
FASTER BACKTRACKING ALGORITHMS
FOR THE GENERATION OF
SYMMETRY-INVARIANT
PERMUTATIONS

OSCAR MORENO, JOHN RAMÍREZ, DOROTHY BOLLMAN,
AND EDUSMILDO OROZCO

Received 5 March 2002

A new backtracking algorithm is developed for generating classes of per-
mutations, that are invariant under the group G4 of rigid motions of the
square generated by reflections about the horizontal and vertical axes.
Special cases give a new algorithm for generating solutions of the classi-
cal n-queens problem, as well as a new algorithm for generating Costas
sequences, which are used in encoding radar and sonar signals. Parallel
implementations of this latter algorithm have yielded new Costas se-
quences for length n, 19 ≤ n ≤ 24.

1. Introduction

Backtracking is a general procedure for solving a problem by systemat-
ically generating all possible solutions. Such a process can be described
by a search tree in which each node corresponds to a partial solution. Go-
ing down the tree corresponds to progress toward obtaining a complete
solution. Going up the tree, that is, backtracking, corresponds to returning
to a partial solution from which it might be hopeful to proceed forward
again.

In this paper, we give a new backtracking algorithm for the generation
of certain permutation matrices, that is, square matrices of 0’s (or blanks)
and 1’s (or dots), in which each column or row contains exactly one 1.
An example of such a matrix is given in Figure 2.1.

It is convenient to represent n×n permutation matrices by sequences
xi, i = 1,2, . . . ,n, where each xi is the row number in which column i
has its dot. Such a sequence is a permutation of the elements of Nn =
{1,2, . . . ,n}, or more precisely, the sequences of images of a bijection
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π : Nn → Nn. We denote the set of bijections π : Nn → Nn by Πn. We
will denote permutations interchangeably by either bijections π or the
sequence of images π(Nn) = π(1)π(2) · · ·π(n).

We develop an algorithm for generating classes of permutations of
Nn, that are invariant under the group G4 of rigid motions of the square
generated by reflections about the horizontal and vertical axes. This al-
gorithm uses backtracking, but differs from usual backtracking algo-
rithms in two aspects.

First, our algorithm adds terms to both (not just one) sides of a se-
quence. An intuitive comparison between ordinary backtracking and
ours is as follows. An application of ordinary backtracking would not
distinguish between unwanted patterns at the beginning and at the end
of a sequence. That is, a sequence could be rejected because of an un-
wanted pattern at the beginning, but ordinary backtracking would gen-
erate another sequence with the same pattern, say closer to the end. The
idea of the algorithm presented here is that adding characters to both
sides of the sequence would eliminate this redundancy, thus making the
algorithm much faster.

The second source of speedup exploits invariance under the group G4.
Using this fact, it is necessary to use backtracking to generate only as few
as one-fourth of the permutations of a given class and a given size.

The rest of this paper is organized as follows: in Section 2, we define
the above-mentioned symmetries and develop the background neces-
sary to present the algorithm. In Section 3, we give the algorithm and
prove its correctness. In Section 4, we briefly discuss results of applying
the algorithm to the generation of Costas arrays.

2. Permutation symmetries

The group of symmetries G4 greatly reduces the size of the search space
for certain sets of permutations. G4 is a subgroup of the group of rigid
motions of the square onto itself, namely, the group generated by reflec-
tions about vertical and horizontal axes, that is, reversing the columns
or the rows of the permutation matrix, respectively. Thus the result of
reflecting the array of Figure 2.1 about the vertical axis gives the array in
Figure 2.2, and the result of reflecting it about the horizontal axis gives
the array in Figure 2.3.

In the sequence representation σ = π(Nn) of a permutation matrix, the
reflection about the vertical axis is represented by the sequence obtained
from σ by reversing its terms, and the reflection about the horizontal axis
is represented by the sequence obtained from σ by replacing each term
π(i) by its complement n+ 1−π(i). We denote these operations on per-
mutation sequences by f1(σ) = σ̃ and f2(σ) = −σ, respectively. Clearly,
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Figure 2.3

G4 = {e,f1,f2,f3 = f1 ◦ f2}, where e denotes the identity operation, con-
stitutes a group under composition ◦.

For any property P of permutations, that is,

P :
⋃

n∈N
Πn −→ {true, false}, (2.1)

where N is the set of positive integers, let UP be the set of permutation
sequences of one or more elements of N that satisfy P , and let Un

P = {σ ∈
UP | σ is of length n}. We say that UP is symmetry-invariant (SI) permu-
tation if for every σ = π(Nn) ∈UP , we have fi(σ) ∈UP , i = 1,2,3.

