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We address a practical problem faced by many firms. The problem is deciding on the
production levels for a product that has a very short selling season. The firm has a full
period to produce and meet a lumpy demand which occurs at the end of the period. The
product is no longer demanded after the end of the period. A constant production rate
which minimizes average unit cost may increase holding costs. Varying the production
rate at discrete points in time may increase production costs but may also decrease hold-
ing costs. In addition, allowing changes in the production rate enables the incorporation
of forecast revisions into the production plan. Therefore, the best production plan de-
pends on the flexibility of the production system and on the holding cost. In this paper,
we formulate and solve a model of this production planning problem. Two models are
developed to deal with two types of the average unit cost function. Numerical examples
are used to illustrate the results of the model.

1. Introduction

Consider the problem faced by a firm which produces a product for a full period to meet a
demand which is concentrated at the end of that period. There is no demand for the prod-
uct after the end of the period. This problem is common for many suppliers of products
treated in the single period model [8]. However, unlike retailers, suppliers are not faced
with the problem of discounting the product if any inventory remains at the end of the
period [15], because they produce to the orders of the retailers. The problem for the sup-
pliers is deciding on the production levels of products. A constant production rate which
minimizes average unit cost may increase holding costs. Varying the production rate at
discrete points in time may increase production costs but may also decrease holding costs.
Therefore, the best production plan depends on the flexibility of the production system
and on the holding cost. In addition, allowing changes in the production rate enables the
incorporation of forecast revisions into the production plan.

The cost of producing at different production rates depends on the volume flexibility
of the production system. Volume flexibility is defined as the ability of a system to oper-
ate profitably at different output levels [13]. The cost of producing at different production
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rates has two components. The first component is the cost of switching from one produc-
tion rate to another, and the second is the penalty cost of deviating from the production
rate which minimizes average unit cost. The switching cost arises from the need to change
the size of the work force by hiring and laying off workers [6]. As for the penalty cost, sta-
bility of production costs over varying production volumes has been suggested as a mea-
sure of volume flexibility [3]. Ramasesh and Jayakumar [11] used the shape of the average
unit cost curve to measure volume flexibility. Flat average unit cost curve indicates a vol-
ume flexible production system. Average unit cost initially decreases because fixed costs
are spread over more units. At higher volumes, increases in tool wearout [2, 12] and in-
creases in error rates cause average unit cost to increase. The treatment of production
rates as decision variables has been incorporated in many inventory models [4, 7, 10, 14].

Several authors have developed production planning models which allow the incor-
poration of forecast revisions into the production plan [1, 9]. Bitran et al. [1] dealt with
a system that produces several families of style goods. A family is defined as a set of
items consuming the same amount of resources and sharing the same setup. Bitran et
al. assumed that the setup cost associated with changeover from one family to the next is
large enough that managers attempt to produce each family once in the planning hori-
zon. Also, the authors assumed that the mean demand for each family is invariant over
the horizon whereas item demands are forecasted in each period. Demand occurs in the
last season of the horizon and demand estimates for items are revised every period. The
problem is finding item production quantities which will maximize the expected profit.
Bitran et al. assumed the demand of items in a family follow a joint normal distribu-
tion and that each period has limited production capacity. The problem was formulated
as a stochastic mixed integer programming problem and by exploiting its hierarchical
structure (families and then items), the authors formulated and solved a deterministic
mixed integer programming problem which provided an approximate solution. Matsuo
[9] observed that a limitation of Bitran et al’s model [1] is that it included discrete pro-
duction periods and each family is assigned to exactly one period which works well only
if the number of families is much larger than the number of periods. Also, the complex-
ity of Bitran et al’s method made sensitivity analysis difficult. To avoid the limitations
of Bitran et al’s model, Matsuo used a continuous treatment of time and formulated the
problem as a two-stage stochastic sequencing model. In stage I, a sequence of production
quantities of families is determined at the beginning of planning horizon. In stage II, the
production quantities of items in each family are determined using the revised demand
forecast. Matsuo [9] developed and tested a heuristic procedure for solving the problem.
Both of the above models dealt with constant production rate and constant unit produc-
tion cost.

