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Nonparametric analysis for general block designs can be given by using the Cochran-
Mantel-Haenszel (CMH) statistics. We demonstrate this with four examples and note
that several well-known nonparametric statistics are special cases of CMH statistics.
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1. Introduction

In this paper, we will use Cochran-Mantel-Haenszel (CMH) statistics to analyse four data
sets which have appeared in the literature. It is well known that tests based on the CMH
statistics are equivalent to certain standard rank tests but here we show how CMH statis-
tics also apply in less standard situations. In particular, examples are given for random-
ized block designs both with and without missing values, for balanced incomplete block
designs, and for supplemented balanced designs.

Recent descriptions of CMH statistics have been in Davis [6, Chapter 8] and Agresti
[1, Chapter 7, Section 5]. We now give a very brief outline of CMH statistics, mainly from
Davis [6, Chapter 8].

2. Cochran-Mantel-Haenszel statistics

The CMH statistics apply to counts Nijh in which i= 1, . . . ,r, j = 1, . . . ,c, and h= 1, . . . ,s.
Typically, the layer index h reflects the subjects or experimental units, usually referred to
as the strata; the row index i reflects the levels of the factor of interest, and the column
index j reflects the values of the response variable. The marginal totals {n· jh} and {ni·h}
for each of the s strata are taken to be fixed. For each stratum, the vector of counts Nh =
(n11h, . . . ,n1ch, . . . ,nr1h, . . . ,nrch)T has probability function

{ r∏
i=1

ni·h!

}{ c∏
j=1

n· jh!

}/{
n··h!

r∏
i=1

c∏
j=1

ni jh!

}
. (2.1)
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2 Blocked ordered categorical data

Initially no assumption is made about the ordering of the row and column variables:
both are taken to be nominal. The null hypothesis of interest, that there is no association
between row and column variables in any of the s tables, is first tested against its negation.

Davis [6, Section 8.2.2] shows that for a table consisting of only a single stratum, the
CMH statistic to test for randomness in a 2× 2 table is {(n− 1)/n}X2, where X2 is the fa-
miliar Pearson test statistic

∑
(observed− expected)2/expected. A test statistic for testing

no association between row and column variables across s 2× 2 tables is due to Cochran
[5] and Mantel and Haenszel [11]. For an arbitrary single stratum r × c table, a test for
randomness may be based on {(n− 1)/n}X2. The test for no association between s 2× 2
tables can be generalized to s r× c tables. The details follow.

2.1. CMH general association statistic. Suppose now we have counts in s independent
r × c tables. The test statistic may be derived by considering the vector of counts for the
hth stratum, Nh, modified by removing the redundant counts for the final row and col-
umn; these are known if the row and column totals and the other row or column en-
tries are known. We also need the expected value under the null hypothesis of no as-
sociation, E[Nh], and the difference, Gh = Nh − E[Nh]. Now G =∑hGh is the aggrega-
tion over all strata of (r − 1) (c− 1) differences between observation and expectation,
and G has expectation zero and covariance matrix VG, say under the null hypothesis,
so that QG = GTV−1

G G has asymptotic distribution χ2
(r−1)(c−1) as the total sample size

n··· =
∑

h n··h approaches infinity. This is known as the CMH general association statistic.
The Anderson [3] and McNemar [12] statistics are particular cases of the CMH general
association statistic.

2.2. CMH mean score statistic. Assume now that the column variable is ordinal or in-
terval, and that every observation in the jth column of the hth stratum is scored as bhj ,
j = 1, . . . ,c. The null hypothesis, that there is no association between row and column
variables in any of the s tables, is now tested against the alternative that the r row mean
scores differ, on average, across strata. First, define Njh as the r − 1 vector of counts Nijh,
i = 1, . . . ,r − 1, and then define Mh = (

∑c
j=1 bhj(Njh − E[Njh])) as the vector containing

the first r − 1 row sums for the hth stratum. It is routine to show that under the null hy-
pothesis of no association M =∑hMh has expectation zero and covariance matrix VM

say, so that QM =MTV−1
M M has asymptotic distribution χ2

r−1 as the total sample size
n··· =

∑
h n··h approaches infinity. The statistic QM is known as the CMH mean score

statistic. If mid-rank scores are used, then if s = 1,QM is the Wilcoxon-Mann-Whitney
statistic for r = 2 and the Kruskal-Wallis [10] statistic for r > 2, while if s > 1 and all row
totals for all strata are unity, QM is the Friedman [8] statistic. If the “natural” scores,
bhj = j, j = 1, . . . ,c, are used when s = 1 and r > 2, then a statistic due to Yates [19] is
obtained.

