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It has often been argued that there exists an underlying biological basis of utility func-
tions. Taking this line of argument a step further in this paper, we have aimed to com-
putationally demonstrate the biological basis of the Black-Scholes functional form as ap-
plied to classical option pricing and hedging theory. The evolutionary optimality of the
classical Black-Scholes function has been computationally established by means of a hap-
loid genetic algorithm model. The objective was to minimize the dynamic hedging error
for a portfolio of assets that is built to replicate the payoff from a European multi-asset
option. The functional form that is seen to evolve over successive generations which best
attains this optimization objective is the classical Black-Scholes function extended to a
multiasset scenario.
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1. Option basics

An option provides the holder with the right to buy or sell a specified quantity of an
underlying asset at a fixed price (called a strike price or an exercise price) at or before
the expiration date of the option. Since it is a right and not an obligation, the holder
can choose not to exercise the right and allow the option to expire. There are two basic
types of options—call options (right to buy) and put options (right to sell). A call option
gives the buyer of the option the right to buy the underlying asset at a fixed price (strike
price or K) at any time prior to the expiration date of the option. The buyer pays a price
for this right. At expiration, if the value of the underlying asset is greater than the strike
price, the buyer makes the difference as his or her profit. If the value of the underlying
asset is less than the strike price, then the buyer simply does not exercise the option. More
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Table 1.1. The effect of determining variables on the price of call and put options.

Factor Call value Put value

Increase in asset price Increases Decreases

Increase in strike price Decreases Increases

Increase in variance of asset price Increases Increases

Increase in time to expiration Increases Increases

Increase in interest rates Increases Decreases

Increase in dividends paid Decreases Increases

generally, the value of a call option increases as the value of the underlying asset increases
and decreases as the value of the underlying asset decreases. The reverse is true for a put
option.

An American option can be exercised at any time prior to its expiration, while a Eu-
ropean option can be exercised only at expiration. The possibility of early exercise makes
American options more valuable than otherwise similar European options. However, in
most cases, the time premium associated with the remaining life of an option makes early
exercise suboptimal.

A number of economic variables affect option prices. These are the value of underly-
ing asset; variance in that value—as the variance increases price of both calls and puts
increase—since all options have limited downside and depend upon price volatility for
upside; expected dividends on the asset—which are likely to reduce the price apprecia-
tion component of the asset thereby reducing the value of calls and increasing the value
of puts; strike price of option—the right to buy (sell) at a fixed price becomes more (less)
valuable at a lower strike price; life of the option—both calls and puts benefit from a
longer life; and the level of interest rates—as interest rates increase, the right to buy (sell)
at a fixed price in the future becomes more (less) valuable (see Table 1.1).

To cover the risk (i.e., hedge) of writing (selling) an option, an option writer often
takes recourse to a replicating portfolio. The objective is to use a combination of risk-free
borrowing/lending and the underlying asset to create the same cash flows as the option
being valued. Replicating a call requires borrowing at the available lowest borrowing rate
and using the proceeds to buy D units of the underlying asset. Replicating a put requires
selling D units of the underlying asset and lending out the proceeds. The magnitude of D
is determined by means of the option delta; which is the ratio of change in option value
to change in the price of the underlying asset. That is, in mathematical terms, the option
delta is the first-order partial derivative of the option value with respect to the price of the
underlying asset. Applying the principle of zero-arbitrage, the value of the option has to
be equal to the value of the replicating portfolio. Any difference between the two is known
in financial parlance as the hedging error. The replicating portfolio will then have to be
periodically rebalanced (i.e., the delta recalculated with corresponding changes made to
D).
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2. Problem specification

Sinn [4] has supplied a formal proof that expected utility maximization with logarithmic
utility acts as the dominant preference in biological selection process in the sense that a
population following any other preference rule for decision-making under risk will, with
a probability that approaches certainty, become extinct over time relative to the popula-
tion following the preference rule based on logarithmic utility. Chen [5] also argues on
similar lines advocating an essentially biologically driven derivation of economic ratio-
nale underlying the utilitarian aspects governing production and competition in orga-
nized societies.

