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The concept of ∆-matroid is a nontrivial, proper generalization of the concept of matroid
and has been further generalized to the concept of jump system. In this paper, we show
that jump systems are, in some sense, equivalent to ∆-matroids. Using this equivalence
and the ∆-matroid theory, we give simple proofs and extensions of many of the results on
jump systems.

1. Introduction

In [7, 10], the concept of pseudomatroid was developed as a proper generalization of
the concept of matroid. The same concept was independently developed as ∆-matroid in
[4, 5]. Throughout the paper, we use the more popular name ∆-matroid for this struc-
ture.

In [6], the concept of ∆-matroid was further generalized to jump system. Further in-
teresting results on jump system are reported in [1, 3, 12, 14, 15].

In this paper, we show that jump systems are, in some sense, equivalent to ∆-matroids.
Using this equivalence and the ∆-matroid theory, we give simple proofs and extensions
of many of the results on jump systems in [3, 6, 12].

In Section 2, we introduce notations and basic definitions. In Section 3, we give known
and some new results on ∆-matroid. In Section 4, we prove equivalence between jump
systems and ∆-matroids. We use this equivalence to give simple proofs of some of the
known results on jump systems in Section 5.

2. Notations, definitions, and some basic results

Standard notations as in [7, 16] are used throughout. We also assume basic knowledge of
matroid theory. In particular, the following notations and definitions are used extensively.

For any finite set E, we denote by 2E the collection of all subsets of E. Let 3E ≡ {(A,B) :
A,B ⊆ E,A∩B =∅}. For any (A,B),(C,D) ∈ 3E, we write (A,B) � (C,D) if A ⊆ C and
B ⊆D. For any (A,B)∈ 3E, PA,B = {(X ,Y) : (X ,Y)∈ 3E, (X ,Y)� (A,B)}.
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We use the reduced union, �, and reduced intersection, �, of elements of 3E defined
as follows.

For (A1,B1) and (A2,B2)∈ 3E,

(
A1,B1

)� (A2,B2)= ((A1∪A2)− (B1∪B2),(B1∪B2)− (A1∪A2)
)
,

(A1,B1)� (A2,B2)= (A1∩A2,B1∩B2).
(2.1)

A subset Ω of 3E is called a signed-ring family if Ω is closed under the operations of �
and �.

A function f : Ω→ R over a signed-ring family Ω ⊆ 3E is said to be bisubmodular
(bisupermodular) if it satisfies f (X1,Y1) + f (X2,Y2) ≥ (≤) f ((X1,Y1) � (X2,Y2)) +
f ((X1,Y1)� (X2,Y2)) for any (Xi,Yi)∈Ω, i= 1,2.

A discrete system is a pair (E,), where E is a finite set and∅ �=  ⊆ 2E.

Definition 2.1 [4, 10]. A discrete system (E,) is a ∆-matroid (or pseudomatroid) if the
set  satisfies the following symmetric exchange axiom.

For any A,B ∈  and any x ∈ A∆B, either A∆{x} ∈  or there exists y ∈ A∆B such
that A∆{x, y} ∈ .

The elements of  are called independent sets of the ∆-matroid.
For any finite set E and any X ⊆ E, the incidence vector of X is a (0,1)-vector x ∈ Z|E|

such that xi = 1 if and only if i ∈ X . We call the set X the support of the vector x. Also,
for any (X ,Y) ∈ 3E, the incidence vector of (X ,Y) is a (0,±1)-vector z ∈ Z|E| such that
zi = 1 (−1) if and only if i∈ X (i∈ Y). We call (X ,Y) the support of z. For any A⊆ E and
x ∈RE, x[A]=∑{xi : i∈A}. For any (A,B)∈ 3E and x ∈RE, x[A,B]= x[A]− x[B].

Definition 2.2 [2, 9]. Let f : 3E → Z be a nondecreasing, bisubmodular function. Then,

℘≡ {x : x ∈ Zn; x[A,B]≤ f (A,B)∀(A,B)∈ 3E
}

(2.2)

is a bisubmodular system.

