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Patch clamp recordings from ion channels often show bursting behaviour, that is, pe-
riods of repetitive activity, which are noticeably separated from each other by periods of
inactivity. A number of authors have obtained results for important properties of theoret-
ical and empirical bursts when channel gating is modelled by a continuous-time Markov
chain with a finite state space. We show how the use of marked continuous-time Markov
chains can simplify the derivation of (i) the distributions of several burst properties, in-
cluding the total open time, the total charge transfer, and the number of openings in a
burst, and (ii) the form of these distributions when the underlying gating process is time
reversible and in equilibrium.
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1. Introduction

Movement of ions across biological membranes is selectively controlled by specialised
protein molecules, called ion channels, which thereby regulate many aspects of cell func-
tion. The many kinds of ion channels vary in location, size, chemical structure and func-
tion; see, for example, Sakmann and Neher [1]. Usually, ion conduction occurs through
a single aqueous pore having a gate that is controlled, for example, by a neurotransmitter,
voltage, or membrane tension. Understanding the behaviour of ion channels is impor-
tant in the study of cell regulation and its pathologies; certain diseases and drugs may
affect behaviour of particular channels, and consequently cell functioning. Recordings of
the ion flux (tiny current of the order of a few picoamperes) from a single channel are
possible through the patch clamp technique (Hamill et al. [2]). At typical recording time
resolution, channel gating appears instantaneous, and at any particular time the chan-
nel is in one of its stable conductance levels; the simplest channel types exhibit just two,
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commonly termed open (conducting) and closed (nonconducting), though some have
multiple conductance levels.

Gating behaviour of a single ion channel is usually modelled by a continuous-time
homogeneous finite state Markov chain; see Colquhoun and Hawkes [3]. (Other back-
ground and references can be gleaned from the work of Sakmann and Neher [1].) Two
complications often need to be addressed in such modelling: because each conductance
level may arise from several states, there may be aggregation of states into conductance
classes which partition the state space, into open and closed states in the case of just
two conductance levels; also, because of inherent limitations of the recording procedure,
very brief sojourns in a class may not be observable (see, e.g., Ball et al. [4] and Hawkes
et al. [5]).

Periods of repetitive open channel activity known as bursts are often present in a single
channel record, and these are noticeably separated from each other by periods of inactiv-
ity. Essentially, a burst is a sequence of periods during which the channel is open together
with the intervening short closed times, commonly called gaps; neighbouring bursts are
separated by much longer closed times, termed interburst sojourns. Two types of burst
have been studied: theoretical bursts depend on a partitioning of the closed states into
short-lived and long-lived states; empirical bursts depend on closed-times being classified
as short or long according to whether they do not or do exceed some specified critical time
tc. In practice, from a single channel record only empirical bursts can be determined, and
some of their global properties (such as total charge transfer—see Section 4.2) may be less
sensitive to problems caused by missed brief sojourns than individual open and closed so-
journs. Furthermore, activity within a burst is likely to come from only one channel even
when there are several channels in the patch; consequently data from within empirical
bursts are often used for statistical analyses (see, e.g., Colquhoun et al. [6] and Beato et
al. [7]). Ball et al. [8, 9] have discussed other reasons for studying bursts.

For a channel with two conductance levels, Colquhoun and Hawkes [3] showed, un-
der diagonalisability assumptions, that the distributions of the duration, total open time,
and number of openings in a theoretical burst are each linear combinations of (resp.) ex-
ponential or geometric distributions, and that the numbers of these components can be
related to the structure of the underlying gating process. Empirical bursts were first con-
sidered by Colquhoun and Sakmann [10]; later studies include Ball [11], Li et al. [12],
and Yeo et al. [13].