For an option writer who is looking to hedge his or her position, the expected utility
maximization criterion will require the hedging error to be at a minimum at each point of
rebalancing, where the hedging error is the difference between the expected payoff on the
best-of option and the replicating portfolio value at that point. Given the fundamental
premise of log-normality of the Black-Scholes option pricing function (Black and Scholes,
[6]), we contend that the Black-Scholes functional form can be shown to have an evolu-
tionary supremacy over any other functional form in maximizing the expected utility of
the hedger by minimizing the hedging error. We do not seek to argue the applicational
efficiency of a genetic algorithm-based hedging strategy but our main motivation here is
rather to computationally explore and extricate the subtle features of evolutionary opti-
mality naturally embedded in the Black-Scholes functional form.

If the Black-Scholes functional form indeed possesses evolutionary optimality, then,
given a necessarily biological basis of the evolution of utility forms (Robson [2, 3]; Becker
[1]), the dominant surviving population of hedging solutions in a haploid genetic algo-
rithm model (which can be shown to be statistically equivalent to multiple multiarmed
bandit processes) should show satisfactory convergence with any hedging scheme based on
such function. That is, a hedging solution derived from the Black-Scholes expected payoff

function should gradually evolve out of the future generations as the largely predominant
genotype. Of course, all implicit assumptions about underlying asset price behavior have
to be same as the Black-Scholes model.

3. The Black-Scholes function as used in classical options pricing and hedging

As the time interval between successive points of rebalancing the replicating portfolio
is progressively shortened, the limiting distribution can take one of two forms: either it
corresponds to a distribution allowing a continuous price process or one that allows for
price “jumps.” The Black-Scholes pricing function is based on the assumption that the
price process is continuous and the limiting distribution is the log-normal distribution.

The version of the model presented by Black and Scholes was designed to value Eu-
ropean options, which were dividend-protected. The value of a call option in the Black-
Scholes model can be written as a function of the following variables:

S = current price of the underlying asset;
X= strike price of the option;
t = current time;
T= time at maturity;
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i = risk-less interest rate corresponding to the life of the option;
σ2= variance in the logn (price) of the underlying asset.

The value of a European call option using the Black-Scholes pricing function is given as

C = SN
(
d1
)−Xe−i(T−t)N

(
d2
)
, where d1 =

[
logn(S/K) +

(
i+ σ2/2

)
(T − t)

]

{
σ2
√

(T − t)
} ,

d2 = d1− σ2
√

(T − t).

(3.1)

As is obvious from (3.1), the Black-Scholes function is nothing but an expected payoff

function, yielding the present value of the expected payoff from holding the option. The
call option delta is obtained from (3.1) as (∂C/∂S), that is, N(d1). The replicating port-
folio is actually embedded in the Black-Scholes model: to replicate the option one would
need to invest N(d1)-fraction of total portfolio value in the underlying asset and borrow
an amount equal to Xe−it N(d2).

In terms of the hedging problem, expected utility maximization is linked to option-
pricing through the indifference pricing technique in the form of a continuous-time sto-
chastic optimization problem. The hedger’s expected utility from a hedging strategy is
maximized when the cumulative hedging error is minimized. Out of a starting popu-
lation of number of hedging solutions, that predicated by the Black-Scholes function
should emerge as the dominant surviving population in order to validate our position
concerning its evolutionary supremacy.

4. Hedging problem involving a multiasset option

An option whose payoff is dependent on the value of more than one underlying asset
is called a multiasset option. A hedging problem involving a multiasset option using
a similar paradigm incorporates an extension of the Black-Scholes model to a multi-
dimensional form (Braddock [7]; Fabozzi [8]). So far, closed-form pricing functions
have been derived for options involving up to a maximum of two underlying assets but a
closed-form pricing solution for the n-assets option remains an open problem (Stulz [9];
Johnson [10]; Martin [11]).