For any x, y ∈ Rn, we use the �1-norm ‖x‖ =∑n
i=1 |xi| and the �1-distance d(x, y) =

‖x− y‖. For any S1,S2 ⊆ Rn, d(S1,S2) =min{d(x, y) : x ∈ S1, y ∈ S2}. Define a function
f : S1 → R as follows: for any x ∈ S1, f (x) =min{d(x, y) : y ∈ S2}. Then it is easy to see
that when S1 and S2 are convex sets, f is a separable, convex function.

A (0,±1)-vector with a unique nonzero element is called a step. Occasionally, we de-
note a step by χi, implying that its ith element is the nonzero element. For any x, y ∈ Zn,
a step from x to y is a step s such that ‖x+ s− y‖ = ‖x− y‖− 1. Let St(x, y) denote the
set of all the steps from x to y.

Definition 2.3 [6]. A jump system J⊆ Zn is a nonempty set satisfying the following 2-step
axiom.
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For any x, y ∈ J and any s∈ St(x, y) with x+ s /∈ J, there exists t ∈ St(x+ s, y) such that
x+ s+ t ∈ J.

It is easy to see that if (E,) is a∆-matroid, then the set of incidence vectors of elements
of forms a jump system and if all the elements of a jump system J⊆ Zn are (0,1)-vectors,
then the set  of supports of elements of J forms a ∆-matroid.

For sets S1 ∈ Rn and S2 ∈ Rm, let S1⊗ S2 = {(x, y) : x ∈ S1 and y ∈ S2}. Let ai ≤ bi be
integers for i= 1, . . . ,n. The set of integer points in [a1,b1]⊗···⊗ [an,bn], denoted by B,
is called a box. It is easy to see that every box is a jump system [12].

Theorem 2.4 [6]. Every bisubmodular system is a jump system and for any jump system,
J⊆ Zn, the set of integer points in the convex hull of J forms a bisubmodular system.

For other interesting examples of jump system, the reader is referred to [6, 12].

Definition 2.5. For any x ∈ Rn, let the components xi of x be ordered as x[1] ≥ x[2] ≥
··· ≥ x[n]. For any x, y ∈ Rn, if

∑ j
i=1 x[i] ≤

∑ j
i=1 y[i] for all j = 1,2, . . . ,n, then x is said

to be weakly submajorized by y and denoted by x �w y. If −x �w −y, then x is said to
weakly supermajorized by y and denoted by x �w y. For any subset S of Rn, x ∈ S is a
least weakly submajorized (supermajorized) element of S if x �w y (resp., x �w y) holds
for all y ∈ S.

The following theorem characterizes least weakly sub- and supermajorized elements.

Theorem 2.6 [13]. For any nonempty subset S ⊆ Rn, x∗ is a least weakly submajorized
(supermajorized) element of S if and only if for any continuous, nonincreasing (resp., non-
decreasing) concave function f :R→R, x∗ is an optimal solution of the following problem:
maximize {∑n

i=1 f (xi) : x ∈ S}.

3. Results on ∆-matroids

In this section, we present known and some new results on ∆-matroids. These will be
used to obtain simple proofs of results on jump systems in Section 5.

Fact 1 [10]. If (E,) is a ∆-matroid, then all the maximal (minimal) elements of  have
the same cardinality and the set of maximal (minimal) elements forms the set of basis of
a matroid.

Fact 2 [5]. For any discrete system (E,) and any X ⊆ E, let ∆X ≡ {Y∆X : Y ∈}. Then
(E,) is ∆-matroid if and only if (E,∆X) is a ∆-matroid.

For disjoint, finite sets E1 and E2, if (E1,1) and (E2,2) are ∆-matroids, then it is
easy to see that (E1∪E2,1 ⊗2) is a ∆-matroid, where 1⊗2 = {X ∪Y : X ∈ 1 and
Y ∈2}.
Definition 3.1 [7, 10]. The rank function r : 3E → Z+ of a ∆-matroid (E,) is defined
as

r(A,B)=max{|X ∩A|− |X ∩B| : X ∈} ∀(A,B)∈ 3E. (3.1)
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Theorem 3.2 [7, 10]. A function r : 3E → Z+ is the rank function of a ∆-matroid if and only
if it satisfies the following:

(i) r(·,·) is a bisubmodular function;
(ii) r(∅,∅)= 0;

(iii) 0≤ r(i,∅)≤ 1 for all i∈ E;
(iv) {(A,B),(C,D)∈ 3E; (A,D)� (C,B)} ⇒ r(A,B)≤ r(C,D).

