑖[0]

[0][0]

𝑡𝑖[0]
𝑡[0]

𝑜𝑜[0]

𝑜𝑖[𝑗]𝑡𝑜[𝑗]

...
...

...

...
...

...

𝑟𝑒𝑞

𝑟𝑒𝑞

𝑟𝑒𝑞

𝑎𝑐𝑘

𝑎𝑐𝑘

𝑎𝑐𝑘

Figure 4: Chain of synchronous arbiter circuit.

𝑓
4
: {𝑡
󸀠

[𝑗][𝑖]
− 𝑡𝑖
[𝑗][𝑖]

}

𝑓
5
: {𝑚3
[𝑗][𝑖]

− 𝑡
[𝑗][𝑖]

∗ 𝑤
[𝑗][𝑖]

}

𝑓
6
: {𝑚3
[𝑗][𝑖]

+ 𝑜𝑖
[𝑗][𝑖]

− 𝑚3
[𝑗][𝑖]

∗ 𝑜𝑖
[𝑗][𝑖]

− 𝑜𝑜
[𝑗][𝑖]

}

𝑓
7
: {𝑔𝑜
[𝑗][𝑖]

− (1 − 𝑟𝑒𝑞
[𝑗][𝑖]

) ∗ 𝑜𝑜
[𝑗][𝑖]

}

𝑓
8
: {𝑔𝑖
[𝑗][𝑖]

+ 𝑚3
[𝑗][𝑖]

− 𝑔𝑖
[𝑗][𝑖]

∗ 𝑚3
[𝑗][𝑖]

− 𝑚4
[𝑗][𝑖]

}

𝑓
9
: {𝑎𝑐𝑘

[𝑗][𝑖]
− 𝑚4
[𝑗][𝑖]

∗ 𝑟𝑒𝑞
[𝑗][𝑖]

} .

(20)

Additionally, the chain relation between cells can bemod-
eled as below:

𝑙
1
: {𝑔𝑜
[𝑗][𝑖]

− 𝑔𝑖
[𝑗+1] [𝑖]

}

𝑙
2
: {𝑜𝑖
[𝑗][𝑖]

− 𝑜𝑜
[𝑗+1] [𝑖]

}

𝑙
3
: {𝑡𝑜
[𝑗][𝑖]

− 𝑡𝑖
[𝑗+1] [𝑖]

}

𝑙
4
: {𝑡𝑜
[𝑘−1] [𝑖]

− 𝑡𝑖
[0] [𝑖]

}

𝑙
5
: {𝑜𝑜
[0][𝑖]

− 𝑔𝑖
[𝑜][𝑖]

} .

(21)

The desired properties of the arbiter circuits can be de-
scribed as follows:

(1) no two acknowledge outputs are asserted simultane-
ously,

(2) every persistent request is eventually acknowledged,
(3) acknowledgment is not asserted without request.

In the following description, if clear from the context, the
time-frame index will be omitted for convenience. Note that
𝑠, 𝑡 (0 ≤ 𝑠, 𝑡 ≤ 𝑘 − 1) and 𝑎𝑐𝑘

[𝑠]
, 𝑎𝑐𝑘
[𝑡]
∈ {0, 1}. Intuitively,

properties expressed in CTL can be listed as follows:

12 Journal of Applied Mathematics

Number of cell

Number of cell

Number of polynomial
Number of variable

1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10
18
28

110
140

320
392

696
840

1286
1540

2138
2548

3300
3920

4820
5712

6746
7980

9126
10780

0

2000

4000

6000

8000

10000

12000
N

um
be

r
Polynomials and variables in Wu’s method

Figure 5: Polynomials and variables for safety property checking.

(1) ⋀
𝑠 ̸= 𝑡
𝐴𝐺¬(𝑎𝑐𝑘

[𝑠]
∧ 𝑎𝑐𝑘
[𝑡]
),

(2) ⋀
𝑠
𝐴𝐺𝐴𝐹(𝑟𝑒𝑞

[𝑠]
⇒ 𝑎𝑐𝑘

[𝑠]
),

(3) ⋀
𝑠
𝐴𝐺(𝑎𝑐𝑘

[𝑠]
∧ 𝑟𝑒𝑞
[𝑠]
).

Note that the arbiter can handle the access of 𝑛 clients to a
common resource. If a client asserts a request, the client will
wait at most 2𝑛 clock cycles before it is served. Therefore, in
our test, it is sufficient to verify the properties that the circuit
is unrolled 2𝑛 time frames.