Let the value of a European multiasset option be contingent on J different assets such
that the investor has the right to claim the return on the best-performing asset after a stip-
ulated lock-in period. Given that one of the J assets is a risk-free asset, the investor gets
assured of a minimum return equal to the risk-free rate i on his or her invested capital
at the termination of the stipulated lock-in period. This effectively means that the nomi-
nal value of his or her initial investment can become endogenously insured, because the
terminal wealth, even in the worst-case scenario, cannot be lower in value to the initial
wealth plus the return earned on the risk-free asset minus a finite cost of portfolio insur-
ance which is basically the cost of the multiasset option (Leland and Rubinstein [12]).

Then the expected present value of the terminal option payoff Ê(r)t=T is obtained as
follows:

Ê(r)t=T =Max
[
w,Max j

{
eitE

(
r j
)
t=T
}]

, j = 1,2, . . . , J − 1. (4.1)
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In the above equation, r is the rate of return on the risk-free asset and T is the length of
the investment horizon in continuous time and w is the initial wealth invested, that is,
ignoring insurance cost, if the risk-free asset outperforms all other assets, then we get

Ê(r)t=T = weiT

eiT
=w. (4.2)

Thus to replicate the payoff from such an option, one requires a replicating portfolio
consisting of all the underlying assets invested in accordance with their respective option
deltas. Like the single-asset counterpart, the replicating portfolio corresponding to the
multiasset option also needs to be periodically rebalanced as the option deltas are not
static but rather change over time.

5. A genetic algorithm model for the multiasset option replication problem

5.1. The setup. At each point of rebalancing, the hedging error has to be minimized if the
difference between the expected option payoff and the replicating portfolio value is to be
minimized. The more significant this difference, the more will be the cost of rebalancing
associated with correcting the hedging error; and as these costs cumulate, the less will be
the ultimate utility of the hedge at the end of the lock-in period. Then the cumulative
hedging error over the lock-in period is given as

Σt

∣
∣εt
∣
∣= Σt

∣
∣E(r)t − vt

∣
∣. (5.1)

Here E(r)t is the expected best-of option payoff at time-point t and vt is the replicating
portfolio value at that point of time. Then the replicating portfolio value at time t is
obtained as the following linear form:

vt =
(
p0
)
te

it +Σ j
{(
pj
)
t

(
Sj
)
t

}
, j = 1,2, . . . , J − 1. (5.2)

Here (Sj)t is the realized return on asset j at time-point t and p1, p2, . . . , pJ−1 are the
respective allocation proportions (weights) of investment funds among the J − 1 risky
assets at time-point t and (p0)t is the allocation for the risk-free asset at time-point t. Of
course the following relation holds at any point of time t:

(
p0
)
t = 1−Σ j

(
pj
)
t, j = 1,2, . . . , J − 1. (5.3)

It is the portfolio weights, that is, the p0 and pj values that are of critical importance in
determining the size of the hedging error. The correct selection of these portfolio weights
will ensure that the replicating portfolio accurately tracks the option. Biologically then,
over a few successive generations, the predominant genotype will evolve as the one that
best meets the fitness criterion based on the magnitude of the aforesaid hedging error.

The computational haploid genetic algorithm model we have devised has been pro-
grammed in Borland C, Release 5.02 and performs the three basic genetic functions of
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reproduction, crossover, and mutation with the premise that in each subsequent genera-
tion x number of chromosomes from the previous generation will be reproduced based on
the principal of natural selection. Following the reproduction function, 2(x− 1) number
of additional chromosomes will be produced through the crossover function, whereby
every gth chromosome included in the mating pool will be crossed with the (g + 1)th
chromosome at a preassigned crossover locus. There is also a provision in our program
to introduce a certain number of mutations in each current chromosome population in
order to enable rapid adaptation.