Examples

(1) Costas sequences. The condition under which a permutation π ∈Π is a
Costas sequence can be stated in terms of the difference triangle. The first
row of the difference triangle is formed by taking differences of adjacent
terms. The second row is formed by taking differences π(i + 2) − π(i),
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i = 1,2, . . . ,n − 2 of distance 2 apart. In general, the jth row of the differ-
ence triangle is given by π(i + j) −π(i), i = 1,2, . . . ,n − j. The Costas con-
dition states that no row of the difference triangle should have repeated
terms. The set of Costas sequences is symmetry-invariant.

(2) n-queens sequences. These sequences arise from the n-queens prob-
lem, which is the problem of placing n queens on an n×n chessboard, so
that no two queens are in the same row, column, or diagonal. A permu-
tation σ = π(Nn) is an n-queens sequence if and only if |π(i+d)−π(i)| �= d
for all i = 1,2, . . . ,n − d and all d = 1,2, . . . ,n − 1. The set of n-queens se-
quences is symmetry-invariant.

We call a permutation σ = π(Nn) a fixed point if f(σ) = σ for some
f ∈G4.

Lemma 2.1. If σ = π(Nn) is fixed for some f ∈G4, then f = f3.

Proof. Let σ = π(Nn). If −σ = σ, then n + 1 −π(i) = π(i), that is, 2π(i) =
n + 1 for all i, which contradicts that σ is a permutation. If σ̃ = σ, then
π(i) = π(n− i+ 1) for all i, which also contradicts that σ is a permutation.
Hence neither f = f1 nor f = f2, and so f = f3.

It is important to note that not all sets of permutations have fixed
points. Consider, for example, a property P for which P(π) is true if and
only if no two differences of distinct adjacent terms are equal. Such a P
is called an adjacent difference property. An important special case is the
Costas condition. �

Lemma 2.2. If P is an adjacent difference property, then the set UP has no fixed
points.

Proof. Suppose to the contrary that there exists a fixed point σ = π(Nn)
in P . Then σ = −σ̃, and so π(m) +π(n−m+ 1) = n+ 1 for all m = 1,2, . . . ,n.
In particular, π(1) + π(n) = n + 1 and π(2) + π(n − 1) = n + 1. Hence,
π(2) − π(1) = π(n) − π(n − 1), which contradicts that P is an adjacent
difference property.

In what follows, r denotes an arbitrary but fixed number in Nn, and
qr or q denotes the complement of r, that is, q = n+ 1− r. Now let

Fr
n(P) =

{
σ = π

(
Nn

) ∈Un
P | π(i) = r, π(j) = q, i ≤ j ∧−σ̃ = σ

}
,

Ar
n(P) =

{
π
(
Nn

) ∈Un
P | π(i) = r, π(j) = q, 1 < i < j

∧ (
n+ 1 > i+ j ∨ (

n+ 1 = i+ j ∧π(m) +π(n−m+ 1) > n+ 1
))}

,

Br
n(P) =

{
π
(
Nn

) ∈Un
P | π(1) = r, π(n) = q and

π(m) +π(n−m+ 1) < n+ 1
}
,

(2.2)
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where each occurrence of m denotes the least index, for which π(m) +
π(n−m+ 1) �= n+ 1. Finally, let

Sr
n(P) =Ar

n(P)∪Br
n(P). (2.3)

Note that all elements of Sr
n(P) have the property that r precedes q, and

that the number of positions to the right of q is not less than the number
of positions to the left of r.

Let

S̃r
n(P) =

{
σ̃ | σ ∈ Sr

n(P)
}
,

−Sr
n(P) =

{−σ | σ ∈ Sr
n(P)

}
,

−S̃r
n(P) =

{− σ̃ | σ ∈ Sr
n(P)

}
.

(2.4)

We will denote Sr
n(P) by Sr

n when there is no ambiguity. Similarly, for
Ar

n(P), B
r
n(P), −Sr

n(P), S̃
r
n(P), and −S̃r

n(P). �

Lemma 2.3. The sets Sr
n, S̃r

n, −Sr
n, and −S̃r

n are pairwise disjoint for any fixed P .

Proof. First note that none of the above sets contains a fixed point. Thus,
we can assume that there exists a least index m for which π(m) +π(n+
m − 1) �= n + 1. Also note that the r in any σ ∈ Sr

n ∪ −S̃r
n precedes the q,

whereas the r in any σ ∈ −Sr
n ∪ S̃r

n follows q. Hence

Sr
n ∩−Sr

n = φ,

Sr
n ∩ S̃r

n = φ,

−S̃r
n ∩−Sr

n = φ,

−S̃r
n ∩ S̃r

n = φ.