In this paper, we formulate and solve two production planning models. In the first
model, the firm incurs a linear penalty cost for deviating from the minimum average
unit cost production rate whereas in the second model it incurs a quadratic penalty cost.
In Section 2, we introduce the basic model in which a single production rate change is
allowed during the period and solve the linear and then the quadratic penalty case. In
Section 3, we allow revisions to the demand forecast and multiple production rates for
the linear penalty case. We close with a discussion and suggestion for future research in
Section 4.
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Figure 2.1. Two production plans to meet lumpy demand.

2. Model I: single production rate change

Consider a firm which has a very short selling season relative to the total production pe-
riod. Management must design a production plan to meet the forecasted lumpy demand
at the end of the period. Demand for the product exists only in the current period. A pro-
duction plan specifies production rates during the period. We initially restrict the number
of possible production rates to two, which implies at most one production rate change.

Figure 2.1 shows two possible production plans. The first plan is to produce at a con-
stant rate of D for the total duration of the period T . The second plan is to produce at
a rate of P1 during T1 and then increase the production rate to P2 during T2. The two
plans incur different holding and production costs. The problem is analyzed under the
following assumptions:

(1) demand is concentrated at the end of the period,
(2) holding cost is linear in the number of units held,
(3) the cost of changing production rates increases linearly in the difference between

the rates,
(4) average unit cost as a function of the output rate is convex with a minimum at P0.

Assumption 2 is commonly used in inventory management. The cost of changing pro-
duction rates in assumption 3 has been justified in the production planning literature [6].
The convexity of the average unit cost in assumption 4 is well accepted in the production
literature [11].

Define the following notation:
T1 = duration with a production rate of P1,
P1 = production rate during the first part of the cycle (T1),
T2 = duration with a production rate of P2,
P2 = production rate during the second part of the cycle (T2),
C0 = the minimum average unit cost (i.e., the average unit cost at the design
volume),
P0 = the design volume of the production system (i.e., the volume which mini-
mizes average unit cost),
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Figure 2.2. Two cases of the average unit cost.

R= annual holding cost as a percentage of inventory value,
C1 = average unit cost at production rate P1,
C2 = average unit cost at production rate P2, and
f (P1,P2)= the cost of switching from a production rate of P1 to P2,
D = demand at the end of the period.

If the average unit cost is symmetric around the minimum, then optimal solutions
must satisfy P1 ≤ P0 ≤ P2. Otherwise, reducing P1 to P0 and increasing P2 to P0 will reduce
the holding cost, production cost, and production rate switching cost. We assume that
the demand is a random variable with a minimum DL, a mean Dµ, and maximum DM

and that the capacity of the production system is sufficient to produce at the minimum
average unit cost for the maximum demand, DM ≤ P0.

We assume C1 is a convex decreasing function in P1 and C2 is a convex increasing func-
tion in P2. Linear and quadratic symmetrical cases of C1 and C2 are shown in Figure 2.2.
We also assume f (P1,P2) depends only on the absolute difference |P1−P2|. The total
annual cost is

TC = 1
2
RC1T

2
1P1 +RC1T1T2P1 +

1
2
RC2T

2
2P2 +C1T1P1 +C2T2P2 + f

(
P1,P2

)
, (2.1)

where

T1 +T2 = T , (2.2)

P1T1 +P2T2 =D. (2.3)

Without loss of generality, we assume T = 1. Equation (2.2) becomes

T1 +T2 = 1, (2.4)

Lemma 2.1 shows that to minimize total cost, the production rate must be reduced or
kept at D in the first part of the period to avoid large holding cost. A reduction is likely
to be optimal if the holding cost is high and the system is volume flexible, which im-
plies that deviations from the minimum cost production rate do not incur large penalty.
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The next two sections provide solutions for the linear and quadratic penalty cases. Let the
superscript ∗ denote optimality.