Evidently, these properties can be equivalently expressed
in SVA codes. In [7], the authors have provided a detailed
assertion description for the case that client number is 3.

In this example, we will follow their idea and explain how
to translate them into algebraic polynomials as below:

⋀

𝑠 ̸= 𝑡

𝐴𝐺¬ (𝑎𝑐𝑘
[𝑠]
∧ 𝑎𝑐𝑘
[𝑡]
)

⇐⇒

𝑎𝑐𝑘
[0]
+ ⋅ ⋅ ⋅ + 𝑎𝑐𝑘

[𝑠]
+ ⋅ ⋅ ⋅ + 𝑎𝑐𝑘

[𝑘−1]
= 1 or 0

⇐⇒

{𝑎𝑐𝑘
[0]
+ ⋅ ⋅ ⋅ + 𝑎𝑐𝑘

[𝑠]
+ ⋅ ⋅ ⋅ + 𝑎𝑐𝑘

[𝑘−1]
− 1}

or {𝑎𝑐𝑘
[0]
+ ⋅ ⋅ ⋅ + 𝑎𝑐𝑘

[𝑠]
+ ⋅ ⋅ ⋅ + 𝑎𝑐𝑘

[𝑘−1]
} .

(22)

Let C
1
= {𝑎𝑐𝑘

[0]
+ ⋅ ⋅ ⋅ + 𝑎𝑐𝑘

[𝑠]
+ . . . + 𝑎𝑐𝑘

[𝑘−1]
− 1} and

C
2
= {𝑎𝑐𝑘

[0]
+ ⋅ ⋅ ⋅ + 𝑎𝑐𝑘

[𝑠]
+ . . . + 𝑎𝑐𝑘

[𝑘−1]
}. The polynomial

representation of consequent can then be formulated asC =

C
1
∨C
2
.

Assume 𝐺 = [A ⇒ C] and let 𝐺
1
= [A ⇒ C

1
] and

𝐺
2
= [A⇒ C

2
]. If 𝐺

1
∨ 𝐺
2
holds, then 𝐺 holds.

Similarly, the precondition of this property is that only
one single token is present in this circuit chain. We have the
polynomial representation of antecedent: {𝑡

[0]
+⋅ ⋅ ⋅+𝑡

[𝑠]
+⋅ ⋅ ⋅+

𝑡
[𝑘−1]

− 1} (𝑡
[𝑖]
∈ {0, 1}).

More specifically, if the subscript for time frame is
considered, we can defineC

[𝑘][𝑛]
:= ⋀
𝑘−1

𝑗=0
{(∑
𝑛−1

𝑖=0
𝑎𝑐𝑘
[𝑗][𝑖]

−1)∨

(∑
𝑛−1

𝑖=0
𝑎𝑐𝑘
[𝑗][𝑖]

)} andA
[𝑘][𝑛]

:= ⋀
𝑘−1

𝑗=0
{(∑
𝑛−1

𝑖=0
𝑡
[𝑗][𝑖]

− 1)}; here, 𝑛
denotes the number of time frames and 𝑘 denotes the number
of cells.

In this experiment, we also tested the circuit with an
artificial error that an “𝐴𝑁𝐷” gate is replaced by an “OR”
gate bymistake, as shown inFigure 4.Wemainly demonstrate
whether or not our method is able to find bugs. The corre-
sponding polynomial set model can be updated by replacing
𝑓
7
with {𝑔𝑜

[𝑗][𝑖]
+ 𝑟𝑒𝑞
[𝑗][𝑖]

∗ 𝑜𝑜
[𝑗][𝑖]

− 𝑟𝑒𝑞
[𝑗][𝑖]

− 𝑜𝑜
[𝑗][𝑖]

}.
Consequently, in our test with 3 cells, it took only 9.37MB

of memory and 10.5 seconds to find the result 𝑟𝑒𝑡 ̸= 0 which
means the circuit did not meet the required property. Then
we concluded that there must be some design errors in the
circuit.

More detailed experimental results concerning polyno-
mials and variables for safety property verification of the
circuit are listed in Figure 5.

7.4. Discussion. So far, several methodologies are developed
to address the verification problem. In this section, we will
discuss these methods by the arbiter example shown in
Figure 4.

(1) In [19], a BDD-based model checking is proposed.
The performance of this method is fairly promising. The size
of the transition relation increases linearly as the number of
cells. But the OBDD representing the set of states grows
exponentially in the number of cells. The performance of
BDD-based symbolic model checking procedure is plotted in
Figure 6. For more detailed information about this test case,
please refer to [19].

