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The number partitioning problem has proven to be a challenging problem for both exact
and heuristic solution methods. We present a new modeling and solution approach that
consists of recasting the problem as an unconstrained quadratic binary program that
can be solved by efficient metaheuristic methods. Our approach readily accommodates
both the common two-subset partition case as well as the more general case of multiple
subsets. Preliminary computational experience is presented illustrating the attractiveness
of the method.

1. Introduction

The number partitioning problem (NPP), being one of Garey and Johnson’s [3] six basic
NP complete problems, has been the subject of considerable research in recent years. In
the simplest case, the problem consists of partitioning a set of numbers into two subsets
such that the sums of the numbers in each subset are as close as possible. The more general
case of NPP seeks to partition the original set into n subsets (n > 2) such that the sums for
each set are as close to each other as possible. Most of the work reported in the literature
has been directed to the two-subset case. This problem is known to be computationally
challenging and, except for small instances, is most productively approached by heuristic
means.

The literature contains several papers describing methods for solving NPP. One of the
most widely referenced methods is the differencing method (DM) of Karmarkar and Karp
[11] which is O(n logn) for the two-subset case. Several computational studies, including
those of Johnson et al. [10] and Arguello et al. [1], report that DM outperforms, in terms
of both solution quality and computation time, alternative methods such as simulated
annealing and GRASP. Due to it’s effectiveness, Korf [13] employs DM to produce initial
solutions for an improvement method that is reported to be very successful on a large
variety of partitioning problems. An analysis of various published methods for NPP can
be found in the paper by Gent and Walsh [4].

In this paper, we present a new way of modeling and solving a variety of NPPs. Several
versions of the NPP, each a generalization of the one preceding it, are considered. We
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show that each version of NPP can be cast into the common modeling framework of
the unconstrained quadratic binary program (UQP). In turn, this common formulation
enables solutions by recently developed metaheuristics for this model.

The UQP can be written in the form

UQP : min f (x)= xQx, (1.1)

where Q is an n-by-n matrix of constants and x is an n-vector of binary variables. UQP is
notable for its ability to represent a significant number of important problems. A discus-
sion of a wide variety of applications can be found in Kochenberger et al. [12].

Our purpose here is to show how this versatile model can be used to model and solve
NPPs. In the sections below, we illustrate the use of UQP for various NPPs. Preliminary
computational experience is presented for the two-subset case.

2. The two-subset case

The most common version of NPP involves partitioning a set of numbers into two subsets
such that the subset sums are as close to each other as possible. We model this problem
as follows.

Consider a set of numbers S = {s1,s2,s3, . . . ,sm}. The goal is to partition S into two
subsets such that the subset sums are as close to each other as possible. Let xj = 1 if s j is
assigned to subset 1, 0 otherwise. Then sum1, subset 1’s sum, is sum1 =

∑m
j=1 s jx j and the

sum for subset 2 is sum2 =
∑m

j=1 s j −
∑m

j=1 s jx j . The difference in the sums is then given
by

diff =
m∑
j=1

s j − 2
m∑
j=1

s jx j = c− 2
m∑
j=1

s jx j . (2.1)

We approach the goal of minimizing the absolute value of diff by minimizing

diff2 =

c− 2

m∑
j=1

s jx j




2

= c2 + 4xQx, (2.2)

where

qii = si
(
si− c

)
, qi j = sis j . (2.3)

Dropping the additive and multiplicative constants, our optimization problem becomes
simply

UQP : minxQx. (2.4)

As a foundation for applying the UQP model to solve NPP, we first review solution
methodologies created for UQP.
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2.1. Solution approaches for UQP. Due to its computational challenge and application
potential, UQP has been the focus of a considerable number of research studies in re-
cent years, including both exact and heuristic solution approaches. These various papers
approach UQP by branch and bound, decomposition, semidefinite programing and cut-
ting planes, tabu search, simulated annealing, evolutionary methods such as genetic al-
gorithms and scatter search, as well as simple one-pass heuristic methods. Each of these
approaches exhibits some degree of success and could in principle be utilized to solve
problems reformulated as UQP. However, the exact methods degrade rapidly with prob-
lem size, and have meaningful application to general UQP problems with no more than
a few hundred variables. For larger problems, heuristic methods are required.