Theorem 3.3 (polyhedral characterization of ∆-matroid) ([7, 10]). For any function f :
3E → Z+, consider the polyhedron

℘= {x : x[A,B]≤ f (A,B)∀(A,B)∈ 3E
}
. (3.2)

Then ℘ is a ∆-matroid polytope (i.e., it is the convex hull of incidence vectors of independent
sets of a ∆-matroid on E) if and only if the function f (·,·) satisfies conditions of Theorem 3.2
and in this case, f (·,·) is the rank function of the corresponding ∆-matroid.

Consider the following linear optimization problem on a discrete system (E,).
Given c : E→ Z, find X ∈ such that

c[X]=max
{
c(Y) : Y ∈}. (3.3)

We will now present three greedy algorithms for problem (3.3), each of which pro-
duces an optimal solution if (E,) is a ∆-matroid.

Generalized greedy algorithm (I) (GGA(I)) [4, 7, 8, 10].

Let the elements of E={1,2, . . . ,n} be ordered such that |c(1)| ≥ |c(2)| ≥ ··· ≥ |c(n)|.
Step 0. X0 =∅; i= 1.
Step 1. If c(i) > 0, then

if there exists Y ⊆ {i+ 1, . . . ,n} such that Xi−1∪{i}∪Y ∈,
then Xi = Xi−1∪{i}.

Else, Xi = Xi−1.
Go to Step 2.

If c(i) < 0, then
if there exists Y ⊆ {i+ 1, . . . ,n} such that Xi−1∪Y ∈, then Xi = Xi−1.
Else, Xi = Xi−1∪{i}.
Go to Step 2.

Else, choose any Y ⊆ {i, i+ 1, . . . ,n}, such that Xi−1∪Y ∈.
Let X∗ = Xi−1∪Y . Stop.

Step 2. If i < n, then i= i+ 1; go to Step 1.
Else, X∗ = Xi; stop.

Theorem 3.4 [4, 7, 10]. (E,) is a ∆-matroid if and only if GGA(I) produces an optimal
solution to problem (3.3) for all c : E→ Z.
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Fact 3 [7, 10]. For a ∆-matroid (E,) with rank function r(·,·), and any (A,B) ∈ 3E,
let /(A,B) = {X − (A∪B) : X ∈ ,|X ∩A| − |X ∩B| = r(A,B)}. Then it follows easily
from the validity of the greedy algorithm GGA(I) that (E − (A∪ B),/(A,B)) is a ∆-
matroid.

Theorem 3.5. Let (E,) be a ∆-matroid with rank function r(·,·). For any (A,B)∈ 3E, let
A,B = {X : X ∈,|X ∩A|− |X ∩B| = r(A,B)}. Then (E,A,B) is a ∆-matroid.

Proof. Let ′ = {X ∩ (A∪B) : X ∈A,B}. Then it is easy to see that (E,′) is a ∆-matroid
and that A,B =′ ⊗ (/(A,B)). �

From Theorems 3.4 and 3.5, we have the following corollary.

Corollary 1. Every face of a ∆-matroid polytope is a ∆-matroid polytope.

The algorithm GGA(I) requires an oracle to check the following.

Oracle 1. Given X ⊆ {1,2, . . . , i}, is there a Y ⊆ {i+ 1, . . . ,n} such that X ∪Y ∈?

It is easy to see that the complexity of algorithm GGA(I) is O(n), where each call to
Oracle 1 is counted as a single operation. In some instances, however, information about
the discrete system is available not in the form of Oracle 1, but in the form of the following
membership Oracle 2.

Oracle 2. Given X ⊆ E, does X ∈?

We give below algorithm GGA(III) which, starting with any Y 0 ∈ , uses Oracle 2
to produce an optimal solution to problem (3.3). But before that we consider another
algorithm GGA(II), which starts with any T0 ∈ , and is essentially algorithm GGA(I)
applied to (E,∆T0).

Generalized greedy algorithm (II) (GGA(II)).

Input: T0 ∈. Elements of E = {1,2, . . . ,n} are ordered such that
|c(1)| ≥ |c(2)| ≥ ··· ≥ |c(n)|.