Ball et al. [8, 9] developed a multivariate semi-Markov framework for analysing burst
properties of multiconductance channels, that encompassed both theoretical and empiri-
cal bursts in a unified fashion, and investigated the form of distributions of burst proper-
ties when the underlying channel is in equilibrium and time reversible. (In the absence of
a free energy source, any plausible model of channel gating should be time reversible, see
Laüger [14].) The aim of the present paper is to show how the results in Ball et al. [8, 9]
can be accessed more easily through a marked continuous-time Markov chain (cf. He and
Neuts [15]) which is derived from the underlying continuous-time Markov model de-
scribing the channel gating behaviour by deleting closed sojourns and concatenating the
open sojourns; the marks allow transitions corresponding to the deleted closed sojourns
to be labelled according to whether they are gaps or interburst periods. Concatenated
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processes have been used previously to explain some burst properties; see, for example,
Colquhoun and Hawkes [3, pages 20–22] and Ball et al. [8, page 192], [9, page 217].
However, they have not been used previously to provide a systematic approach like that
developed in the present paper for derivation of burst properties.

Some background and basic notation for Markov modelling of a single ion channel is
given in Section 2, along with definitions of bursts and the key marked continuous-time
Markov chain. Section 3 develops some fundamental structural properties of transition-
rate matrices and equilibrium distributions relevant for study of bursts, and shows that
the key marked process inherits time reversibility from the underlying process. Section 4
then presents derivations for some particular burst properties, the total open time, total
charge transfer, and number of openings during a burst. In addition, it summarizes re-
sults for other properties, such as the time spent in and the number of visits to a subclass
of the open states during a burst. Section 5 makes concluding remarks about some ex-
tensions, the advantages and disadvantages of the present approach relative to previous
ones, and other applications.

Throughout this paper, vectors and matrices are rendered in bold, all vectors are col-
umn vectors, and “�” denotes transpose, which is used to express row vectors. Further-
more, I denotes an identity matrix, 1 a column vector of ones, and 0 a matrix (vector) of
zeros, dimensions of these being clear from their context.

2. Background and notation

We assume that the gating mechanism of a single ion channel is modelled by an irre-
ducible homogeneous continuous-time Markov chain {X(t)} = {X(t) : t ≥ 0}, with fi-
nite state space E = {1,2, . . . ,n}, transition-rate matrix Q = [qi j], and equilibrium dis-
tribution π = [π1,π2, . . . ,πn]�. The state space is partitioned as E = O∪C, where O =
{1,2, . . . ,nO} and C = {nO + 1,nO + 2, . . . ,n} correspond to the channel being open and
closed, respectively. The closed states are further partitioned as C = S∪ L, where S =
{nO + 1,nO + 2, . . . ,nO + nS} and L = {nO + nS + 1,nO + nS + 2, . . . ,n} are the short-lived
and long-lived closed states, respectively. Let nC = n−nO be the number of closed states
and nL = n−nO−nS = nC −nS be the number of long-lived closed states.

The transition-rate matrix Q may be partitioned in various ways according to the
problem under consideration, for example, by the open and closed classes O and C, or by
the open, short-lived closed and long-lived closed classes O, S, and L, giving, respectively,

Q =
[
QOO QOC

QCO QCC

]
=
⎡
⎢⎣
QOO QOS QOL

QSO QSS QSL

QLO QLS QLL

⎤
⎥⎦ . (2.1)

Corresponding partitions are used for the equilibrium distribution π, that is, π� =
[π�O,π�C]= [π�O,π�S ,π�L ].

We now give formal definitions of the two types of burst. For a theoretical burst, a
sojourn of {X(t)} in the class C is classified as an interburst sojourn if it contains a visit
to L, and is classified as a gap if it is purely within the class S. The interburst sojourns
are used to partition the channel record into bursts. Thus, a given burst begins at the
start of the first O sojourn following an interburst sojourn, and ends at the start of the
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subsequent interburst sojourn. An empirical burst is defined by specifying a critical time
tc > 0 and classifying sojourns in C of duration >tc as interburst sojourns and those of
duration ≤tc as gaps. A given burst is then defined as for a theoretical burst but with this
new definition of interburst sojourns and gaps.