Below, we highlight our tabu search heuristic [5, 6] which has proven to be very suc-
cessful on a wide variety of UQP instances and that was used to produce the compu-
tational results presented later in the paper. Reference [12] gives an overview of other
solution approaches for UQP.

2.2. Tabu search overview. Our TS method for UQP is centered around the use of strate-
gic oscillation, which constitutes one of the primary strategies of tabu search. The variant
of strategic oscillation we employ may be sketched in overview as follows. The method
alternates between constructive phases that progressively set variables to 1 (whose steps
we call “add moves”) and destructive phases that progressively set variables to 0 (whose
steps we call “drops moves”). To control the underlying search process, we use a memory
structure that is updated at critical events, identified by conditions that generate a subclass
of locally optimal solutions. Solutions corresponding to critical events are called critical
solutions.

A parameter span is used to indicate the amplitude of oscillation about a critical event.
We begin with span equal to 1 and gradually increase it to some limiting value. For each
value of span, a series of alternating constructive and destructive phases is executed before
progressing to the next value. At the limiting point, span is gradually decreased, allowing
again for a series of alternating constructive and destructive phases. When span reaches a
value of 1, a complete span cycle has been completed and the next cycle is launched. The
search process is typically allowed to run for a preset number of span cycles.

Information stored at critical events is used to influence the search process by penal-
izing potentially attractive add moves (during a constructive phase) and inducing drop
moves (during a destructive phase) associated with assignments of values to variables
in recent critical solutions. Cumulative critical event information is used to introduce a
subtle long-term bias into the search process by means of additional penalties and in-
ducements similar to those discussed above. A complete description of the framework
for the method is given by Glover et al. [6].

Example 2.1. We illustrate the approach on a simple example. Consider the set of 8 num-
bers

S= {25,7,13,31,42,17,21,10}. (2.5)

Following the development above, we have that c2 = 27,556 and the equivalent UQP
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Table 2.1. Subset sum differences and times.

ID Sum difference via DM DM time Sum difference via xQx xQx time

NP25.1 30 < 1s 0 < 1s

NP25.2 36 < 1s 0 < 1s

NP25.3 35 < 1s 1 < 1s

NP25.4 28 < 1s 0 < 1s

NP25.5 26 < 1s 0 < 1s

NP75.1 23 < 1s 1 1s

NP75.2 31 < 1s 1 1s

NP75.3 25 < 1s 1 1s

NP75.4 24 < 1s 0 1s

NP75.5 23 < 1s 1 1s

problem is minx0 = xQx with

Q=




−3525 175 325 775 1050 425 525 250

175 −1113 91 217 294 119 147 70

325 91 −1989 403 546 221 273 130

775 217 403 −4185 1302 527 651 310

1050 294 546 1302 −5208 714 882 420

425 119 221 527 714 −2533 357 170

525 147 273 651 882 357 −3045 210

250 70 130 310 420 170 210 −1560




.

(2.6)

Solving with our tabu search heuristic gives x = (0,0,0,1,1,0,0,1) for which x0 =−6889
yielding perfectly matched sums of 83.

2.3. Computational experience. The standard comparison in the literature for new ap-
proaches to the NPP is with the differencing method (DM) of Karmarker and Karp [11],
which has proven to be both fast and effective in several comparative studies. Due to
its prominence in the literature, we include it here as a benchmark as well. The results
reported here are on modest-sized random problems of size m= 25 and m= 75. Five in-
stances of each size are considered with the elements drawn randomly from the interval
(50,100). Each of the 10 problems was solved by our UQP approach as well as the method
of Karmarker and Karp. The results are shown in Table 2.1. For each problem, our tabu
search heuristic was run for 20 “span” cycles.