Step 0. i= 0.
Step 1. i= i+ 1;

If c[Ti−1∆{i}] > c[Ti−1], then
if there exists X ⊆ {i+ 1, . . . ,n} such that Ti−1∆{i}∆X ∈, then
Ti = Ti−1∆{i}.

Else Ti = Ti−1.
Go to Step 2.

If c[Ti−1∆{i}] < c[Ti−1], then
if there exists X ⊆ {i+ 1, . . . ,n} such that Ti−1∆X ∈, then Ti = Ti−1.
Else Ti = Ti−1∆{i}.
Go to Step 2.

If c[Ti−1∆{i}]= c[Ti−1], then
choose any X ⊆ {i, i+ 1, . . . ,n} such that Ti−1∆X ∈.
Set T∗ = Ti−1∆X and stop.

Step 2. If i < n, then go to Step 1. Else, set T∗ = Ti and stop.
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Since GGA(II) is GGA(I) applied to (E,∆T0), the validity of this algorithm, when
(E,) is a ∆-matroid, follows from Fact 2 and Theorem 3.4.

Generalized greedy algorithm (III) (GGA(III)).

Input: Y 0 ∈. Elements of E = {1,2, . . .n} are ordered such that
|c(1)| ≥ |c(2)| ≥ ··· ≥ |c(n)|.
Step 0. i= 0.
Step 1. i= i+ 1.

Let ji be the smallest integer such that
c[Yi−1∆{ ji}] > c[Yi−1] and
either (i) Yi−1∆{ ji} ∈  or

(ii) Yi−1∆{ ji} /∈ and there exists ki ∈ E such that
Yi−1∆{ ji,ki} ∈ .

If no such ji exists, then stop with Y∗ = Yi−1.
Else, in case (i), let Yi = Yi−1∆ { ji} and

in case (ii), Yi = Yi−1∆{ ji,ki}.
If i < n, then repeat Step 1. Else, stop with Y∗ = Yi.

It is easy to see that for any u<v, (i) ju < jv and (ii)Yu∩{1,2, . . . , ju}=Tu∩{1,2, . . . , ju},
where Tu is as defined in algorithm GGA(II). This, together with Theorem 3.4, validity
of algorithm GGA(II) and definition of ∆-matroid gives us the following theorem.

Theorem 3.6. Algorithm GGA(III) terminates in no more than n iterations and can be
implemented in 0(n2) time. If (E,) is a ∆-matroid, then it terminates with an optimal
solution to problem (3.3).

We also get the following corollary.

Corollary 2. Let (E,) be a ∆-matroid and let X ∈ . Define AX = {Y : Y ∈ ; either
(Y∆X = {i} or (Y∆X = {i, j} and X∆{i} /∈ )}. Then for any c : E→ Z, X is an optimal
solution to problem (3.3) if and only if for all Y ∈ AX , c[Y]≤ c[X]. Furthermore, AX is the
minimum set satisfying this property.

4. Jump system as ∆-matroid

Consider a jump system J ∈ Zn+. Let αi =max{xi : x ∈ J}, i = 1, . . . ,n, and E = E1 ∪ E2 ∪
···∪En where Ei = {ei1,ei2, . . . ,eiαi}, i= 1,2, . . . ,n. For any x ∈ J, let x denote the family
of subsets of E consisting of xi elements of Ei, for each i∈ {1,2, . . . ,n}. Define, =⋃{x :
x ∈ J}.

For any X ,Y ∈ 2E, we call an element ei j ∈ E a step element from X to Y if and only
if either |X ∩ Ei| > |Y ∩ Ei| and ei j ∈ X −Y or |X ∩ Ei| < |Y ∩ Ei| and ei j ∈ Y −X . Let
ST(X ,Y) denote the set of all the step elements from X to Y . If X ∈ x and Y ∈ y for
some x, y ∈ J, then it is clear that any step s∈ St(x, y) corresponds to a set of step elements
from X to Y and conversely, for every step element ei j ∈ ST(X ,Y), there is a unique step
s∈ St(x, y).

Theorem 4.1. For any jump system J⊆ Zn+, the pair (E,) defined above is a ∆-matroid.
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For proof of the above theorem, we refer the reader to [11]. We now prove the con-
verse of the theorem. For this, we define a function ζ12 : Rn → Rn−1 as ζ12(x) = (x1 +
x2,x3,x4, . . . ,xn)t for any x ∈Rn. We can similarly define a function ζi j for any 1≤ i< j≤n.