(2)Due to advances in SAT-solving techniques [20], SAT-
based bounded model checking (for short, BMC) can often
handle much larger designs than BDDs. In [7], the authors
presented a SAT-based BMC to verify the arbiter circuit.They
found that the size of the instance for the safety property is
proportional to the number of arbiter clients and the liveness
property has quadratic size.

(3) In our method, the worst case complexity of our
symbolic algebraicmethod checking is very high due to inter-
mediate expression swell. As shown in Figure 5, the number
of polynomials to be generated for liveness property checking
has quadratic size of the number of cells 𝑘 as well as the num-
ber of variables. Currently, from the runtime consumed, the
SAT solver still shows better performance than our method.
Fortunately, a great deal of optimization techniques can be
applied to improve the performance.

As an example, we will explain how to apply variable
projection technique to optimize the calculating process.
Assume the given circuit has beenmodeled as polynomial set
𝐶𝑀 and variable order list is 𝑡𝑜𝑟𝑑 (its projection for the zero
set on𝑝𝑜𝑟𝑑 ⊆ 𝑡𝑜𝑟𝑑 is denoted by𝑃𝐶).Wewill firstly calculate
the projection to eliminate the unnecessary elements:

𝑃𝐶 = 𝑝𝑟𝑜𝑗 (𝐶𝑖𝑟𝑐𝑢𝑖𝑡𝑀𝑜𝑑𝑒𝑙, [] , 𝑜𝑟𝑑, 𝑝𝑜𝑟𝑑, "𝑎𝑙𝑔") (23)

and then the zero set: 𝑤𝑠𝑜𝑙V𝑒(𝑃𝐶, 𝑜𝑟𝑑). Correspondingly, the
performance will be improved greatly.

8. Conclusion

In this paper, we presented Wu’s method-based verification
approach for SVA properties checking.

Journal of Applied Mathematics 13

0 1 2 3 4 5 6 7 8 9 10 11 12
Number of cells

Re
ac

ha
bl

e s
ta

te
s

1 × 102

1 × 103

1 × 104

1 × 105

1 × 106

1 × 107

1 × 108

1 × 109

(a)

0
0

1 2 3 4 5 6 7 8 9 10 11 12
Number of cells

500

1000

1500

2000

2500

O
BD

D
 n

od
es

Total OBDD nodes used
Transition relation

(b)

Figure 6: Performance-synchronous arbiter example.

Our approach is based on polynomial models construc-
tion for both circuit models and SVA assertions.This method
is to eventually translate a simulation-based verification
problem into a pure algebraic zero set determination problem
by a series of proposed steps, which can be performed on
MMP environment. For synchronous sequential circuits, we
adapted a parameterized polynomial set modeling method
based on time-frame expansion. We also defined a con-
strained subset of SVAs which is powerful enough for prac-
tical purpose and proposed a practical algebraizationmethod
for each sequence and property operator of this subset.
This method allows users to deal with more than one state
and many input combinations every cycle due to symbolic
simulation. The advantage comes directly from the fact that
many vectors are simulated at once using symbolic value.

Basically, our approach may provide a useful supplement
to existing methods based on OBDD or SAT and may also
provide important theoretical insights by allowing the appli-
cation of important results in symbolic computation to the
assertion checking problems. We plan to extend the work
presented in several directions.

(1)We plan to optimize the solver based onWu’s method.
Aswe know,Wu’smethod-basedmathematicsmechanization
platform is a powerful computation environment for general
purpose. On the one hand, we will apply variables projection
and other mathematics approaches to improve the effective-
ness of this algorithm. On the other hand, we also plan to
implement our core steps by using the programming lan-
guage in MMP.

(2) In this paper, we only test some classic cases men-
tioned in previous papers to illustrated the feasibility of our
method currently. In the future, we plan to test the bench-
marks from ISCAS’89 and ISCAS’85 and other industrial
examples to provide a comprehensive evaluation of our ap-
proach and compare to the state-of-the-art where circuits
with several thousands of gates and dozens of input signals.

(3) In this paper, we only concentrated our attention
on the basic assertion checking algorithm, but the other

important features such as counterexample generation were
not discussed.We will also work on those issues in the future.

Furthermore, in the field of symbolic computation, there
is a rich collection of solutions to solving polynomials,
methods for inclusion of zero sets, and so forth. We are
interested in applying some of the useful results andmethods
to verification area.