2.3. CMH correlation statistic. Assume now that both the row and column variables
are ordinal or interval, and that every observation in the ith row of the hth stratum is
scored as ahi, i= 1, . . . ,r, and that every observation in the jth column of the hth stratum
is scored as bhj , j = 1, . . . ,c. The null hypothesis, that there is no association between row
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and column variables in any of the s tables, is now tested against the alternative that across
strata there is a consistent association, positive or negative, between the row scores and
column scores. Let Ch be a scalar given by Ch =

∑
i

∑
j ahibh j{Nijh−E[Nijh]}. It is routine

to show that under the null hypothesis of no association, C =∑hCh has expectation zero
and variance VC say, so that QC = CTV−1

C C = C2/VC has asymptotic distribution χ2
1 as

the total sample size n··· =
∑

h n··h approaches infinity. The statistic QC is known as the
CMH correlation statistic. If s = 1, then QC is (n··· − 1) times the square of the Pearson
correlation between the row and column variables; if s= 1 and natural scores ahi = i and
bhj = j are used, then QC is (n··· − 1) times the square of the Spearman correlation. The
CMH correlation test is a detector of linear-linear association.

2.4. Generalized CMH statistics. Suppose that the row variable is not ordered (nomi-
nal) while the column variable is ordinal or interval, with scores {bhj}. Suppose that the
scores satisfy bhj = bv( j) for all h with

∑
j br( j)bs( j)N· j·/n··· = δrs. Then M is an (r − 1)

vector with typical element
∑

j bv( j){Nij· −E[Nij·]}. It follows from Rayner and Best [16,
Section 4.4] that M standardised is the vth component of Pearson’s X2 in the sense that
the sum of the squares of the (c− 1) components is X2. This order v component detects
departures of the data from the model of homogeneity of row means. As before, if natu-
ral linear scores are used, the resulting test is related to that of Yates [19]. However, if the
scores are quadratic, the resulting test detects dispersion differences between rows. The
set of p-values resulting from applying all (c− 1) component tests gives a detailed and
informative scrutiny of the data, albeit an informal one.

Suppose that both row and column variables are ordinal or interval, ahi = au(i) for all h
with

∑
i ar(i)as(i)Ni··/n··· = δrs, and bhj = bv( j) for all h with

∑
j br( j)bs( j)N· j·/n···=δrs.

Then C =∑i

∑
jau(i)bv( j){Nij· −E[Nij·]}. It follows from Rayner and Best [16, Section

8.2] that C standardised is the uvth component of Pearson’s X2, detecting departures of
the data from the model of independence in the uvth bivariate moment. As previously
noted, if natural linear scores are used for both row and column variables, then C is
Spearman’s ρ. However, if one set of scores is linear while the other is quadratic, this leads
to interesting tests of bivariate skewness.

3. Randomized blocks

Possibly, the most commonly used experimental design is the randomized block design.
We begin this section by illustrating how the three CMH statistics QG, QM , and QC in-
troduced in the previous section are equivalent to three nonparametric rank statistics for
randomized blocks.

Suppose, as in Bradley [4, page 127], that we consider measures of visual acuity for
five subjects which have been given drugs designated as A, B, C, and D. The data are
presented in Table 3.1. Suppose further that we wish to carry out nonparametric tests
based on the within blocks (subjects) rankings for this data set. These rankings are given
in parentheses in Table 3.1. We wish to use these ranks to test for equality of median drug
effects, that is, to test H0 : τA = τB = τC = τD against K : not H0, that at least two medians
differ. Friedman’s [8] test statistic T takes the value 8.28 with corresponding p-value 0.04
based on an χ2

3 approximation.



4 Blocked ordered categorical data

Table 3.1. Visual acuity data from Bradley [4].

Drug\subject 1 2 3 4 5

A 0.39 (3) 0.21 (2) 0.73 (1) 0.41 (2) 0.65 (1)

B 0.55 (1) 0.28 (1) 0.69 (2) 0.57 (1) 0.57 (3)

C 0.33 (4) 0.19 (3) 0.64 (3) 0.28 (4) 0.53 (4)

D 0.41 (2) 0.16 (4) 0.62 (4) 0.35 (3) 0.60 (2)

Table 3.2. Stratum 1 contingency table for visual acuity data.

Drug\rank 1 2 3 4

A 0 0 1 0

B 1 0 0 0

C 0 0 0 1

D 0 1 0 0

Table 3.3. Partition of A for visual acuity data.