Theorem 4.2. Let J ⊆ Zn be a jump system. Define J′ = {x′ : x′ = ζ12(x), for some x ∈ J}.
Then J′ is a jump system.

Proof. If the result is not true, then amongst all the pairs of elements of J′ violating the
axiom of jump system, choose the pair x′, y′ and the corresponding x, y ∈ J (i.e., x′ =
ζ12(x) and y′ = ζ12(y)), such that |x1− y1|+ |x2− y2| is minimum. Let s′ ∈ St(x′, y′) be
such that x′ + s′ /∈ J′.
Case 1 (s′ = χ1). In this case, there exists an s∈ St(x, y) such that s= χ1 or χ2 and ζ12(x+
s)= x′ + s′. Without loss of generality, let s= χ1. Then x+ s /∈ J and hence, there exists t ∈
St(x+ s, y) such that z = x+ s+ t ∈ J. If ζ12(z) �= x′, then ζ12(z)− (x′ + s′)∈ St(x′ + s′, y′).
If ζ12(z)= x′, then |z1− y1|+ |z2− y2| < |x1− y1|+ |x2− y2|. This contradicts the choice
of x.
Case 2 (s′ = χ j for some j > 1). In this case, there exists an s∈ St(x, y) such that ζ12(x +
s) = x′ + s′ and x + s /∈ J. Hence, there exists t ∈ St(x + s, y), such that z = x + s + t ∈ J.
If t′ = ζ12(z)− (x′ + s′) ∈ St(x′ + s′, y′), then we are done. Else, |z1 − y1| + |z2 − y2| <
|x1− y1|+ |x2− y2| and −t′ ∈ St(ζ12(z), y′). Hence, there exists u′ ∈ St(ζ12(z)− t′, y′)=
St(x′ + s′, y′), such that ζ12(z)− t′ +u′ = x′ + s′ +u′ ∈ J′. This proves the result. �

As corollaries, we get the following results.

Corollary 3 [6]. Sum of two jump systems J1,J2 ⊆ Zn is a jump system.

Corollary 4. Let (E,) be a ∆-matroid and let (E1,E2, . . . ,Ek) be a partition of E. Define
J ⊆ Zk+ as J = {x = (x1,x2, . . . ,xk)t : there exists X ∈  such that xi = |X ∪ Ei| for all i =
1,2, . . . ,k}. Then J is a jump system.

It is easy to see [6] that for any jump system J ∈ Zn, and any vector u ∈ Zn, J + u =
{x + u : x ∈ J} is a jump system. Henceforth, when we refer to the ∆-matroid (E,) cor-
responding to a jump system J ⊆ Zn, we will mean the ∆-matroid constructed as in the
beginning of this section from J1 = J− a, where ai =min{xi : x ∈ J} for all i= 1,2, . . . ,n.
Thus, αi =max{xi : x ∈ J}− ai for all i.

In the next section, we will use the results on ∆-matroid and the equivalence between
∆-matroid and jump system proved here to give simple proofs of known results on jump
systems.

5. Results on jump systems

We start with the results of Ando et al. [3], on maximization of a separable concave func-
tion over a jump system. Thus, for J⊆ Zn, consider the following problem:

max
{
f (x)=

n∑
i=1

fi
(
xi
)

: x ∈ J
}
. (5.1)

where, each fi is a concave function over reals.
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We show below that problem (5.1) is a special case of problem (3.3) on the corre-
sponding ∆-matroid.

Let (E,) be the ∆-matroid corresponding to J. For i= 1,2, . . . ,n, define gi(0)= fi(ai)
and gi( j)= fi(ai + j)− fi(ai + j − 1) for all j ∈ {1,2, . . . ,αi}. (We recall that ai=min{xi :
x ∈ J} and αi =max{xi : x ∈ J}− ai.)