(2.5)

Now suppose that σ = π(n) ∈ Sr
n ∩ −S̃r

n. Since σ ∈ Sr
n, the number of

positions to the right of q is n − j ≥ 0. If n − j = 0, then σ ∈ Br
n, and so

π(m) +π(n−m+ 1) < n+ 1;

n+ 1−π(n−m+ 1) +n+ 1−π(m) > n+ 1, (2.6)

which contradicts that σ ∈ −S̃r
n.

Thus n > j, and so σ ∈ Ar
n. In this case, n − j ≥ i − 1 > 0. But since σ ∈

−S̃r
n, we also have that the number of positions in −σ̃ to the right of q is

greater than or equal to the number of positions to the left of r. That is,
n− (n+ 1− i) = i− 1 ≥ n+ 1− j − 1 = n− j. Thus, n− j = i− 1 or n+ 1 = i+ j,
and so −σ̃ ∈Ar

n. Hence n+ 1−π(n−m+ 1) +n+ 1−π(m) > n+ 1, and so
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π(n−m+ 1) +π(m) < n+ 1, which contradicts that σ ∈Ar
n. Thus,

Sr
n ∩−S̃r

n = φ. (2.7)

Finally, suppose that σ ∈ −Sr
n ∩ S̃r

n �= φ. Then σ̃ ∈ −S̃r
n and σ̃ ∈ Sr

n, that
is, σ̃ ∈ −S̃r

n ∩Sr
n, a contradiction. Hence,

−Sr
n ∩ S̃r

n = φ. (2.8)
�

Lemma 2.4. The sets Sr
n, S̃r

n, −Sr
n, and −S̃r

n are equivalent, that is, have the
same number of elements.

Proof. The function f : Sr
n → S̃r

n defined by f(σ) = σ̃ is a bijection. Hence,
Sr
n and S̃r

n are equivalent, written Sr
n ≡ S̃r

n. Similarly, Sr
n ≡ −Sr

n and Sr
n ≡

−S̃r
n. Hence Sr

n ≡ S̃r
n ≡ −Sr

n ≡ −S̃r
n. �

Theorem 2.5. For any symmetry-invariant property P ,

Un
P = Sr

n(P)∪ S̃r
n(P)∪−Sr

n(P)∪−S̃r
n(P)∪Fr

n(P)∪−Fr
n(P). (2.9)

Proof. Clearly,

Sr
n ∪ S̃r

n ∪−Sr
n ∪−S̃r

n ∪Fr
n ∪−Fr

n ⊂Un
P . (2.10)

Now let σ = π(Nn) ∈Un
P . Then either π(i) = r precedes π(j) = q in σ or

not. Suppose it does.
Case 1. Suppose that i = 1. If j < n, then σ ∈ Sr

n ∪Fr
n. Now suppose j = n.

Then either σ ∈ Fr
n or there exists a least index m for which π(m) +π(n−

m+ 1) �= n+ 1. Suppose σ /∈ Fr
n. If π(m) +π(n−m+ 1) < n+ 1, then σ ∈ Sr

n.
If π(m) +π(n −m + 1) > n + 1, then n + 1 −π(m) + n + 1 −π(n −m + 1) <
n+ 1 and so −σ̃ ∈ Sr

n, that is, σ ∈ −S̃r
n.

Case 2. Suppose that i > 1. If n − j > i − 1, then σ ∈ Sr
n. Suppose n − j =

i − 1. Then either σ ∈ Fr
n(P), or there exists a least m such that π(m) +

π(n −m + 1) �= n + 1. Suppose σ /∈ Fr
n(P). If π(m) +π(n −m + 1) > n + 1,

then σ ∈ Sr
n. If π(m) + π(n −m + 1) < n + 1, then n + 1 − π(m) + n + 1 −

π(n−m+ 1) > n+ 1, and so σ ∈ −Sr
n. Now, suppose that n− j < i− 1. The

number of positions to the left of r in −σ̃ is n + 1 − j − 1 = n − j, and the
number of positions to the right of q is n − (n + 1 − i) = i − 1. Thus, −σ̃ ∈
Sr
n, and so σ ∈ −S̃r

n.
We have thus shown that for each σ ∈Un

P , where r precedes q, either
σ ∈ Sr

n or σ ∈ −S̃r
n. Now consider σ ∈ Un

P in which q precedes r. Then
either σ̃ ∈ Sr

n or σ̃ ∈ −S̃r
n. Hence either σ ∈ S̃r

n or σ ∈ −Sr
n. �
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Corollary 2.6. If P is an adjacent difference property, then

Un
P = Sr

n(P)∪ S̃r
n(P)∪−Sr

n(P)∪−S̃r
n(P) (2.11)

and the cardinality of each set on the right is exactly one-fourth of the cardinality
of Un

P .