Some basic results for aggregated continuous-time Markov chains, required in the se-
quel, are now summarized. For t ≥ 0, let PC(t)= [pCi j(t)], where

pCi j(t)= P
(
X(t)= j, X(u)∈ C for 0≤ u≤ t | X(0)= i) (i, j ∈ C). (2.2)

Then, a standard forward argument (see, e.g., Colquhoun and Hawkes [3, pages 9, 10])
shows that

PC(t)= exp
(
QCCt

)
(t ≥ 0), (2.3)

where exp(QCCt)=
∑∞

k=0 t
kQk

CC/k! denotes the usual matrix exponential.
Suppose that X(0) ∈ C and let TC = inf{t > 0 : X(t) ∈ O} denote the time elapsing

until the channel enters an open state. Then TC has (matrix) probability density function
given by

f TC (t)= exp
(
QCCt

)
QCO (t > 0), (2.4)

where f TC (t)= [ f TCi j (t)] with

f TCi j (t)= d

dt
P
(
TC ≤ t, X

(
TC
)= j | X(0)= i) (i∈ C, j ∈O). (2.5)

Hence, if PCO = [pCOi j ], where pCOi j = P(X(TC)= j | X(0)= i) (i∈ C, j ∈O), then

PCO =
∫∞

0
f TC (t)dt =

∫∞
0

exp
(
QCCt

)
QCO dt =

(−Q−1
CC

)
QCO . (2.6)

Note that QCC is nonsingular since C is a transient class (as {X(t)} is irreducible), and
hence by Asmussen [16, page 77] all the eigenvalues of QCC have strictly negative real
parts.

Let {X̃(t)} be the process obtained from {X(t)} by deleting all closed sojourns and
concatenating the open sojourns; see Figures 2.1(a) and 2.1(b). The process {X̃(t)} is a
continuous-time Markov chain, with state space O. Let Qcat

OO = [qcat
i j ] denote the

transition-rate matrix for concatenated open-to-open transitions; that is, for i, j ∈O, qcat
i j

is the rate that, given the channel is in state i, it leaves the open states and subsequently
reenters the open states via state j. Then it follows from (2.6) that

Qcat
OO =QOC

(−Q−1
CC

)
QCO . (2.7)

Thus {X̃(t)} has nO×nO transition-rate matrix, Q̃ say, given by

Q̃ =QOO +QOC

(−Q−1
CC

)
QCO . (2.8)
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Figure 2.1. (a) Partial realization of {X(t)} based on O = {1,2}, S = {3}, and L = {4}, with q13 =
q31 = q14 = q41 = 0 and all other entries of Q nonzero. (For corresponding state space graph see
Figure 3.1(a).) Labels a, b, c, d indicate sojourns in an open state immediately preceded by a closed
sojourn (allowing these to be tracked in parts (b) and (c)). Also indicated are (theoretical) burst and
interburst periods. (b) Corresponding realization of {X̃M(t)}, that is, realization from (a) after omis-
sion of gaps and interburst sojourns, concatenation of neighbouring (open) sojourns, and addition
of marks I and G to indicate (preceding omitted) interburst sojourn or gap. Corresponding realiza-
tion of {X̃(t)} is obtained by omitting marks. (c) Corresponding realization of augmented process
{X̃A(t)} (as introduced following proof of Theorem 3.2). This requires two states, denoted 2G and 2I ,
additional to states 1 and 2; these carry information previously indicated by marks I and G in (b).

It is easily verified that Q̃ satisfies Q̃1= 0, so it is a proper transition-rate matrix. To see
this, start with Q̃1 = QOO1 +QOC(−Q−1

CC)QCO1. Expanding Q1 = 0 in partitioned form
yields QOO1 +QOC1= 0 and QCO1 +QCC1= 0. The latter implies that (−Q−1

CC)QCO1= 1,
whence Q̃1= 0 using the former.
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Finally, let {X̃M(t)} be defined analogously to {X̃(t)} except that whenever a closed so-
journ of {X(t)} is deleted, the corresponding transition of {X̃(t)} (which may not involve
a change of state) is marked G or I , according to whether the closed sojourn of {X(t)} is
a gap or an interburst sojourn; see Figure 2.1(b).