Let g[0] =∑n
i=1 gi(0), and for any X ⊆ E, let g[X] =∑{gi( j) : ei j ∈ X}. Consider the

following linear optimization problem on (E,):

max
{
g[X] : X ∈}. (5.2)

We call an element X ⊆ E a leftmost element if and only if for any i∈ {1,2, . . . ,n} and
any j > 1, ei j ∈ X ⇒ ei( j−1) ∈ X . It is easy to see that for every x ∈ J− a, the set x contains
a unique leftmost element.

The theorem below follows easily from the fact that gi’s are nonincreasing functions.

Theorem 5.1. For any x ∈ J, if X ∈x−a is a leftmost element, then

f (x)= g[X] + g[0]=max
{
g[Y] : Y ∈x−a

}
+ g[0]. (5.3)

Hence, x ∈ J is an optimal solution to problem (5.1) if and only if the leftmost element
of x−a is an optimal solution to problem (5.2). Thus, an optimal solution to problem
(5.2), and hence to problem (5.1), can be obtained in 0(

∑n
i=1αi) time using any of the

algorithms GGA(I), GGA(II), and GGA(III). In fact, it is easy to modify these algorithms
to apply directly to problem (5.1). Such a modification of algorithm GGA(III) is consid-
ered in [3]. Their results are precisely Corollary 2 and Theorem 3.6 applied to problem
(5.2), and hence to problem (5.1).

As a corollary, we also obtain a simple proof of the following result of Ando [1] and
Tamir [15].

Corollary 5 [1, 15]. Every jump system J ⊆ Zn has a least weakly submajorized element
and a least weakly supermajorized element.

Proof. The solution to problem (5.2), and hence to problem (5.1), produced by Algo-
rithm GGA(I) depends on the objective function coefficients only through the ordering
imposed on the elements of E which are arranged in nonincreasing order of absolute val-
ues of objective function coefficients. It is easy to see that if for all i= 1,2, . . . ,n, fi = f for
some nonincreasing (nondecreasing) concave function f , then there exists an ordering
of elements of E that satisfies the condition of Algorithm GGA(I) for any such function.
The result now follows from Theorem 2.6. �

Lovász [12] considers the following optimization problem over a jump system J⊆ Zn.
Given a box B= [a1,b1]⊗···⊗ [an,bn], for some 0≤ ai ≤ bi, i∈ {1,2, . . . ,n}, find an

x ∈ J such that d(x,B)= d(J,B)=min{d(y,B) : y ∈ J}.
As pointed out in Section 2, d(y,B) is a separable, convex function on J. Lemma 1 in

[12] can thus be easily seen to be a special case of Theorem 3.6. By applying Theorem 3.5
to the ∆-matroid corresponding to a given jump system, and using Theorem 2.4, we ob-
tain the following results in [12].
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Corollary 6 [12]. For any jump system J ⊆ Zn and any box B,JB = {x : x ∈ J;d(x,B) =
d(J,B)} is a jump system.

Corollary 7 [12]. For any jump system J⊆ Zn and any face F of the convex hull of J, J∩F
is a jump system.

In fact, if (X ,Y) ∈ 3E is such that |X ∩Ei| = ai and |Y ∩Ei| = bi for all i = 1,2, . . . ,n,
then it can be readily verified that

d(J,B)= |X|− r(X ,Y), (5.4)

where r(·,·) is the rank function of the ∆-matroid (E,) corresponding to the jump
system J. We will now extend slightly the results in [12] on the function d(J,B).

Let (E,) be the ∆-matroid corresponding to jump system J ⊆ Zn. Let r(·,·) be the
rank function of (E,). For any X1,X2 ∈ E, we say that X1 ∼ X2 if and only if |X1∩Ei| =
|X2 ∩ Ei| for all i = 1,2, . . . ,n. For (A1,B1),(A2,B2) ∈ 3E, (A1,B1) ∼ (A2,B2) if A1 ∼ A2

and B1 ∼ B2. It is easy to see that for (A1,B1),(A2,B2)∈ 3E such that (A1,B1)∼ (A2,B2),
r(A1,B1)= r(A2,B2).

Let g(·,·) be an integer-valued, monotonically nondecreasing function on 3E such
that g(·,·) is bisupermodular over PA,B for all (A,B) ∈ 3E and for (A1,B1),(A2,B2) ∈ 3E

such that (A1,B1) ∼ (A2,B2), g(A1,B1) = g(A2,B2). (It should be noted that d(J,B) is a
function of this type.)