Lemma 2.1. The optimal solution to minimizing TC satisfies P∗1 ≤D and P∗2 ≥D.

Proof. See appendix. �

2.1. The linear penalty cost case. In this case, deviations from the minimum average
unit cost production rate results in the same linear penalty in either direction as shown
in Figure 2.2. The average unit cost during T1 and T2 are

C1 = C0 + a
∣∣P1−P0

∣∣, (2.5)

C2 = C0 + a
∣∣P2−P0

∣∣, (2.6)

respectively. Also, the switching cost is linear and is given by

f
(
P1,P2

)= K
∣∣P1−P2

∣∣, (2.7)

where K is the penalty cost for changing the production rate by one unit.
Equations (2.4)–(2.7) are used to eliminate C1, C2, P2, T2, and f (P1,P2) from TC.

Also, since we focus on systems for which P∗2 ≥ P0 or P∗2 =D, we eliminate the absolute
value operator. Simplifying TC gives:

TC = [aD(4P1− 2P0 +DR−P0R
)

+ 2P1(K − a)

− 2
[
K + a

(
D−P1

)](
D−P1

)
/
(
T1− 1

)
+ a
[
P0
(
4P1 +DR+ 3P1R

)− 2P1
(
2P1 +

(
D+P1

)
R
)]
T1

− 2a
(
P0−P1

)
P1RT

2
1 +C0

[
P1RT1 +D

(
2 +R−RT1

)]]
/2.

(2.8)

Define

T1C = 1 +R−√1 +R

R
. (2.9)

Lemma 2.2. TC is concave in P1 for T1 ∈ (0,T1C) and convex for T1 ∈ (T1C,1].

Proof. See appendix. �

For any T1 ∈ [0,T1C), by Lemmas 2.1 and 2.2, the optimal P1 is P1 = 0 or P1 = D.
The later case is the constant production rate solution. Substituting P1 = 0 into (2.9) and
differentiating TC twice with respect to T1 gives

∂2TC

∂T2
1
= 2D(K + aD)(

1−T1
)3 > 0. (2.10)
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Thus, TC is convex in T1 for P1 = 0. The necessary condition for T1 to be optimal is
obtained from setting ∂TC/∂T1 = 0, which gives:

T1r = 1−
√

2(K + aD)
R
(
C0− aP0

) . (2.11)

Obviously, the optimal T1r must satisfy 0 < T1r ≤ 1. By inspection, T1r in (2.11) sat-
isfies T1r ≤ 1. If T1r > 0 then P1 = 0 and T1 = T1r are local minima and a comparison
between TC(P1 = 0) and TC(P1 =D) is needed. If T1r < 0 or T1r = 0 then P1 = P2 =D is
optimal.

An examination of the expression of T1r provides some useful insights into the model:
(1) T1r is increasing in R which implies that for large holding cost, it is optimal to

delay production for a long duration of time to avoid the large cost of holding
inventory. Following the same argument, for small holding cost, T1r < 0 and it is
optimal to start producing immediately.

(2) For large cost of switching the production level by one unit, K , T1r < 0 and it is
optimal not to have a change in the production rate from the previous period or
during the period.

(3) The smaller the value of the penalty parameter a (which implies a more flexi-
ble system), the longer the optimal T1r . Since the penalty of deviating from the
minimum average unit cost production rate is small, it is beneficial to reduce the
holding cost by producing at a large production rate at the end of the period. Un-
der extreme conditions when a≈ 0 and K ≈ 0 (the system is completely flexible),
T1r ≈ 1 and all the production is concentrated at the end of the period.