3. Basic results

The transition-rate matrix, Q̃, of {X̃(t)} can be decomposed as Q̃=QO +QG +QI , where
QO corresponds to transitions of {X(t)} purely within O (i.e., without any deletion and
concatenation), and QG and QI to transitions which result from deleted sojourns which
were gaps and interburst sojourns, respectively.

Theorem 3.1. For both types of burst,

QO =QOO . (3.1)

For a theoretical burst,

QG =QOS

(−Q−1
SS

)
QSO , (3.2)

QI =−
[
QOL +QOS

(−Q−1
SS

)
QSL

][
QLL +QLS

(−Q−1
SS

)
QSL

]−1[
QLO +QLS

(−Q−1
SS

)
QSO

]
.

(3.3)

For an empirical burst,

QG =QOC

(−Q−1
CC

)(
I − eQCCtc

)
QCO , (3.4)

QI =QOC

(−Q−1
CC

)
eQCCtcQCO . (3.5)

Proof. The off-diagonal elements of (3.1) are clear; since Q̃ is a proper transition matrix,
the diagonal elements of (3.1) follow, respectively, for each type of burst once (3.2) and
(3.3), or (3.4) and (3.5), have been established.

For a theoretical burst, (3.2) follows from (2.7) with C replaced by S. To prove (3.3),
consider an alternative concatenation of {X(t)} in which sojourns in S are deleted unless
they are gaps. This yields a continuous-time Markov chain {X ′(t)} say, with transition-
rate matrix Q′ having partitioned form

Q′ =
⎡
⎢⎣
Q′OO Q′OS Q′OL
Q′SO Q′SS 0
Q′LO 0 Q′LL

⎤
⎥⎦ . (3.6)

Now, arguing as for (2.8), Q′LL = QLL + QLS(−Q−1
SS )QSL. Also Q′OL = QOL +

QOS(−Q−1
SS )QSL, where the first term corresponds to transitions directly from O to L and

the second to transitions that involve an intervening sojourn in S. Similarly,Q′LO =QLO +
QLS(−Q−1

SS )QSO. It then follows as in (2.7), withC replaced by L, thatQI=Q′OL(−Q′LL)−1Q′LO,
yielding (3.3).

For an empirical burst, using (2.4),QG=
∫ tc

0 QOCeQCCtQCOdt andQI=
∫∞
tc QOCeQCCtQCOdt;

hence (3.4) and (3.5) follow. �
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The process {X̃(t)} inherits irreducibility from {X(t)}, so {X̃(t)} possesses an equi-
librium distribution, π̃ say (of dimension nO). It is intuitively clear that

π̃ = (π�O1
)−1

πO , (3.7)

since concatenating closed sojourns does not affect the long-term relative proportions of
time that {X(t)} spends in the different open states. More formally, it is easily verified
that π̃�Q̃ = 0. For example, for empirical bursts, π�OQ̃ = π�OQOO + π�OQOC(−Q−1

CC)QCO.
Now, π�Q = 0, since π is the equilibrium distribution of {X(t)}, and expanding this in
partitioned form yields π�OQOC + π�CQCC = 0, so π�OQOC(−Q−1

CC)QCO = π�CQCO. Hence,
π�OQ̃ = π�OQOO +π�CQCO = 0, since π�Q = 0. Thus π̃�Q̃ = 0, as required. A similar argu-
ment holds for theoretical bursts.

