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It has long been known to the researchers that choosing a variable having the most nega-
tive reduced cost as the entering variable is not the best choice in the simplex method as
shown by Harris (1975). Thus, suitable modifications in the pivot selection criteria may
enhance the algorithm. Previous efforts such as that by Dantzig and steepest-edge rules
for pivot selection are based on finding a unified strategy for entering variable in all linear
programming problems. In the present work, a number of strategies for pivot selection in
the LP relaxation of the set problems are proposed which consider the specific knowledge
of the problem. A significant reduction in the number of iterations is achieved for a set of
randomly generated test problems.

Copyright © 2006 F. Djannaty and B. Rostamy. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

At the very inception of linear programming, Dantzig realized that the criterion of most
negative reduced cost for selecting a new basic variable, chosen for computational ease,
was not necessarily the best [5].

Many other techniques have subsequently been suggested such as “positive normal-
ized” procedure of Dickson and Friderick [6]. Computational experiments by Wolf and
Cutler [3] and kuhn and Quandt [7] showed that both the greatest change and partic-
ularly the normalized procedures were much superior to the criterion of most negative
reduced cost. Since they were devised using the tableau form simplex method, they had
to be discarded as impractical when the product form simplex method supersede it.

The first practical steepest-edge algorithm was developed by Harris [5] which was sig-
nificantly superior to the standard simplex method. A practicable steepest-edge simplex
algorithm developed by Goldfarb and Reid [7] proved to be better than reduced cost al-
gorithm of Dantzig for updating weighted factors which are very similar to the formulas
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developed by kuhn and Quandt [7]. A number of other steepest-edge algorithms were
presented by Forrest and Goldfarb [3] which involve both primal and dual simplexes.

2. Set problems

Set problems comprising set covering, set partitioning, and set packing have attracted
attention for many years and have application in airline crew scheduling, bus crew sched-
uling, plant location, circuit switching, and information retrieval assembly line balancing
[2].

Let M = {1,2, . . . ,m} be the set of m integer and let S denote a set of n subset of M.
Thus

N = {1,2, . . . ,n},
S= {s1,s2, . . . ,sn

}
where Sj ⊆M, j ∈N (i= 1, . . . ,m, j = 1, . . . ,n).

(2.1)

Let

ai j =
⎧
⎨

⎩
1, i∈ Sj ,

0, i /∈ Sj .
(2.2)

The set covering problem (SCP) can be defined as follows:

min
n∑

j=1

Cjxj ,

s.t.
∑

ai jx j ≥ 1 (i= 1, . . . ,m),

xj ∈ {0,1} ( j = 1, . . . ,n).

(2.3)

The decision variable xj indicates whether s j is selected or not and cj is the cost associated
with selecting s j . The problem can be interpreted as finding the minimum cost selecting
of subsets of S.

If we replace “≥” by “=” in each of the constraints of the above model, the modified
problem is called the set partitioning problem (SPP). If “≥” is replaced by “≤” and the
objective function is to be maximized, the resulting model is the set packing problem
(SPK).

Graph theoretic relaxation of problems is an alternative way of finding quick and sharp
lower bounds for set problems [2].

3. Shortest route relaxation of the set problems

Shortest route relaxation of the set problems as described in [1] is as follows. Each column
aj is decomposed into Kj arcs, where each arc corresponds to a segment of ones. If a
segment of ones covers row k to row k + p, then the associated arc runs from vertex k
(row index) to vertex k+ p+ 1. A set of columns which constitute the shortest route from
vertex 1 to vertex m + 1 defines a feasible solution to the SCP(SPP). Row m + 1 which
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corresponds to vertex m+ 1 is identical to row m. The SCP can be written as

min
n∑

j=1

CjXj ,

s.t.
n∑

j=1

ai jXj ≥ 1 (i= 1, . . . ,m),

xj ∈ {0,1} ( j = 1, . . . ,n).

(3.1)

Let H′
j = {i | ai j = 1,ai−1, j = 0, i ∈ {1,2, . . . ,m}} where a0 j = 0. Let Kj = |h′j| denote the

number of segments of arcs in column aj . Let SP define the cardinality of segment P in
column aj where P = {1, . . . ,K}. Let Sj denote the index set of the segment cardinality for
the column aj , such that

Sj =
{
S1, . . . ,Skj

}
. (3.2)

Let H′
j be reexpressed as H′

j = {i1, i2, . . . , ikj}. Introduce the vertex set V corresponding to
the rows i= 1, . . . ,m,m+ 1 such that

Aj =
{(
vi1 ,vi1+s1

)
, . . . ,

(
vik ,vikj +sk j

)}
, j = 1, . . . ,n. (3.3)

Let the associated cost for each arc in the arc set Aj be defined as

d
j
pq =

(q− p)cj∣
∣Hj

∣
∣ such that

∑

(vp ,vq)∈Aj

d
j
pq = cj . (3.4)

Note that this is only one cost allocation strategy. A number of strategies for the shortest
route relaxation of the set covering problem are proposed in [2]. The role of the row
counts and column counts in upgrading the cost allocation strategy for set problems is
emphasized.