5.2. The haploid genetic algorithm as a generalized bandit process. Let a simple two-
armed bandit process be considered whereby it is known that one of the arms pays a
reward m1 with variance s2

1 and the other arm pays a reward m2 with variance s2
2 such that

m2 ≤m1. Then this gives rise to the classical bandit problem dilemma regarding which
of the two arms to play so as to optimize the tradeoff between information usage and
information acquisition (Berry and Fristedt [13]). A common solution method would be
to allocate an equal number of trials between the two arms, say f . Suppose that we have
a total number of F possible trials. Say we select f such that 2 f < F. This will consist of
the “training” phase. Thereafter, in the subsequent “testing” phase, the remaining F − 2 f
trials are allocated to the arm with the best observed payoff in the “training” phase. Then
the expected loss is calculated as follows:

λ(F, f )= ∣∣m1−m2
∣
∣[(F − f )q( f ) + f

{
1− q( f )

}]
. (5.4)

In the above equation, q( f ) is the probability of selecting the wrong arm as the best arm
during the “training” phase (De Jong [14]). The value of q( f ) is fairly approximated by
the tail of the normal distribution as follows:

q( f )≈ 1√
2π

{
exp

(− z2/2
)

z

}
, where z =

(√
f
)
{(

m1−m2
)

√(
s2

1 + s2
2

)

}

. (5.5)

The optimal “training” sample size f ∗ for minimizing the loss function λ(F, f ) may be
obtained by setting λ f = 0; as per the usual, first-order condition for minimization.

However, though procedure sounds simple enough, it is not necessarily the most op-
timal as was shown by Holland. According to his calculations, expected losses could be
further minimized by allocating exponentially increasing number of trials to the observed
better arm (Holland [15]). Though this approach is untenable because it entails perfect
future knowledge, it at least sets an upper bound to the best solution technique, whereby
any good technique should asymptotically approach this bound. The three-function ge-
netic algorithm performs best in terms of asymptotically approaching the upper bound
as it allocates an exponentially increasing number of trials to the best-observed chromo-
somes in terms of the fitness criterion (Goldberg [16]). Accordingly, we have based our
computational model on the premise that 2(x− 1) number of additional chromosomes
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will be produced through the crossover function, for x number of chromosomes included
in the mating pool through the process of natural selection. Every gth chromosome in the
mating pool is crossed with the (g + 1)th chromosome at a predetermined crossover lo-
cus. Then, given that x number of chromosomes are initially included in the mating pool
following the reproduction function, we will get a total number of x + 2(x− 1) chromo-
somes in the first generation’s population. Here, x number are chromosomes retained
from the previous generation based on the observed best fitness criterion. One or more
of these x chromosomes can be, optionally, allowed to mutate (i.e., swap of bit positions
between 1 and 0 from a particular locus onwards in the encoded bit-string). The remain-
ing chromosomes in the first generation are the ones that come out as a direct result
of our crossover function. Therefore, we get the following linear difference equation as
the governing equation determining chromosome population size in the nth generation
(derivation provided in the appendices):

Gn =Gn−1 + 2
(
Gn−1− 1

)= 3Gn−1− 2. (5.6)

5.3. Constructing a hypothetical best of 3 assets option. The terminal payoff from such
an option would be that on the asset ending up as the best performer among the three
assets within the envelope, that is,

rt=T =Max
(
S0,S1,S2

)
t=T . (5.7)

Two assets with realized returns S1 and S2 can be considered risky, that is, σ2
S1,σ2

S2 > 0,
while S0 may be considered risk-free, for example, the return on a government treasury
bill, that is, σ2

S0 ≈ 0. Then, a dynamic hedging scheme for this option would be to invest
in a replicating portfolio consisting of the three assets, with funds allocated in particular
proportions in accordance with the objective of maximizing expected utility, that is, min-
imizing the cumulative hedging error. Then the replicating portfolio at t for our 3-asset
option is

vt =
(
p0
)
te

it +
(
p1
)
t

(
S1
)
t +
(
p2
)
t

(
S2
)
t . (5.8)

Then the hedging error at time-point t is given as the difference between the payoff on
the option at time-point t and the value of the replicating portfolio at that time:

∣
∣εt
∣
∣=∣∣Max

(
S0,S1,S2

)
t − vt

∣
∣=∣∣Max

(
S0,S1,S2

)
t−
{(
p0
)
te

it +
(
p1
)
t

(
S1
)
t +
(
p2
)
t

(
S2
)
t

}∣∣.
(5.9)

If |εt| ≈ 0, then the option writer is perfectly hedged at time-point t. If |εt| ≈ 0 can be
maintained for the entire lock-in period, then one can say that the dynamic hedging
scheme has worked perfectly, resulting in utility maximization for the option writer. We
have used the following hypothetical data set for conducting our computational study
with the haploid genetic algorithm scheme to minimize the hedging error |εt|.