Recall that {X(t)} is reversible if and only if the detailed balance conditions

πiqi j = πjqji (i, j ∈ E) (3.8)

are satisfied. Let W = diag(π) be the diagonal matrix whose entries on the diagonal are
those of π. Then (3.8) can be written as

W1/2QW−1/2 = (W1/2QW−1/2)�. (3.9)

Expanding (3.9) in partitioned form yields (cf. Fredkin et al. [17]) that if A ⊆ E and
WA = diag(πA) then

W1/2
A QAAW

−1/2
A = (W1/2

A QAAW
−1/2
A

)�
, (3.10)

while if A,B ⊂ E are disjoint then

W1/2
A QABW

−1/2
B = (W1/2

B QBAW
−1/2
A

)�
. (3.11)

Theorem 3.2. For both theoretical and empirical bursts, if {X(t)} is reversible, then so are
{X̃(t)} and {X̃M(t)}.
Proof. Again this is clear on intuitive grounds. For a formal proof we show that detailed

balance holds for the three types of transition in {X̃M(t)}, that is, that W̃
1/2
QOW̃

−1/2
,

W̃
1/2
QGW̃

−1/2
, and W̃

1/2
QIW̃

−1/2
are all symmetric, where W̃ = diag(π̃). Note that, be-

cause of (3.7), it is sufficient to show that W1/2
O QOW

−1/2
O , W1/2

O QGW
−1/2
O , and

W1/2
O QIW

−1/2
O are all symmetric. Setting A = O in (3.10) and recalling (3.1) shows that

W1/2
O QOW

−1/2
O is symmetric for both types of burst.

For theoretical bursts, using (3.2),

W1/2
O QGW

−1/2
O =W1/2

O QOSW
−1/2
S

[
W1/2

S (−QSS)W
−1/2
S

]−1
W1/2

S QSOW
−1/2
O , (3.12)

which is symmetric, because of (3.10) with A = S and (3.11) with A = O and B = S. A
similar argument shows that W1/2

O QIW
−1/2
O is symmetric.
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Figure 3.1. State space graphs based onO = {1,2}, S= {3}, and L= {4}, with q13 = q31 = q14 = q41 =
0 and all other entries ofQ nonzero. (a) State space graph for underlying process. (b) State space graph
for augmented process corresponding to (a); note that only states 1, 2, and additional states 2G and 2I

are required in this case. The augmented process is clearly nonreversible; for example, state 1 can be
reached from, but not followed by, 2G or 2I .

For empirical bursts, noting that −Q−1
CC(I − eQCCtc)=∑∞

k=1Q
k−1
CC t

k
c /k! ,

W1/2
O QGW

−1/2
O =W1/2

O QOCW
−1/2
C

[ ∞∑
k=1

(W1/2
C QCCW

−1/2
C )k−1tkc /k!

]
W1/2

C QCOW
−1/2
O ,

(3.13)

which is symmetric, because of (3.10) with A = C and (3.11) with A = O and B = C.
Similarly, W1/2

O QIW
−1/2
O is symmetric. �

The marked process {X̃M(t)} could in principle be modelled by augmenting the state
space of {X̃(t)} to indicate whether the current state was immediately preceded by an-
other open state, a deleted gap, or a deleted interburst sojourn. This augmented process,
{X̃A(t)} say, is a continuous-time Markov chain. Suppose that {X(t)} has state space
graph as in Figure 3.1(a). In this example, since state 1 cannot be reached directly from
either state 3 or state 4, only states 1 and 2, and two additional states, 2G and 2I (say), are
required for the augmented process. Figure 3.1(b) gives the state space graph and shows
the nonreversibility of this augmented process; see Figure 2.1(c) for a typical (partial) re-
alization of {X̃A(t)}, corresponding to those for {X(t)} and {X̃M(t)} in Figures 2.1(a) and
2.1(b). In general, the augmented process requires a state space which is up to three times
the size of that of the marked process: {1,2, . . . ,nO, 1G,2G, . . . ,nGO, 1I ,2I , . . . ,nIO} (say).
Hence, this approach would not be so useful because, as well as increasing the size of
the state space, such an augmented process need not be reversible.