Proof. By Lemma 2.2, Fr
n(P) and −Fr

n(P) are empty and by Lemmas 2.3
and 2.4, the sets on the right are pairwise disjoint and equivalent. �

3. A faster algorithm for generating permutations
with the SI property

An adaptation of a standard backtracking procedure [2], gives a simple
algorithm for generating all permutations in Πn satisfying a property
P . This algorithm, which we denote by A0(P) or simply A0, consists of
traversing the following labeled tree T0 = T0(P) in preorder:

(i) the root of T0 is marked and labeled with the empty sequence;
(ii) the children of any marked node v labeled σ are labeled σs1, . . . ,

σsk, where s1 < · · · < sk are the elements of Nn that do not appear
in σ or in any ancestor of σ;

(iii) a node labeled σ is marked if and only if σ ∈ UP . Unmarked
nodes are leaves.

Clearly, T0 has depth at most n− 1. The set Un
P consists of the labels of

the marked leaves of depth n− 1.
When P is an SI property, a much more efficient algorithm can be

obtained by adjoining terms to both sides of the sequences, not just one
side as in A0. This new algorithm, called A1(P) or simply A1, consists
of traversing the tree T1 in preorder, and writing the labels of marked
leaves with depth n− 1 as well as their appropriate symmetries. For any
r ∈Nn, the tree T1 = T1(P) is defined as follows:

(a) every node of T1 is colored either red or yellow, is either marked
or unmarked, and has a label consisting of a permutation se-
quence of some or all members of Nn;

(b) the root of T1 is red, marked, and has label r;
(c) if v is a red, marked node with label σ, then v has red children

labeled σs1,σs2, . . . ,σsk, where s1 < s2 < · · · < sk are the elements
of Nn that do not appear in σ or in the label of any ancestor of v.
If in addition σ contains q, then v has yellow children labeled
s1σ,s2σ, . . . , skσ;

(d) a yellow, marked node with label σ has yellow children that are
labeled as in (c);
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(e) a red node with label σsi is marked if and only if σsi ∈UP unless
i = k and sk = q, σsk is at depth n− 1, and π(m) +π(n−m+ 1) ≥
n+ 1, where σ = π(Nn) and m is the least index for which π(m) +
π(n−m+ 1) �= n+ 1;

(f) a yellow child with label σ is marked if and only if σ ∈UP and
the number of elements to the right of q is greater than the num-
ber of elements to the left of r or n− j = i− 1 and either σ ∈ Fr

n or
π(m) +π(n−m+ 1) < n+ 1, where σ = π(Nn) and m is the least
index for which π(m) +π(n−m+ 1) �= n+ 1.

Suppose, for example, that n = 4, r = 1, q = 4, and P is the “adjacent
difference” property, that is, for any π ∈ π(Nn), P(π) is true if and only
if no two differences of distinct adjacent terms are equal. Then T1(P) is
as follows (Figure 3.1), where red nodes are denoted by circles, yellow
nodes by rectangles, and marked nodes are indicated by an “x” written
within the circle or rectangle.

Theorem 3.1. For any SI property P ,

Sr
n ∪Fr

n =
{
σ | σ is a label of a marked leaf of depth n− 1 of T1(P)

}
(3.1)

and these labels are nonrepeating.

Proof. A node v with label σ of T1 is a leaf of depth n − 1 if and only if
there is a path from the root of T1 to v in which the label of each node on
each level k on the path is a sequence σ ′ of length k for which σ ′ ∈UP ,
and σ = τ1σ

′τ2 for some τ1 and τ2. A red child adds an element to the
right of the label of its parent, and a yellow child adds an element to
the left of the label of its parent. Furthermore, each level k contains all
sequences of length k that belong to UP ∪Fr

n.
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A yellow node can have only yellow children, and a red node can
have a yellow child only when its label contains q. Letting σi denote the
ith term added in order to form σ, we have that σ is the label of leaf v of
T1 of depth n− 1 if and only if it is of the form