Source df SS p-value

Friedman 3 8.28 0.04

Dispersion 3 0.60 0.90

Residual 3 1.32 0.72

Anderson 9 10.20 0.33

If we wish to test H0 : τA = τB = τC = τD against K : τA > τB > τC > τD, then Page’s [14]
test is appropriate. We find the Page test statistic L takes the value 4.7 with corresponding
p-value 0.03 based on an χ2

1 approximation. To test for the equality of the distributions of
the ranks for the four drugs, we use Anderson’s [3] test based on A, which here takes the
value 10.20 with p-value 0.33 based on an χ2

9 approximation.
The T statistic is simply QM , the L statistic is QC, and the A statistic is QG. To calculate

the three CMH statistics, we need to form five 4× 4 tables of counts. For subject or block
1, the 4× 4 stratum table is shown as Table 3.2. Notice that each row and each column
sum is one.

Software for calculating QG, QM , andQC is available in the IMSL, SAS, and StatXact
(version 6) computer packages. To calculate QM and QC, scores are needed. To obtain T
and L, the scores 1, 2, 3, and 4 are required. The usual parametric F test for mean drug
differences gives F3,12 with p-value 0.014.

Before proceeding to use the CMH approach to obtain analogues of T , L, and A for
more complicated designs, we note as an aside that using the orthogonal polynomial
methods of Rayner and Best [16] and Rayner et al. [17], we can partition the statistic A
for randomized block designs. Results for Table 3.1 data are given in Table 3.3. The CMH
approach can be used to obtain the dispersion statistic in Table 3.3 by using QM with the
quadratic scores 9, 1, 1, 9.
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4. Balanced incomplete blocks

We now illustrate the CMH approach for data from a balanced incomplete block design.
Off-flavour in six ice cream samples was rated by 15 subjects tasting four samples

each. A seven-point scale was used, with “1” meaning little off-flavour and “7” meaning
considerable off-flavour. The data were given in Meilgaard et al. [13, Table 7.11] and are
shown here in Table 4.1. Notice that the original data in Meilgaard et al. [13, Table 7.11]
is in error for subject 14, in that, a rating of “1” should be given to ice cream F, not to
ice cream E. All six ice cream samples were not given to each subject as it was thought six
samples were too many to evaluate at once. Sensory fatigue is well documented and often
only three or four samples are judged at one sitting.

To apply CMH statistics, we form an r× c contingency table for each of the s subjects.
Here r is the number of ice creams and c is the number of categories, so that s= 15, r = 6,
and c = 7. The rows relate to ice creams and the columns to categories. Thus for each
subject, a 6× 7 contingency table of 0 s and 1s is formed. For example, for subject 1 the
contingency table is given by Table 4.2. Of course, for a complete block design, rows E
and F would have a “1” in one of the columns. Summing the 6× 7 contingency tables for
all 15 subjects, we obtain Table 4.3. Notice that not all rows and columns sum to one as
they did for randomized blocks. Tied data would give us some column sums greater than
one.

Are the six histograms whose counts are given in Table 4.3 significantly different? To
answer this, we calculate QG, the generalized association CMH statistic, or the mean
scores CMH statistic, QM . This can easily be done by using as data the 15 (0, 1) sub-
ject tables for IMSL [9] routine CTRAN. The SAS and StatXact routines for generalized
CMH statistics will not now do all the analysis needed.

For the Table 4.3 data, we find QG = 32.86 with an approximate p-value, based on the
χ2

29 distribution, of 0.28. Note that because here the covariance matrix is a generalized
inverse of rank 29, the degrees of freedom are 29, not 30. It appears that QG is not too
sensitive for these data. Perhaps this is because QG does not take into account that the
data are ordered. If we use the category identifiers as scores, then we find QM = 19.8 with
a p-value of 0.001 based on the χ2

5 approximation. An F test using the same scores gives
a p-value less than 0.001 according to Meilgaard et al. [13]. The F test relies on more
assumptions than the test based on QM .

Rayner et al. [17] give an alternative analysis of the Table 3.1 data using ranks. Also
note that for r = 2, QG is the Stuart [18] test of marginal homogeneity.

5. Missing values

Alvo and Cabilio [2] derive a nonparametric ranks-based test for an ordered alternative
τ1 ≥ τ2 ≥ τ3 ≥ ··· when the data are from a randomized block design with missing val-
ues. We now illustrate how to apply QC to obtain an alternative test statistic. We consider
the same lymph heart pressure (in mm of Hg) as did Alvo and Cabilio [2]. These data
are reproduced in Table 5.1 and concern measurements on eight toads which were dehy-
drated for 6-, 12-, 18-, and 24-hour periods. Biologists expect that on average, a toad’s
lymph heart pressure will decrease with increasing dehydration.
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Table 4.1. Off-flavour ratings for six ice creams.