We assume that all three assets start off with a realized return of unity at t = 0. The
correlation between the two risky assets is assumed constant at a moderate 50%. The first
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risky asset is taken to have a slightly higher mean return (20%) but a rather high volatil-
ity (30%), compared to the mean return (18%) and volatility (20%) of the second one.
The risk-free rate is 5% p.a. and the lock-in period is taken as one year. The replicating
portfolio is rebalanced at the end of each month over the period.

Thus, if the best performer is the first risky asset at time-point t, |εt| is minimized
when maximum allocation is made to the first risky asset at t while if the best performer
is the second risky asset at time-point t, |εt| is minimized if the maximum allocation is
made to that asset at t. If neither of the two risky assets can outperform the guaranteed
return on the risk-free asset at t, then |εt| is minimized if maximum allocation is made to
the risk-free asset. Short selling is not permitted in our model.

To minimize programming involvement, our haploid genetic algorithm model is de-
signed to handle only univariate optimization models. However, the problem we are
studying is one of multivariate optimization with three parameters corresponding to the
portfolio weights of the three assets underlying the option. Therefore, we have taken the
allocation for the risk-free asset as given. This then essentially reduces our problem to one
of univariate optimization, whereby we have to minimize the cumulative hedging error
given by the following objective function:

Σt

∣
∣εt| = Σt

∣
∣Max

(
S0,S1,S2

)
t −
{
ceit + pt

(
S1
)
t +
(
1− c− pt

)(
S2
)
t

}∣∣. (5.10)

Here, pt is the allocation to be made to the first risky asset at every point of rebalancing
and c is the given allocation always made to the risk-free asset thereby allowing us to
substitute (p2)t with (1− c− pt); as portfolio weights sum up to unity. Then the expected
utility maximizing behavior of the option writer will compel him or her to find out the
optimal functional values of pt at every t so as to minimize the total error (Goldberger
[17]).

It is quite logical to assume that the pt values will have to be related in some way to
the sensitivity of the change in potential option payoff to the change in performance of
the observed best asset within the envelope. With continuous rebalancing, one can the-
oretically achieve |εt| ≈ 0 if portfolio weights are selected in accordance with the partial
derivatives of the option value with respect to the underlying asset returns, as per usual
dynamic hedging technique in a Black-Scholes environment. Thus the utility maximiza-
tion goal would be to suppress |εt| to a value as close as possible to zero at every t so that
overall Σt|εt| is consequently minimized.

6. Computational observations

The hypothetical data presented in Table 6.1 is used to run a Monte Carlo simulation to
generate the potential payoffs for the option on best of three assets at the end of each
month for t = 0,2, . . . ,11. The word potential is crucial in the sense that our multiasset
option is essentially European and path-independent, that is, basically to say only the ter-
minal payoff counts. However, the replicating portfolio has to track the option all through
its life in order to ensure an optimal hedge, and therefore we have evaluated potential
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Table 6.1. Hypothetical data for computational study.

S1(t=0) 1.00

S2(t=0) 1.00

S0(t=0) 1.00

Correlation (S1, S2) 0.50

μS1 20%

μS2 18%

σS1 30%

σS2 20%

I 5%

T 12 months

Rebalancing frequency Monthly

Table 6.2. Results of the Monte Carlo model.