The solutions shown in Table 2.1 indicate that our method dominates DM in terms of
solution quality. For five of the problem instances, our approach found partitions with
equal sums (differences of 0). For the other five problems, our method produced parti-
tions whose sums differed by only 1. We suspect that these later results are optimal as well.
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In contrast to this, DM was unable to produce equal-sum partitions for any of the prob-
lems, yielding solutions with unequal sums of substantial margins across all ten problems.
Solution times, shown in seconds on a Pentium 333 laptop, are roughly the same for both
methods.

3. Partitioning with multiple subsets

The problem of the previous section can be generalized to accommodate n > 2 partitions.
As before, the goal is to assign numbers to subsets such that the subset sums are as close
to each other as possible. For this more general case, we start with a constrained model
containing assignment equations ensuring that each number is assigned to one of the
subsets. This constrained model is then recast into the form of UQP by introducing qua-
dratic infeasibility penalties into the objective function as an alternative to the explicit
imposition of the assignment constraints. This approach, shown by Kochenberger et al.
[12] to be very successful in a wide variety of other problem classes, is presented below.

As before, we start with a set of m numbers S= {s1,s2, . . . ,sm} to be partitioned into n
subsets. Let xi j = 1 if element si is assigned to subset j, 0 otherwise.

The sum for subset j (sum j) is given by

sum j =
n∑
i=1

sixi j , (3.1)

and we seek to minimize

x0 =
(
sum1−sum2

)2
+
(
sum1−sum3

)2
+ ···+

(
summ−1−summ

)2
(3.2)

subject to

n∑
j=1

xi j = 1, i= 1,m. (3.3)

Since the objective of (3.2) is quadratic in the assignment variables, we can rewrite (3.2)
as x0 = xQx, where x = (x11,x12, . . . ,x1n,x21, . . . ,xmn) is the binary vector of length m by
n and Q is the square, symmetric matrix resulting from combining terms in (3.2). Our
model is now of the form

minx0 = xQx (3.4)

subject to

Ax = b, x binary. (3.5)

This constrained model, following the general reformulation put forth by Hammer and
Rudeanu [7], can then be recast as an unconstrained quadratic model by imposing the
constraints implicitly via quadratic penalties added to the objective function. Specifically,
for a positive scalar P, we have

x0 = xQx+P(Ax− b)t(Ax− b)= xQx+ xDx+ c = xQ̂x+ c, (3.6)
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where the matrix D and the additive constant c result directly from the matrix multipli-
cation indicated. Dropping the additive constant, the equivalent unconstrained version
of our constrained problem becomes

UQP(PEN) : minxQ̂x, x binary, (3.7)

and we see that the multiple-subset case considered in this section, like the two-subset
case of Section 2, can be modeled by UQP. A suitable choice of the scalar penalty P, for
the general application of this reformulation approach, can always be chosen so that the
optimal solution to UQP(PEN) is the optimal solution to the original constrained prob-
lem. (Hammer and Rudeanu [7], Hansen [8], Hansen et al. [9], and Boros and Hammer
[2]). We illustrate the procedure in the following example.

3.1. Multiple-subset examples. Consider the set of numbers S = {15,3,7,11,7,5,21,9,
13,7,5,15,23,14,13,13,27,15,9,9,17,10,11,19,8} to be partitioned into subsets of size
n = 3,4, and 5 such that their subset sums are as close as possible (i.e., 3 separate prob-
lems).

For each case, the transformation to xQ̂x is accomplished using an arbitrarily chosen
penalty value of P = 900. Solving UQP for each case results in the assignments shown in
Table 3.1. For each case, the numbers in the “subset assignment” column are the subset
indices of the assignments made. For example, for the n = 3 case, the first number (15)
is assigned to subset 3, the second number (3) is assigned to subset 1, and so forth. The
assignments shown are very well balanced with subset sums of 102, 102, and 102, respec-
tively for the n= 3 case, 76, 76, 77, and 77 for the n= 4 case, and 62, 61, 61, 61 and 61 for
the n= 5 case.