Based on this work, allocating small cost to rows having small row counts in the cost
allocation strategy enhances the shortest route relaxation of the set problems. We were
motivated to apply a similar strategies involving row counts and column counts to the LP
relaxation of the set problems. It turned out that some of these strategies can be applied
to the LP relaxation of these problems after some modifications. In order to evaluate the
proposed strategies a number of test problems were generated randomly whose details
are discussed in Section 4.

4. Problem-specific knowledge

Consider the linear programming problem

max Z = CX ,

s.t. AX = b,

X ≥ 0,

(4.1)
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where A is a matrix of order m×n, b is a column vector m× 1, and C is a row vector 1×n.
George B. Dantzig developed simplex method which deals with the linear programming
problems. Simplex method is an iterative process where in each iteration the algorithm
moves from one extreme point to an adjacent extreme point with a better objective func-
tion. This move involves selecting a nonbasic variable as entering variable, selecting a
basic variable as leaving variable, and replacing it by the entering variable. Dantzig rule of
pivot selection involves choosing the column of the most negative reduced cost. This cri-
terion uses information obtained from the cost row (C), right-hand sides, and the pivot
column. As only a small part of the problem information is utilized and problem specific
knowledge is not considered, this criterion is not the best strategy for the pivot selection.
Harris [5] has made a significant effort to use some information about technological co-
efficients of the problem and reported promising results. He proposes a general strategy
for pivot selection; however, the problem specific knowledge is not fully utilized.

We will show that a pivot selection strategy may work well for a particular class of
problems while it may not be suitable for another problem instance.

Linear programming is extensively used in solving integer programming problem and
most successful approaches to IP problem are usually based on linear programming. In
this paper, pivot selection in an important class of problems, namely, set problem is in-
vestigated.

5. Pivot selection strategies

Let R be the set of indices of the nonbasic variables in the linear programming problem,
cj the coefficient of the original variable xj , in the initial tableau, c j is the coefficient of xj
in row zero of other iterations (i.e., c j = zj − cj ), and Rr = { j ∈ R | Cj < 0}.
Strategy 1. The relation Z = CBB−1b, where B is the current basis, can justify the propor-
tionality of the norm with Cj and bi in the numerator. As the number of nonzeros in a
column is restrictive and imposes some restriction on each equation where it has nonzero
coefficient then there should be some inverse proportionality to hj .

Let j ∈ Rr , then we define

norm( j)=
(
Cj
)2×

√∑m
i=1 ai jb

2
i

√
1 +h2

j

, (5.1)

where hj is the number of nonzero entries in column j. A column having the largest norm
is selected as the pivot column.

Strategy 2. The importance of row counts in enhancing the shortest route relaxation of
the set covering problem is investigated in [1]. We were motivated to apply the same
approach to the LP relaxation of set problems. One way of showing the restrictive effect of
selecting pivot column on the linear system of equationsAX = b is by involving row count
in the pivot selection. Row count of each row reflects the number of variables that are
affected by choosing one of the nonbasic variables appearing in that row with a positive
coefficient to enter the basis.



F. Djannaty and B. Rostamy 5

Let j ∈ Rr and let fi be the number of nonzero entries in row i, then for (i= 1, . . . ,m)
we define

norm( j)=
(
Cj
)2×

√∑m
i=1 ai jb

2
i

√
1 +
∑m

i=1 ai j
(

rowcount(i)
)2
. (5.2)

A column having the largest norm is selected as the pivot column.

Strategy 3. Let j ∈ Rr , then we define

norm( j)= Cj
√

1 +
∑m

i=1 ai j
(

rowcount(i)
)2
. (5.3)

A column having the largest norm is selected as the pivot column.

Strategy 4. Let j ∈ Rr , then we define

norm( j)= Cj

1 +h2
j

. (5.4)

A column having the largest norm is selected as the pivot column.

Strategy 5. Let j ∈ Rr , then we define

norm( j)=
(
Cj
)2

(
1 +h2

j

)×
(√

1 +
∑m

i=1 ai j
(

rowcount(i)
)2
) . (5.5)

A column having the largest norm is selected as the pivot column.