T S1 S2 S0 Best asset Potential payoff

0 1 1 1 — —

1 1.0169 1.0219 1.0003 Asset 2 0.0216

2 1.0311 1.0336 1.0010 Asset 2 0.0326

3 1.0801 1.0820 1.0021 Asset 2 0.0799

4 1.1076 1.0960 1.0035 Asset 1 0.1041

5 1.1273 1.1280 1.0052 Asset 2 0.1228

6 1.1694 1.1694 1.0073 Asset 2 0.1621

7 1.2008 1.1923 1.0098 Asset 1 0.1910

8 1.2309 1.2160 1.0126 Asset 1 0.2183

9 1.2836 1.2489 1.0157 Asset 1 0.2679

10 1.3362 1.3030 1.0193 Asset 1 0.3169

11 1.3617 1.3196 1.0232 Asset 1 0.3385

payoffs at each t. The potential payoffs are computed as Max[(S1)t − (S0)t, (S2)t − (S0)t,0]
and the results are presented in Table 6.2. S1 and S2 are assumed to evolve over time fol-
lowing the stochastic diffusion process of a geometric Brownian motion (Black and Jones
[18]).

The risk-free return S0 is continuously compounded approximately at a rate of 0.41%
per month giving a 5% annual yield. We have run our Monte Carlo simulation model
with the hypothetical data in Table 1.1 over the one-year lock-in period and calculated the
potential option payoffs. All formal definitions pertaining to our computational model
are given in the appendices.

The results shown in Table 6.2 and Figure 6.1 show that the second risky asset is the
best performer towards the beginning and in the middle of lock-in period but the first
one catches up and in fact outperforms the second one towards the end of the period.
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Table 6.3. Replicating portfolio value at each monthly rebalancing point.

T p1S1 p2S2 p0S0 vt

0 0.4500 0.4500 0.1000 1.0000

1 0.4576 0.4598 0.1000 1.0175

2 0.0000 0.9303 0.1001 1.0304

3 0.0000 0.9738 0.1002 1.0740

4 0.0000 0.9864 0.1003 1.0867

5 1.0145 0.0000 0.1005 1.1151

6 0.0000 1.0524 0.1007 1.1532

7 0.0000 1.0731 0.1008 1.1741

8 1.1078 0.0000 0.1013 1.2091

9 1.1552 0.0000 0.1016 1.2568

10 1.2025 0.0000 0.1019 1.3045

11 1.2255 0.0000 0.1023 1.3279

For an initial input of $1, apportioned at t = 0 as 45% between S1 and S2 and 10% for
S0, we have constructed five replicating portfolios according to a simple rule-based logic:
k% of funds are allocated to the observed best performing risky asset and the balance
proportion, that is, (90− k)% to the other risky asset (keeping the portfolio self-financing
after the initial investment) at every monthly rebalancing point.

We have reduced k by 10% for each portfolio starting from 90% and going down to
50%. As is shown in the appendices, this simple hedging scheme performs quite well over
the lock-in period when k = 90%. But the performance falls away steadily as k is reduced
every time.

7. Inferential remarks based on the computation results

The fact that a dominance pattern can be noticed for 80% < k∗ ≤ 90∗ is quite evident
from the output data in Tables 6.3 and 7.1 and the graphical plot of that data accom-
panying tabulated figures in the appendices. It may be noted to be of significance that
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Table 7.1

Choice of k Cumulative hedging error

90% 0.1064

80% 0.1172

70% 0.1281

60% 0.1390

50% 0.1498

k∗ ≈ 90% indeed comes closest to the percentage allocation for the best performing as-
set made according to the sensitivity of change in the potential payoff on the option to a
change in performance of the observed best performer. This indeed satisfies the dynamic
hedging principle in a Black-Scholes environment to the maximal extent possible given
monthly rebalancing, a fixed allocation to S0 and no shorting, as were our imposed condi-
tions. This therefore lends credence to our position that the Black-Scholes expected payoff

function indeed has embedded evolutionary optimality when it comes to maximizing the
utility of a hedging strategy via minimization of the cumulative hedging error.