Example 2.3. Consider a firm with the following data: P0 = 110000 units/year, D =
100000 units/year, C0 = $50, R = 0.15, K = 0.05, and a = 0.00001. If the firm follows
a constant production rate strategy of P1 = P2 = D then TC = $5371328 per year. Us-
ing the proposed model gives P∗1 = 0, T∗1 = 0.4649 years, P∗2 = 186892 units/year, T∗2 =
0.5351 years, and TC = $5289973 per year which represents a saving of $81355 per
year over the constant production rate plan. For a higher holding cost of R = 0.30, the
model yields P∗1 = 0, T∗1 = 0.6216 years, P∗2 = 264305 units/year, T∗2 = 0.3784 years, and
TC = $5460040 per year which represents a saving of $285799 per year over the constant
production rate strategy which has a TC = $5745839 per year. In cases where the hold-
ing cost is low and/or the switching cost is high, the constant production rate strategy is
optimal. For example, if R= 0.10 and K = $2 then P∗1 = P∗2 =D.

2.2. The quadratic penalty cost case. In this case, deviations from the design production
rate yield symmetric quadratic penalty in either direction (see Figure 2.2). The average
unit cost during T1 and T2 are

C1 = C0 + a
(
P1−P0

)2
, (2.12)

C2 = C0 + a
(
P2−P0

)2
, (2.13)
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respectively. Equations (2.4), (2.5), (2.8), (2.12), and (2.13) are used to eliminate C1, C2,
P2, T2, and f (P1,P2) from TC and then setting ∂TC/∂P1 = 0 gives the necessary condi-
tions for P1 to be optimal as

P1 =
−x±

√
x2− 4yW

2y
, (2.14)

where

x = 2aT1
(
4P0
(
1 +R

(
1−T1

))(
T1− 1

)
+ 3DT1

(
2 +R

(
1−T1

)))
, (2.15)

y = 3aT1
(
2− 4T1−R

(
1−T1

)(
3T1− 2

))
, (2.16)

W = a
(− 3D2(2 +R

(
1−T1

))− 4DP0
(
2 +R

(
1−T1

))(
1−T1

)
+RP2

0

(
T1− 1

)2)
+
(
2K +C0R

(
T1− 1

))(
T1− 1

)
T1.

(2.17)

Our analysis shows that (−x +
√
x2− 4yW)/2y is the positive root. Therefore, P1,1 =

(−x +
√
x2− 4yW)/2y is substituted into (2.1) and a one-dimensional search is con-

ducted to find T∗1 . Since no proof of convexity in T1 can be obtained for this case, we
can only claim a local minimum. T∗1 is then substituted in (2.14) and by Lemma 2.1 if
P1,1 > D, then P∗1 = D, whereas if P1,1 < 0, then P∗1 = 0. If P∗1 �= D then the total cost of
producing at a constant production rate TC(P1 = P2 =D) must be compared to the local
minimum of TC(P∗1 ,T∗1 ).

Example 2.4. We use the same data as in Example 2.3 with a quadratic average unit cost
function for which a = 2× 10−9. If the firm follows a constant production rate strategy
of P1 = P2 = D, then TC = $5401500 per year. Using the proposed model gives P∗1 = 0,
T∗1 = 0.14085 years, P∗2 = 116394 units/year, T∗2 = 0.85915 years, and TC = $5336700
per year, which represents a saving of $64800 per year. For a less flexible system with
K = $10, the constant production rate strategy P1 = P2 = 100000 with a cost of TC =
$6396500 is optimal.

3. Model II: forecast revisions and multiple production rates

We now treat demand as a random variable whose probability density function can be
forecasted by management. Obviously, the forecasts improve as the selling season draws
closer and production decisions must be revised accordingly. We analyze only the linear
penalty case. Let

DN = the largest demand for which P1 = 0 is optimal.
Because of forecast revisions, we no longer set T = 1. For any T , (2.11) becomes

T1r = T −
√

2(K + aD)
R
(
C0− aP0

) . (3.1)
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Figure 3.1. Probability density function of demand.

