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We establish a blowup result to an initial boundary value problem for
the nonlinear wave equation utt −M(‖B1/2u‖2)Bu+ kut = |u|p−2u, x ∈Ω,
t > 0.

1. Introduction

We consider the initial boundary value problem (IBVP) for the nonlinear
wave equation

utt −Au+ kut = |u|p−2u, x ∈Ω, t > 0,

u(x,t) = 0, x ∈ ∂Ω, t ≥ 0,

u(x,0) = u0(x), ut(x,0) = u1(x), x ∈Ω,

(1.1)

where

Au =M
(∥∥B1/2u

∥∥2
)
e−Φ(x) div

(
eΦ(x)∇u

)
,

∥∥B1/2u
∥∥2 =

∫
Ω
eΦ(x)|∇u|2dx,

(1.2)

p > 2 is a constant, k is a positive constant, M : R+ → R+ is a continuous
function, Φ ∈ L∞(Ω), and Ω ⊂ R

n is a bounded domain with a smooth
boundary Γ so that the divergence theorem can be applied.

When M ≡ 1 and Φ ≡ 0, for the case k = 0, it is well known that the
source term |u|p−2u is responsible for finite blowup (global nonexistence)
of solutions with negative initial energy (see [1, 9]). The interaction

Copyright c© 2002 Hindawi Publishing Corporation
Journal of Applied Mathematics 2:2 (2002) 105–108
2000 Mathematics Subject Classification: 35L35, 35L70
URL: http://dx.doi.org/10.1155/S1110757X02000281

http://dx.doi.org/10.1155/S1110757X02000281


106 Blowup of solutions of a nonlinear wave equation

between the damping term and the source has been first considered by
Levine [11, 12]. For k > 0, the author showed that solutions, with nega-
tive initial energy, blow up in finite time. In [5], Georgiev and Todorova
extended Levine’s result to the case of nonlinear damping of the form
|ut|mut. This result was generalized to an abstract setup by Levine and
Serrin [14], Levine et al. [13], and Vitillaro [18]. In [16], Messaoudi ex-
tended the result of Levine to the situation where Φ 
= 0.

When Φ ≡ 0 and M is not a constant function, the equation with-
out the damping and source terms is often called the wave equation of
Kirchhoff type which has been introduced by Kirchhoff [10] in order to
study the nonlinear vibrations of an elastic string. The existence of local
and global solutions in Sobolev and Gevrey classes was investigated by
many authors (see [2, 3, 4, 6, 7, 8, 15, 17]).

In the present paper, we investigate the blowup of solutions of the
initial boundary value problem (1.1). We show that, for suitably cho-
sen initial data, any strong solution blows up in finite time. Our work is
based on the results of [14].

2. Main result

In order to state our main result, we introduce the weighted space

Ls(Ω,Φ) :=
{
v : Ω −→ R/

∫
Ω
eΦ(x)∣∣u0

∣∣sdx <∞
}
,

E(0) =
1
2

∫
Ω
eΦ(x)u2

1dx +
1
2
M̄

(∥∥B1/2u0
∥∥2
)
− 1
p

∫
Ω
eΦ(x)∣∣u0

∣∣pdx.
(2.1)

We also make the following hypothesis:

M ∈ C
(
R+,R+

)
, M̄(s) =

∫s

0
M(k)dk, (2.2)

such that

rM̄(s) ≥ sM(s), ∀s ≥ 0, 1 < r <
p

2
. (2.3)

Theorem 2.1. Let p > 2 and assume that (2.2) and (2.3) hold. Then, for any
initial data satisfying E(0) < 0, the solution of (1.1) blows up in finite time.

Proof. Except for the operator Au, this problem is similar to [14, prob-
lem (4.1)–(4.3)] for l = 2. So the proof goes exactly like the one of [14,
Theorem 5]. It remains only to show that Au and F(u) = |u|p−2u satisfy
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conditions (1s) and (2s) in [14, page 346]. To do this, we set

V = Y = L2(Ω,Φ), W = Lp(Ω,Φ),

D =H1
0(Ω,Φ) =

{
u ∈H1

0(Ω,Φ)/u, ∇u ∈ Y
}
.

(2.4)

It is clear that A and F are Frechet derivatives of the C1 real-valued po-
tentials given by

Au =
1
2
M̄

(∥∥B1/2u
∥∥2
)
, F(u) = 1

p
‖u‖pW. (2.5)

Now we have, by virtue of (2.3),

〈Au,u〉V =
∫
Ω
eΦ(x)uM

(∥∥B1/2u
∥∥2
)
e−Φ(x) div

(
eΦ(x)∇u

)

=M
(∥∥B1/2u

∥∥2
)∫

Ω
udiv

(
eΦ(x)∇u

)

=
(∥∥B1/2u

∥∥2
)∥∥B1/2u

∥∥2 ≤ rM̄
(∥∥B1/2u

∥∥2
)
≤ 2rAu,

〈
F(u),u

〉
V − 2rF(u) =

(
1− 2r

p

)
||u||pW = (p− 2r)F(u).

(2.6)

Therefore, conditions (1s) and (2s) in [14, page 346] are satisfied. This
completes the proof. �

Remark 2.2. Conditions (3s) and (1d)–(3d) of [14] are automatically sat-
isfied since Put = ut and Q(t,ut) = kut are linear. See the proof of [14,
Theorem 5].
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