Appendices

A. Formal definitions

A geometric Brownian motion is assumed to be the ubiquitous stochastic diffusion pro-
cess driving asset prices and performances in organized financial markets. The discrete
time version of this model, as is relevant in most computational applications, is given as
follows:

ΔS

S
= μΔt+ ε

√(
σ2Δt

)
. (A.1)

The variable ΔS is the change in the asset price S and ε is a random sample from the
standard normal distribution N(0,1). The expected return per unit of time on the asset
is denoted as μ and the variance of the asset price is denoted as σ2. ΔS/S is actually the
proportional return provided by the asset in a very short interval of time Δt. The term
μΔt then stands for the expected value of this return, which is deterministic and ε

√
(σ2Δt)

is then the stochastic component of this return.
Therefore, the variance of the return on the asset is given by σ2Δt. That is to say ΔS/S

follows a normal distribution with mean μΔt and variance σ2Δt. Thus a path for an asset
price or performance can be simulated by repeated sampling from N (μΔt,σ2Δt). This
is exactly how the Monte Carlo simulation model we have used in this study was de-
signed. Since we have used monthly rebalancing, we have Δt = 1/12, that is, Δt ≈ 0.0833.
The asset performances S1 and S2 have been generated by repeatedly sampling from N
(0.0167,0.0075) and N (0.0150,0.0033), respectively, and averaging. As the performances
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of the two risky assets are correlated, the random samples were drawn according to the
following formula using Microsoft Excel’s inbuilt RAND (·) function:

r1 = RAND(·),

r2 = r1 + RAND(·)∗ (1− 0.50)2 = r1 + RAND(·)∗ 0.502.
(A.2)

B. Mathematical derivation of the size of Gn

According to our haploid genetic algorithm reproduction and crossover functions, the
size of the nth generation, that is, the number of chromosomes in the population at the
end of the nth generation is given by the following first order, linear difference equation:

Gn =Gn−1 + 2
(
Gn−1− 1

)= 3Gn−1− 2. (A.1)

If x initial number of chromosomes are introduced at n = 0, we have G0 = x. Then, ob-
viously, G1 = x + 2(x− 1) = 3x− 2 = 31(x− 1) + 1. Extending the recursive logic to G2

and G3 we get G2 = 9x− 8= 32(x− 1) + 1 and G3 = 27x− 26= 33(x− 1) + 1. Therefore,
extending to Gt we can write the following relation:

Gt = 3t(x− 1) + 1. (A.2)

Therefore, Gt+1 = 3t+1(x− 1) + 1 but Gt+1 = 3Gt − 2. Substituting for Gt, we thereby get
Gt+1 = 3{3t(x− 1) + 1}− 2 = 3t+1(x− 1) + 3− 2 = 3t+1(x− 1) + 1. Therefore, the case is
proved for Gt+1. But we have already proved it for G1, G2, and G3. Therefore, by the
principle of mathematical induction, the general formula is derived as follows:

Gn = 3n(x− 1) + 1. (A.3)

We can verify that our genetic algorithm model has indeed reproduced this Gn number
of chromosomes in each generation for an initial input of G0 = x = 5. Accordingly, our
algorithm reproduced 13, 37, and 109 chromosomes for n= 1,2,3.

C. Computational output of the GA performance

For an initial input of $1, apportioned at t = 0 as 45% between S1 and S2 and 10% for
S0, we have constructed five replicating portfolios according to a simple rule-based logic:
k% of funds are allocated to the observed best performing risky asset and the balance
(90− k)% to the other risky asset (keeping the portfolio self-financing after the initial
investment) at every monthly rebalancing point. We have reduced k by 10% for each
portfolio starting from 90% and going down to 50%. As is shown in Figures A.1–A.5, this
simple hedging scheme performs quite well over the lock-in period when k = 90%. But
the performance falls away steadily as k is reduced every time.
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Figure A.2
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Figure A.3

Evaluation of the fitness criterion over successive generations corresponding to the
optimal choice of k (80% < k = 90%) is shown in Table A.1.
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Figure A.5

Table A.1

Generation Number of chromosomes 80% < k∗ ≤ 90% % in range (fitness)

0 5 1 20%

1 13 4 31%

2 37 19 51%

3 109 61 56%
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