From (3.1), DN is given by setting T1r = 0 (otherwise T∗1 < 0) which gives

DN = −2K +
(
C0− aP0

)
RT2

2a
. (3.2)

For any value of demand satisfying D < DN , P∗1 = 0, and for any value satisfying, D >
DN , P∗1 = D (see Lemma 2.1). Therefore, the probabilities of the different values of P∗1
being optimal are as shown in Figure 3.1. Let Ii be the beginning inventory at time of
forecast revision i. The following procedure is designed to optimize the production plan
at each forecast revision.

Production planning procedure

Step 0. Set T = 1, i= 0, and I0 = 0.
Step 1. Forecast the demand distribution.

Set DL =DL− Ii, DM =DM − Ii, and Dµ =Dµ− Ii.
Step 2. Compute DN using (3.2).
Step 3. Compute P(P∗1 = 0)= P(D <DN ) and P(P∗1 =D)= 1−P(D <DN ).
Step 4. If P(P∗1 = 0) > P(P∗1 =D) then set P∗1 = 0, find T∗1 using (3.1), and find T∗2 and

P∗2 using (2.2) and (2.3), respectively.
If P(P∗1 = 0) < P(P∗1 =D) and then set P∗2 =Dµ/T .

Step 5. If no more forecast updates are to be made, execute the plan.
If more forecast updates are to be made at time Ti+1, then
Set i= i+ 1, T = T −Ti, Ii = Ii−1 + max{(Ti−Ti−1−T∗1 ),0}P∗2 and go to Step 1.

Example 3.1. Consider a problem with a= 0.000022, K = 0.1, and the rest of the param-
eters as given in Example 2.3. Suppose the firm starts at time zero (i.e., the beginning
of the period) with a forecast of a uniformly distributed demand with the parameters
shown in Table 3.1. This forecast is updated at four points in time as shown in Table 3.1.
Using (3.2) yieldsDN = 158000 which results in P(P∗1 = 0)= 1 andT∗1 = 0.2225 but since
the forecast is revised at 0.2, T∗1 = 0.20. After 0.2 periods, DN = 99250 which results in
P(P∗1 = 0) = 0.5625 and T∗1 = 0.00489. Therefore, production starts at 0.2 + 0.00489 =
0.20489 at P∗2 = 123245 units/period. The forecast is updated at 0.4, 0.6, and 0.8 periods
and new production rates are established according to the proposed procedure as shown
in Table 3.1.
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Table 3.1. Production plan with 4 forecast revisions.

i Ti T DL DM Dµ Ii DL − Ii DM − Ii Dµ − Ii DN T∗1 P∗1 P(P∗1 =0) T∗2 P∗2
0 0 1 80000 107000 93500 0 80000 107000 93500 158000 0.2225 0 1 0.7775 120262

1 0.2 0.8 88000 108000 98000 0 88000 108000 98000 99250 0.00489 0 0.5625 0.7951 123254

2 0.4 0.6 87000 106000 96500 24048 62952 81952 72452 53848 — 120753 0 0.4000 120753

3 0.6 0.4 90000 105000 97500 48199 41801 56801 49301 21407 — 123253 0 0.2000 123253

4 0.8 0.2 97000 97000 97000 72849 24151 24151 24151 — 120753 0 0.0000 120753

1 0 97000

Table 3.2. A reactive production plan to forecast revisions.

Time Production
rate

Unit
cost

Production
cost

Holding cost for
current units

Holding cost
for previous
production

Production rate
change cost

From To (units/period) ($/unit) ($) ($) ($) ($)

0.000 0.200 93500 50.36 941788 14127 113015 9350

0.200 0.400 99125 50.24 995993 14940 89639 563

0.400 0.600 96625 50.29 971936 14579 58316 250

0.600 0.800 99125 50.24 995993 14940 29880 250

0.800 1.000 96625 50.29 971936 14579 0 250

4 877 647 73 165 290 850 10 663

Table 3.3. A production plan based on the proposed model.