For any (A,B)∈ 3E, define

SA,B =
{

(X ,Y) : (X ,Y)� (A,B),g(X ,Y)= g(A,B)
}
. (5.5)

The following lemma is easy to verify. (For detailed proof, the reader is refered to [11].)

Lemma 5.2. SA,B is a signed-ring family.

Since SA,B is a signed-ring family, it has a smallest element, which we denote by ρ(A,B).
It is easy to see that if (X ,Y)∈ SA,B, then ρ(X ,Y)= ρ(A,B). The following lemma can be
readily verified.

Lemma 5.3. For any (A,B) ∈ 3E, let (X0,Y 0) = ρ(A,B). If (X ,Y) ∈ SA,B then for any i ∈
{1,2, . . . ,n},

(i) |X ∩Ei| < |A∩Ei| ⇒ X0∩Ei =∅,
(ii) |Y ∩Ei| < |B∩Ei| ⇒ Y 0∩Ei =∅.

Theorem 5.4. For any (A,B)∈ 3E, let (X0,Y 0)= ρ(A,B). Then for any i∈ {1,2, . . . ,n},
(i) either (X0 ∩ Ei = ∅) or (X0 ∩ Ei = A∩ Ei and for any X1 ⊂ X2 ⊆ Ei − (A∪ B),

g(A∪X1,B) < g(A∪X2,B));
(ii) either (Y 0 ∩ Ei = ∅) or (Y 0 ∩ Ei = B ∩ Ei and for any X1 ⊂ X2 ⊆ Ei − (A∪ B),

g(A,B∪X1) < g(A,B∪X2)).

Proof. We will prove part (i). Part (ii) follows similarly. It is clear from Lemma 5.3 that ei-
ther X0 ∩ Ei = ∅ or X0 ∩ Ei = A ∩ Ei. Suppose X0 ∩ Ei = A ∩ Ei for some
i ∈ {1,2, . . . ,n}.If for some X1 ⊂ X2 ⊆ Ei − (A∪B), g(A∪X2,B) = g(A∪X1,B), then by



104 ∆-matroid and jump system

Lemma 5.3 and monotonicity of g(·,·),

(
A−Ei,B

)∈ SA∪X2,B =⇒ (A,B)∈ SA∪X2,B. (5.6)

Hence, X0∩Ei =∅, which leads to a contradiction. �

For (A,B) ∈ 3E, let δ(A,B) = |A| − r(A,B). Consider SA,B defined as above using the
function g(·,·) = δ(·,·). The following results of Lovász [12] can be obtained from the
above theorem.

Corollary 8. For any (A,B)∈ 3E, let (X0,Y 0)= ρ(A,B). Then for any i∈ {1,2, . . . ,n},
(i) either (X0∩Ei =∅) or (X0∩Ei = A∩Ei and r(A∪ (Ei−B),B)= r(A,B));

(ii) either (Y 0 ∩ Ei = ∅) or (Y 0 ∩ Ei = B ∩ Ei and for any X1 ⊂ X2 ⊆ Ei − (A∪ B),
r(A,B∪X2) < r(A,B∪X1)).

Proof. Part (ii) follows from Theorem 5.4. We will prove part (i).
From Lemma 5.3, it easily follows that X0∩Ei =∅ or A∩Ei, for any i∈ {1,2, . . . ,n}.

Consider any chain of sets: ∅= X0 ⊂ X1 ⊂ ··· ⊂ Xk = Ei− (A∪B), where, |Xi| − |Xi−1|
= 1 for all i= 1,2, . . . ,k. If for some i≥ 1, r(A∪Xi,B) > r(A∪Xi−1,B), then δ(A∪Xi,B)=
δ(A∪Xi−1,B). From this and monotonicity of δ(·,·), we get

(
A−Ei,B

)∈ SA∪X2,B =⇒ (A,B)∈ SA∪X2,B. (5.7)

Therefore, X0∩Ei =∅, and this leads to a contradiction. �

Corollary 9. For any (A,B)∈ 3E, let (X0,Y 0)= ρ(A,B). If for some i∈ {1,2, . . . ,n}, Ei �
A∪B, then

(i) either X0∩Ei =∅ or Y 0∩Ei =∅,
(ii) if Y 0∩Ei �= ∅, then r(A−Ei,B∪Ei)= r(A−Ei,B)−|Ei−B|.