σn · · ·σn−i+2σ1σ2 · · ·σn−i+1, (3.2)

where σ1 = r, and σj = q for some j, i < j ≤ n− i+ 1, that is, if and only if
for some permutation π ,

σ = π(1) · · ·π(i) = r · · ·π(j) = q · · ·π(n). (3.3)

Furthermore v is marked if and only if
(1) it is red, that is, i = 1 and hence either n �= j and n − j > i − 1 or

n = j and π(m) +π(n−m + 1) < n+ 1 where m is the least index
for which π(m) +π(n−m+ 1) �= n+ 1 or

(2) it is yellow, that is, n − j > i − 1 or n − j = i − 1 and π(m) +π(n −
m− 1) > n+ 1 and m is defined as before.

But these are exactly the conditions under which σ ∈ Sr
n ∪ Fr

n and
hence equality of the two sets follows. Finally, note that for any node
of T1 with label σ, there is only one path from the root to v, and hence
the marked leaves of T1 of depth n− 1 are distinct. �

Now algorithm A1(P) is obtained by traversing T1(P) in preorder. For
each marked leaf of depth n− 1, with label, say σ, if σ is not a fixed point,
we print σ, −σ, σ̃, and −σ̃. If σ is a fixed point, we print only σ and −σ.
If P is an adjacent difference property, we need not test for fixed points,
but simply print σ, −σ, σ̃, and −σ̃ for each marked leaf of depth n − 1
with label σ.

To achieve parallelism in algorithm A1(P) we use the “manager-
worker” technique. The manager generates the upper portion of the tree
T1(P), by generating those nodes of fixed depth d, for some d. The man-
ager dynamically passes each of these sequences of length d to an idle
worker, who in turn continues to search for sequences with property P
that contain the fixed subsequence of length d. The worker returns all
such sequences with property P to the manager and then waits for an-
other subsequence of length d. The manager continues to compute sub-
sequences of length d until no more such subsequences exist.

4. Costas sequences

The algorithm A1(P) of Section 3 has been presented in a very general
setting. To specialize it to any particular class of symmetry-invariant per-
mutations, one need only specify criteria for membership in the set UP
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Table 4.1

n C(n)
19 10240
20 6464
21 3536
22 2052
23 872
24 ≥ 8

for the given property P . Special cases of interest are for the Costas prop-
erty and the n-queens property Q.

This last section is devoted to describing the work done in applying
the algorithm to the generation of Costas sequences, which are used in
encoding radar and sonar signals. In this case, it is necessary to generate
only one-fourth of UC since C is an adjacent difference property.

We have implemented A1(C) on several platforms over a period of
several years, yielding new Costas sequences for various values of n.
Previously, Silverman et al. [3] were able to compute all Costas se-
quences of size n ≤ 18, but abandoned the search for larger sequences
after predicting that the case n = 19 would require more than one year of
computer time.

The first two authors of this work initially implemented A1(C) in OC-
CAM on an eight T800 transputer system mounted on an IBM PC-AT.
With this (MIMD) implementation, Costas sequences were obtained for
n ≤ 20. Subsequently, they implemented it in C on an Intel Paragon, ob-
taining all Costas sequences for n = 21, n = 22, and n = 23.

The second two authors implemented A1(PC) in C/MPI on a Super
Sparc cluster of 32 workstations, verifying all of the above results. This
latter implementation also yielded a new Costas sequence for size n = 24,
namely, X = (18,16,10,22,13,24,6,1,2,15,3,5,11,20,23,19,12,4,9,17,14,
21,8,7). Another known Costas sequence of size 24 that results from a
construction described in [1] is Y = (6,2,4,7,20,21,3,8,18,15,14,12,5,23,
17,24,10,19,9,13,1,16,11,22). The symmetries of the group G4 applied to
X and Y yield 6 more distinct Costas sequences. We can therefore con-
clude that there are at least 8 Costas sequences of size 24.

Table 4.1 summarizes the contributions of algorithm A1 to known val-
ues of C(n), the number of Costas arrays of size n.

Even though algorithm A1 is a considerable improvement over A0,
it still has exponential computational complexity. Nevertheless, imple-
mentations of A1 have been optimal. In each of the implementations we
chose d, so that the number of nodes at depth d in T1 is several times
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greater than the number of processors available. This insures that each
of the processors is kept busy. It turns out in fact that our implementa-
tions achieved speedups close to p where p is the number of processors.
Furthermore, the only communications necessary are between master
and slave and for fixed d, the number of these is polynomial in n. Thus,
the communication to computation ratio tends to zero as n→∞.
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