The results given in Table 3.1 show the assignment of all elements (numbers), con-
firming that the penalty used was in fact sufficiently large to yield feasible assignments.
Note that the UQP problems solved to produce the results of Table 3.1 were of size 75
variables, 100 variables, and 125 variables, respectively. The largest of these were solved
in less than 2 seconds on a Pentium 333 laptop by our tabu search heuristic [6].

4. Nonhomogeneous case

To motivate this section, consider a machine-loading problem where a set of m jobs must
be assigned to n machines such that the aggregate loading of the machines is as level as
possible. If the machines are identical, job times are independent of the assignments made
and the problem can be correctly modeled and solved by the representation given in the
previous section.

A more general machine-loading problem, however, would allow for nonidentical ma-
chines and machine-dependent job times. The development of the previous section can
easily be modified to accommodate this more general problem setting as indicated be-
low.

Our problem is to level the loading of m jobs assigned to n machines where ti j is equal
to the time required to accomplish job i on machine j. Following our earlier development,
let xi j = 1 if job i is assigned to machine j, 0 otherwise. Then the total time (load) of the
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Table 3.1. Multiple-subset results.

Index
number

Number
Subset assignment

n= 3 case n= 4 case n= 5 case

1 15 3 2 2

2 3 1 3 1

3 7 3 1 3

4 11 2 2 1

5 7 1 3 5

6 5 1 4 2

7 21 2 3 1

8 9 2 2 4

9 13 2 2 3

10 7 3 4 3

11 5 3 1 5

12 15 3 3 4

13 23 3 4 3

14 14 2 4 5

15 13 3 3 5

16 13 1 4 5

17 27 1 1 4

18 15 2 4 2

19 9 2 2 2

20 9 1 1 5

21 17 3 1 2

22 10 2 3 4

23 11 1 1 3

24 19 1 2 1

25 8 1 3 1

jobs assigned to machine j is

Tj =
m∑
i=1

ti jxi j , j = 1,n, (4.1)

and we want to minimize the aggregate squared deviation,

T0 =
(
T1−T2

)2
+
(
T1−T3

)2
+ ···+

(
Tn−1−Tn

)2
(4.2)

subject to

n∑
j=1

xi j = 1, i= 1,m. (4.3)

By exactly the development of the previous section, this model can be recast into the
form of minxQ̂x. Note that for the machine-loading problem context considered here, we
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may have additional constraints that job assignments must satisfy in addition to simply
ensuring that each job gets assigned. Such constraints, provided that they are linear, can
be “folded” into the Q̂ matrix via additional quadratic penalties to once again yield an
equivalent representation in the form of xQ̂x.

4.1. Related applications. Our focus in the development given above was to indicate how
various versions of the NPP seeking equal subset sums could be modeled and solved via
the common UQP framework. Additional partitioning problems, closely related to those
considered above, can also be productively addressed by this approach. For instance, con-
sider the problem where each subset has a predetermined target sum, tar j , and we seek
a partition of the original set into n subsets that minimizes the aggregate deviation from
these target values.

Utilizing sum j and xi j as defined earlier, we have the problem

minx0 =
(
sum1− tar1

)2
+
(
sum2− tar2

)2
+ ···+

(
sumn− tarn

)2
(4.4)

subject to

n∑
j=1

xi j = 1, i= 1,m, (4.5)

which by the developments illustrated earlier can be readily recast into UQP.

5. Summary

In this paper, we have introduced the unconstrained quadratic program (UQP) as a new
and fruitful representation of various forms of the NPP. This model (xQx) is shown to
be robust in its ability to accommodate problem variations, affording an opportunity to
solve any or all problem versions by a single solution method.

In addition to introducing a new model for this class of problems, we have presented
preliminary computational experience demonstrating the attractiveness of our tabu
search method for solving NPPs via the xQx representation. Our outcomes show that
this approach is both conceptually and computationally attractive.
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