Proof. Let X = Ei− (A∪B).
(i) If X0 ∩ Ei �= ∅ and Y 0 ∩ Ei �= ∅, then by Theorem 5.4, r(A∪X ,B) = r(A,B) and

r(A,B∪X)= r(A,B)−|X|. Using bisubmodularity of r(·,·), we get

2r(A,B)−|X| = r(A∪X ,B) + r(A,B∪X)≥ 2r(A,B). (5.8)

We thus have a contradiction.
(ii) If Y 0 ∩ Ei �= ∅, then by (i) and Theorem 5.4, Y 0 ∩ Ei = B ∩ Ei and X0 ∩ Ei =

∅. Hence, if (X ′,Y ′) = ρ(A− Ei,B), then X ′ ∩ Ei =∅ and Y ′ ∩ Ei = B∩ Ei. Hence, by
Theorem 5.4(ii), we get

r(A−Ei,B∪Ei)= r(A−Ei,B)−|Ei−B|. (5.9)

This completes the proof. �
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The following two results are equivalent to [12, Theorem 8 and Corollary 9].

Theorem 5.5. Let (A,B) ∈ 3E be such that (i) δ(A,B) > 0 and (ii) for all i ∈ {1,2, . . . ,n},
either X0 ∩ Ei = ∅ or Y 0 ∩ Ei = ∅, where (X0,Y 0) = ρ(A,B). Then, there exist I1,I2 ⊆
{1,2, . . . ,n}, I1∩ I2 =∅, such that

∣∣∪ {(A∩Ei
)

: i∈ I1
}∣∣−∣∣∪ {(Ei−B

)
: i∈ I2

}∣∣ > r
(∪{Ei : i∈ I1

}
,∪{Ei : i∈ I2

})
.

(5.10)

Proof. Let (X0,Y 0)= ρ(A,B). Let I1 = {i : X0∩Ei �= ∅} and I2 = {i : Y 0∩Ei �= ∅}. Then,

0 < δ
(
X0,Y 0)

= ∣∣∪ {(A∩Ei
)

: i∈ I1
}∣∣− r

(∪ {(A∩Ei
)

: i∈ I1
}

,∪{(B∩Ei
)

: i∈ I2
})

= ∣∣∪ {(A∩Ei
)

: i∈ I1
}∣∣− r

(∪ {Ei : i∈ I1
}

,∪{(B∩Ei
)

: i∈ I2
})

= ∣∣∪ {(A∩Ei
)

: i∈ I1
}∣∣− r

(∪ {Ei : i∈ I1
}

,∪{Ei : i∈ I2
})

−∣∣∪ {(Ei−B
)

: i∈ I2
}∣∣,

(5.11)

where the second equality follows from Theorem 5.4(i) and the last one follows from
Corollary 9. �

We say that a jump system J has constant sum, if
∑

i xi is the same for all x ∈ J.

Corollary 10 [12]. Let J ⊆ Zn+ be a jump system with constant sum β and let v ∈ Zn+ be
such that

∑n
i=1 vi = β and v /∈ J. Then, there exists an I ⊆ {1,2, . . . ,n} such that

∑{xi : i ∈
I} <∑{vi : i∈ I}, for all x ∈ J. That is, every constant sum jump system is a bisubmodular
system.

Proof. If vi > αi (where αi is as defined before) for some i ∈ {1,2, . . . ,n}, then the result
follows. Otherwise, let (E,) be the ∆-matroid corresponding to J and let X ∈v. Since J
is a constant sum jump system,  is the set of bases of a matroid. Hence, by the result on
matroid theory, we have |X| > r(X ,∅), which implies that δ(X ,∅) > 0. Now, the result
follows from Theorem 5.5. �

From Corollaries 7 and 10, Fact 1, and basic convexity theory, we obtain the next re-
sult.

Corollary 11. For any jump system J⊆ Zn, {x : x ∈ J;
∑n

i=1 xi ≥
∑n

i=1 yi for all y ∈ J} is a
bisubmodular system.

Using similar approach, most of the known results on ∆-matroids can be extended to
jump systems and simpler proofs can be obtained for most of the known results on jump
systems.
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