Strategy 6. Let j ∈ Rr , then we define

norm( j)= Cj
√

1 +
∑m

i=1 ai jerowcount(i)
. (5.6)

A column having the largest norm is selected as the pivot column.

Strategy 7. Let j ∈ Rr , then we define

norm( j)= random(Cj). (5.7)

As noted in [8] the effect of parameters C, B, and A is investigated.
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Table 6.1. SCP problem.

SCP1, 200× 200

Run time No. of iterations Strategy

3.15 5195 Dantzig (P)

1.20 2399 Strategy 1

3.45 465 Strategy 3

0.24 450 Strategy 4

1.50 354 Strategy 5

3.37 450 Strategy 6

3.31 5358 Strategy 7

6. Computational results

6.1. Test problems. Avis and Chavtal [6] have generated a class of LP problems which
are used as test problems. The general form of these problems is as follows:

max
n∑

j=1

Xj ,

s.t.
n∑

j=1

ai jXj ≤ 104 (i= 1, . . . ,m),

Xj ≥ 0 ( j = 1, . . . ,n).

(6.1)

The only parameters which have to be specified are ai j ’s which are taken as random inte-
gers in the interval [1,1000].

Inspired by the random model proposed by Avis and Chavtal, we used a similar model
to create our test problems which can be described as follows:

min
n∑

j=1

CjXj ,

s.t.
n∑

j=1

ai jXj ≥ 1 (i= 1, . . . ,m),

0≤ Xj ≤ 1 ( j = 1, . . . ,n),

(6.2)

where ai j ’s are binary random integers, and Cj ’s are random integers, taken in the inter-
val [1,100]. The smallest and largest problems considered are 10 × 10 and 500 × 700,
respectively. The reason that ai j ’s are binary is that we are dealing with set problems.

As can be seen from Tables 6.1, 6.2, 6.3, and 6.4, all strategies except for Strategy 2 are
better than Dantzig rule both in the sense of the number of iterations and in the sense
of execution times. Strategy 5 has reduced the number of iterations by 40 times which
causes a significant reduction in round-off errors. As it is expected, random strategy is
the worst in the sense of the number of iterations.

Computational result for SPP problems. As can be seen in Tables 6.5, 6.6, 6.7, and 6.8
Strategy 1 is better than other strategies, both in the number of iterations and in the sense
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Table 6.2. SCP problem.

SCP2, 250× 300

Run time No. of iterations Strategy

11.40 10196 Dantzig (P)

2.15 1995 Strategy 1

7.45 564 Strategy 3

0.49 524 Strategy 4

4.50 324 Strategy 5

8.12 524 Strategy 6

11.23 9976 Strategy 7

Table 6.3. SCP problem.

CP3, 350× 500

Run time No. of iterations Strategy

45.20 16124 Dantzig (P)

11.20 3947 Strategy 1

20.35 743 Strategy 3

2.20 701 Strategy 4

21.00 452 Strategy 5

24.30 701 Strategy 6

46.50 17112 Strategy 7

Table 6.4. SCP problem.

SCP4, 500× 700

Run time No. of iterations Strategy

66.15 23839 Dantzig (P)

34.30 7411 Strategy 1

41.23 1416 Strategy 3

8.27 1381 Strategy 4

39.44 981 Strategy 5

45.56 1381 Strategy 6

69.58 25912 Strategy 7

Table 6.5. SPP problem.

SPP1, 200× 200

Run time No. of iterations Strategy

0.30 1359 Dantzig (P)

0.15 372 Strategy 1

0.50 317 Strategy 2

0.52 352 Strategy 5

0.41 1590 Strategy 7
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Table 6.6. SPP problem.

SPP2, 250× 300

Run time No. of iterations Strategy

1.14 1712 Dantzig (P)

0.37 637 Strategy 1

2.40 555 Strategy 2

4.48 1150 Strategy 5

1.27 1910 Strategy 7

Table 6.7. SPP problem.

SPP3, 350×500

Run time No. of iterations Strategy

7.02 4187 Dantzig (P)

3.01 1605 Strategy 1

22.37 1594 Strategy 2

27.39 2011 Strategy 5

8.11 4980 Strategy 7

Table 6.8. SPP problem.

SPP4, 500× 700

Run time No. of iterations Strategy

42.15 24971 Dantzig (P)

16.47 7983 Strategy 1

89.14 7251 Strategy 2

102.44 11298 Strategy 5

53.13 27356 Strategy 7

Table 6.9. SPK problem.