Time Production
rate

Unit
cost

Production
cost

Holding cost for
current units

Holding cost
for previous
production

Production rate
change cost

From To (units/period) ($/unit) ($) ($) ($) ($)

0.000 0.205 0 52.42 0 0 0 0

0.205 0.400 123254 50.29 1209411 17698 0 12325

0.400 0.600 120753 50.24 1213247 18199 36282 250

0.600 0.800 123253 50.29 1239721 18596 72680 250

0.800 1.000 120753 50.24 1213247 18199 109871 250

4 875 626 72 691 218 833 13 075

Tables 3.2 and 3.3 provide a comparison between a plan in which the production rate is
set to meet the mean demand at a constant production rate at each forecast revision, and
one which follows the suggested model, respectively. The implementation of the proposed
model results in reducing the total cost from $5 252 324 to $5 180 226, a saving of 1.4%

4. Conclusions and suggestions for future research

This paper addresses the problem of deciding on the production levels for a product
which has a very short selling season. The firm has a full period to produce and meet a
lumpy demand which occurs at the end of the period. The best production plan depends
on the flexibility of the production system and on the holding cost. Two models for deal-
ing with linear and quadratic penalty functions for deviating from the minimum average
unit cost production rate are developed. The models allow only a single production rate
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Figure 4.1. Inventory level.

change. The model is extended to allow revisions to the demand forecast and multiple
production rates for the linear penalty case.

Future research involve dealing with multi-item problem. In this case, the problem
will also involve a scheduling aspect. For this scheduling aspect, to reduce holding cost,
it may be best to produce items that are costly to hold and require short processing time
at the end of the period and items with long processing time and low holding cost early
in the period. A similar strategy was found to be optimal in the economic delivery and
scheduling problem (ELDSP) [5].

Appendix

Proof of Lemma 2.1. Suppose P1 = Px, where D < Px ≤ P0 during T1, then P2 < D during
T2. Using Figure 4.1, the following observations are made with regard to the total cost
components.

(1) Production costs. The same amount of production at a lower unit production
cost can be achieved by setting P1 = 0 during T3 and P2 = Px during (1−T3) can
be achieved.

(2) Holding costs. The cumulative inventory at any time is lower for P1 = 0 during
T3 and P2 = Px during (1−T3) than P1 = Px. Also, the production cost of this
inventory is lower. Therefore, the holding cost is lower for P1 = 0 during T3.

(3) Switching costs. The switching cost for the P1 = Px plan is K[Px + (Px −D)/T2]
whereas for the P1 = 0 during T3 plan it is KPx. Therefore, the switching cost for
the P1 = Px plan is larger by K(Px −D)/T2.

From observations (1)–(3), the total cost for P1 = Px is greater than the total cost for
P1 = 0 during T3. Therefore, P1 = Px > D cannot be optimal. �

Proof of Lemma 2.2. The first derivative of TC with respect to P1

∂TC

∂P1
= K + 2a

(
D−P1

)
(
T1− 1

) + a
[
2D− 2P1−

(
P0− 2P1

)
RT2

1

]
+
[
C0R+ a

[
P0(4 + 3R)− 2

(
DR+ 2P1(2 +R)

)]
R1
]
/2

(4.1)
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and the second derivative

∂2TC

∂P2
1
= 2a

(
1 +R

(
T1− 1

)2− 2T1
)
T1

T1− 1
. (4.2)

∂2TC/∂P2
1 = 0 at T11 = 0, T12 = (1 + R−√1 +R)/R, and T13 = (1 + R +

√
1 +R)/R.

Since (1 +R−√1 +R)/R > 0 and 1 + (1−√1 +R)/R < 1, 0 ≤ T12 < 1. Also, T13 ≥ 1. For
T11 < T1 < T12, ∂2TC/∂P2

1 < 0 and TC is concave, and for T12 < T1 < T13, ∂2TC/∂P2
1 < 0

and TC is convex. �
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