Subject\ice cream A B C D E F

1 6 1 1 2 — —

2 6 — — 1 3 3

3 — 4 2 — 5 2

4 7 2 3 — 2 —

5 3 5 — 1 — 1

6 — — 1 1 3 2

7 7 4 4 — — 3

8 2 — 1 1 1 —

9 — 2 — 2 2 3

10 4 2 — 2 5 —

11 5 — 3 — 1 1

12 — 3 2 1 — 2

13 4 2 — — 1 1

14 5 — 2 2 — 1

15 — 2 4 5 3 —

Table 4.2. Off-flavour ratings of six ice creams for subject 1.

Ice cream\category 1 2 3 4 5 6 7

A 0 0 0 0 0 1 0

B 1 0 0 0 0 0 0

C 1 0 0 0 0 0 0

D 0 1 0 0 0 0 0

E 0 0 0 0 0 0 0

F 0 0 0 0 0 0 0

Table 4.3. Off-flavour ratings combined for subjects.

Ice cream\category 1 2 3 4 5 6 7

A 0 1 1 2 2 2 2

B 1 5 1 2 1 0 0

C 3 3 2 2 0 0 0

D 5 4 0 0 1 0 0

E 3 2 3 0 2 0 0

F 4 3 3 0 0 0 0

To find QC, we need to rank the data within toads and we use eight indicator matrices
or contingency tables which are similar in form to Tables 3.2 and 4.2. For toad 24, this
indicator table is given as Table 5.2.
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Table 5.1. Lymph heart pressure (in mm of Hg) data of Alvo and Cabilio [2].

Toad\dehydration time 6 hours 12 hours 18 hours 24 hours

21 11.9 9.8 7.6 10.2

22 5.6 4.9 4.0 3.1

23 — 14.4 14.2 7.8

24 13.3 — — 10.0

25 8.0 7.9 — 7.6

27 17.7 16.6 15.3 11.6

28 9.0 8.0 11.9 6.8

29 9.8 8.0 7.7 7.8

Table 5.2. Rankings for toad 24 in a 4× 4 table.

Hours\rank 1 2 3 4

6 1 0 0 0

12 0 0 0 0

18 0 0 0 0

24 0 1 0 0

Table 6.1. Growth of strawberry plants after applying pesticides.

Block I Block II Block III Block IV

C, 107 A, 136 B, 118 O, 173

A, 166 O, 146 A, 117 C, 95

D, 133 C, 104 O, 176 C, 109

B, 166 B, 152 D, 132 A, 130

O, 177 D, 119 B, 139 D, 103

A, 163 O, 164 O, 186 O, 185

O, 190 D, 132 C, 103 B, 147

Using routine CTRAN from IMSL [9], we findQC = 11.9 with p-value 0.0006 based on
an χ2

1 approximation. Alvo and Cabilio [2] found that for these data, their recommended
test statistic took the value 226.75 and quoted exactly the same p-value as do we, namely
0.0006.

6. Supplemented balance designs

Pearce [15] suggested the use of supplemented balanced designs and used these designs
to analyse data when pesticides designated as A, B, C, D, and O are applied to strawberry
plants. The pesticides were intended to control weeds and allow the strawberry plants
to grow bigger and presumably produce more strawberries. However, while eradicating
the weeds, do the pesticides inhibit strawberry growth? Pearce [15] gave the results and
the design that we reproduce in Table 6.1. The figures quoted represent the spread of the
strawberry plants. Pesticide “O” is a control.
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Table 6.2. Rankings for block I in a 5× 8 table.

Drug\rank 1 2 3 3.5 4 5 6 7

A 0 0 0 1 0 1 0 0

B 0 0 0 1 0 0 0 0

C 0 0 0 0 0 0 0 1

D 0 0 0 0 0 0 1 0

O 1 1 0 0 0 0 0 0

To use CMH to obtain an analogue of Friedman’s T for this more complex design,
we proceed as before, ranking within blocks and forming four 5× 8 indicator matrices.
Notice in block I, there are two tied observations. Table 6.2 shows the indicator matrix
for this block.

We find QM = 20.1 with a p-value of 0.0005 based on an χ2
4 approximation. An F test

based on a regression routine gives, for these data, F4,20 = 24.6 with p-value less than
0.0001. Desu and Raghavarao [7] give an analogue of Friedman’s T for general block
designs that have the same asymptotic chi-squared distribution as T . For Table 6.1 data,
their statistic has the value 20.0, almost identical to QM . Perhaps the difference is in the
treatment of the tied observations.
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