SPK1, 200× 200

Run time No. of iterations Strategy

0.34 1558 Dantzig (P)

0.27 516 Strategy 1

1.30 560 Strategy 2

2.12 610 Strategy 5

0.42 1743 Strategy 7

of execution time. Strategy 7 is the worst because it is based on the random selection of
the pivot columns.

Computational result for SPK problems. As can be seen in Tables 6.9, 6.10, 6.11, 6.12
Strategy 1 is better than all other strategies including Dantzig rule in the sense of iter-
ation number and execution times.
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Table 6.10. SPK problem.

SPK2, 250× 300

Run time No. of iterations Strategy

1.33 2374 Dantzig (P)

0.54 872 Strategy 1

2.51 911 Strategy 2

3.23 873 Strategy 5

1.58 2691 Strategy 7

Table 6.11. SPK problem.

SPK3, 350× 500

Run time No. of iterations Strategy

9.33 5077 Dantzig (P)

5.2 2808 Strategy 1

11.4 2914 Strategy 2

12.43 2863 Strategy 5

10.29 5492 Strategy 7

Table 6.12. SPK problem.

SPK4, 500× 700

Run time No. of iterations Strategy

47.11 21349 Dantzig (P)

21.34 5013 Strategy 1

44.28 6143 Strategy 2

50.35 5493 Strategy 5

52.22 23982 Strategy 7

7. Comparison with a variant of steepest edge

In this section we review the primal steepest-edge algorithm proposed in [4] by Goldfarb
and Reid for solving the standard form linear programming problem:

minimize cTx,

subject to Ax = b,

x ≥ 0,

(∗)

where A is an m×n matrix of rank m and m< n.
Consider a single step of the simplex method applied to (∗) and let B and N denote the

submatrices of A corresponding to basic and nonbasic columns, respectively. To simplify
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Table 7.1

SCP Dantzig St1 St2 St3 St4 St5 St6 St7 Ried

30× 30 97 46 60 51 49 50 50 91 84

200× 200 4601 1512 2911 394 259 611 324 3491 779

250× 300 4102 1881 2974 566 519 413 521 7196 783

350× 500 15914 4721 7119 814 769 601 764 15113 1162

500× 700 21409 6013 11146 1410 1416 1201 1422 24917 1587

Table 7.2

SPP Dantzig St1 St2 St3 St4 St5 St6 St7 Ried

30× 30 32 27 26 57 49 23 66 40 30

200× 200 792 371 311 — — 357 — 894 686

250× 300 1712 637 555 — — 1150 — 1816 1612

350× 500 4187 1605 1594 — — 2011 — 5041 7870

500× 700 24971 7983 7251 — — 11298 — 28432 10327

our exposition, we will henceforth assume that the first m columns of A and components
of x are basic at the start of a step. This step is of the form

x = x+ θηq, where x =
[
B−1b

0

]
. (7.1)

The basic feasible solution at the start of the step, ηq, is one of the set of edge direc-
tions

ηj =
[−B−1N

I

]
ej−m, j =m+ 1, . . . ,n. (7.2)

Emanating from the vertex x, and θ is the length of the step, ei denotes the ith column of
the identity matrix I . The edge direction ηq must be “downhill,” that is, ηq must make an
obtuse angle with the gradient c of objective function, or equivalently, the reduced cost
cq = cTηq must be negative. In the steepest-edge simplex algorithm, the edge ηq is chosen,
such that

cTηq∥
∥ηq

∥
∥ =min

j>m

{
cTηj∥
∥ηj

∥
∥

}

. (7.3)

Tables 7.1, 7.2, and 7.3 present a comparison of our strategies with the steepest edge of
Goldfarb and Reid.

As previously mentioned Strategies 3 and 4 are not strong enough to be included in the
above-mentioned tables. It can be concluded that the strategies mentioned in the paper
are superior to this variant of the steepest edge.
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Table 7.3

SPK Dantzig St1 St2 St3 St4 St5 St6 St7 Ried

30× 30 21 19 26 77 60 25 74 28 28

200× 200 1589 874 1167 — — 703 — 1873 735

250× 300 2374 827 911 — — 873 — 2691 1074

350× 500 5077 2808 2914 — — 2863 — 5492 3548

500× 700 21349 5013 6143 — — 5493 — 23982 8119

8. Conclusion

A number of strategies were proposed for the pivot selection in the LP relaxation of the set
problems. It is demonstrated that considering problem specific knowledge in pivoting in
the LP relaxation of the set problems can enhance pivot selection in the simplex method
for each instance of the set problems. one of the strategies works better than the others.
Researchers in the future may come up with new strategies for particular instances of LP
problems which considerably enhance pivot selection in the simplex method.
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