Acknowledgments

Theproject is supported by the Fundamental Research Funds
for the Central Universities (1600-852014) and partly by the
National Natural Science Foundation of China under Grant
no. 60973147, the Natural Science Foundation of Guangxi
under Grant no. 2011GXNSFA018154, the Science and Tech-
nology Foundation of Guangxi under Grant no. 10169-1,
Guangxi Scientific Research Project no. 201012MS274, and
Grants (HCIC201102) of Guangxi Key Laboratory of Hybrid
Computation and IC Design Analysis Open Fund. The
authors would like to thank their colleagues for participating
in the research. They also appreciate the anonymous review-
ers for their helpful comments.

References

[1] IEEE System Verilog Working Group, “IEEE Standard for
SystemVerilog C Unified Hardware Design, Specification, and
Verification (IEEE Std 1800–2005),” IEEE, 2005.

[2] “IEEE draft standard for system verilog—unified hardware
design, specification, and verification language,” in Proceedings
of the IEEE P1800/D3, pp. 1–1304, November2011.

[3] “System Verilog,” http://www.systemverilog.org/.
[4] E. Clarke, O. Grumberg, and D. Peled, Model Checking, MIT

Press, 2000.
[5] T. Tuerk, K. Schneider, and M. Gordon, “Model checking PSL

using HOL and SMV,” in Proceedings of the 2nd International
Haifa Verification Conference on Hardware and Software, Verifi-
cation and Testing (HVC ’06), E. Bin, A. Ziv, and S. Ur, Eds., pp.
1–15, Springer, Berlin, Germany, 2006.

14 Journal of Applied Mathematics

[6] T. Launiainen, K. Heljanko, and T. Junttila, “Efficient model
checking of PSL safety properties,” Computers & Digital Tech-
niques, vol. 5, no. 6, pp. 479–492, 2011.

[7] R. Wille, G. Fey, M. Messing, G. Angst, L. Linhard, and R.
Drechsler, “Identifying a subset of systemverilog assertions for
efficient bounded model checking,” in Proceedings of the 11th
EUROMICRO Conference on Digital System Design Architec-
tures, Methods and Tools (DSD ’08), pp. 542–549, September
2008.

[8] J. A. Darringer, “Application of program verification techniques
to hardware verification,” pp. 375–381, 1979.

[9] C. Spears, System Verilog for Verification, Springer.
[10] J. Bergeron, E. Cerny, A. Nightingale, and A. Hunter, Verifica-

tion Methodology Manual for System Verilog, Springer.
[11] J. Smith andG.DeMicheli, “Polynomial circuitmodels for com-

ponent matching in high-level synthesis,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 9, no. 6, pp.
783–800, 2001.

[12] J. Smith and G. De Micheli, “Polynomial methods for com-
ponent matching and verification,” in Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design
(ICCAD ’98), pp. 678–685, November 1998.

[13] S. Das, R. Mohanty, P. Dasgupta, and P. P. Chakrabarti, “Synthe-
sis of system verilog assertions,” in Proceedings of the Design,
Automation and Test in Europe Conference (DATE ’06), pp.
70–75, European Design and Automation Association, Leuven,
Belgium, March 2006.

[14] W. T. Wu, “On the decision problem and the mechanization of
theorem-proving in elementary geometry,” Scientia Sinica, vol.
21, no. 2, pp. 159–172, 1978.

[15] W. T. Wu, “Basic principles of mechanical theorem proving in
geometries,” Journal of Automated Reasoning, vol. 2, no. 4, pp.
221–252, 1986.

[16] D.Wang, EliminationMethods., Springer,Wien, NY, USA, 2001.
[17] J. Elias, “Automated geometric theorem proving,”TheMontana

Mathematics Enthusiast, vol. 3, no. 1, pp. 3–50, 2006.
[18] X. S. Gao and Q. Lin, “MMP/geomete—a software package

for automated geometric reasoning,” in Proceedings of the
4th International Workshop of the Automated Deduction in
Geometry (ADG ’02), vol. 2930 of Lecture Notes in Computer
Science, pp. 44–66, September 2002.

[19] K.McMillan, SymbolicModel Checking, KluwerAcademic, 1993.
[20] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S.

Malik, “Chaff: engineering an efficient SAT solver,” in Proceed-
ings of the 38th Design Automation Conference, pp. 530–535,
June 2001.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