Let {Jk} be the discrete-time Markov chain that records the entry state of successive
bursts, that is, the state of {X̃M(t)} immediately following successive I-marked transi-

tions. The transition matrix of {Jk} is PB =−Q̃−1
O QI , where Q̃O =QO +QG. (By analogy

with (2.3), the (matrix) probability that {X̃M(t)} does not have an I-transition in (0, t]

is exp(Q̃Ot), so PB =
∫∞

0 exp(Q̃Ot)QI dt = −Q̃
−1
O QI . The matrix Q̃O is nonsingular be-

cause its eigenvalues have strictly negative real parts, since exp(Q̃Ot)→ 0 as t→∞). Note
that {Jk} also inherits irreducibility from {X(t)}, though the state space of {Jk} may be a
proper subset of O, for example, if there are open states which cannot be entered directly
from C. If {Jk} is also aperiodic, as is necessarily the case when Q is such that qi j > 0 if
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and only if qji > 0 (a condition that is satisfied by most physically plausible channel gating
models and by all time reversible models), then {Jk} possesses an equilibrium distribu-
tion, ψ = [ψ1,ψ2, . . . ,ψnO]� say, where ψi is the equilibrium probability that a burst begins
in state i. (If the state space of {Jk} is a proper subset of O, then some of the elements of
ψ are zero.)

Lemma 3.3. The equilibrium distribution ψ of {Jk} is given by ψ� = π�OQI /(π
�
OQI1).

Proof. Recall that Q̃ = Q̃O +QI and, using (3.7), that π�OQ̃ = 0. Thus π�OQI =−π�OQ̃O, so

using PB =−Q̃−1
O QI gives π�OQIPB = π�OQI . Hence ψ�PB = ψ�, as required. �

The equilibrium distribution in Lemma 3.3 is intuitively clear in view of (3.7) and
the fact that a burst is immediately preceded by an I-transition of {X̃M(t)}. Alternative
expressions for ψ have been given by, for example, Colquhoun and Hawkes [3, Equation
(3.2)] for theoretical bursts, and Ball [11, Equation (3.9)] and Li et al. [12, Equation
(2.10)] for empirical bursts.

4. Properties of bursts

4.1. Total open time during a burst. Suppose that {X̃M(t)} is in equilibrium. Then the
times of I-transitions of {X̃M(t)} form a stationary point process. Let TO denote the
length of a typical interval in this point process (i.e., the time between two successive
I-transitions) and let UO denote a typical excess lifetime (i.e., the time from an arbi-
trary time point until the next I-transition of {X̃M(t)}). Note that, because in {X̃M(t)} all
closed sojourns have been omitted and the open sojourns concatenated, TO gives the total
open time during a typical burst. Since {X̃M(t)} is in equilibrium, the survivor function,
FUO(t) say, of UO is given by

FUO(t)= π̃� eQ̃Ot 1 (t > 0). (4.1)

Thus, by the standard relationship between the distributions of a typical lifetime and a
typical excess lifetime of a stationary point process, the pdf of TO, fTO(t) say, is given by

fTO(t)= μTOF′′UO
(t)= μTO π̃�Q̃

2
O eQ̃Ot 1 (t > 0), (4.2)

where, with D+ denoting right-hand derivative, μTO = E[TO] = [−D+FUO(0)]−1 =
(−π̃�Q̃O1)−1; cf. Ball and Milne [18].

Now, suppose that {X(t)}, and hence {X̃(t)}, is time reversible. Then

FUO(t)= 1�W̃ eQ̃Ot 1= 1�W̃
1/2
W̃

1/2
eQ̃Ot W̃

−1/2
W̃

1/2
1 (t > 0). (4.3)

Now, using the series expression for the matrix exponential, W̃
1/2

eQ̃Ot W̃
−1/2 =

exp(W̃
1/2
Q̃OW̃

−1/2
t). Further, W̃

1/2
Q̃OW̃

−1/2 = W̃
1/2

(QO +QG)W̃
−1/2

is symmetric as

{X̃M(t)} is time reversible. Hence, W̃
1/2
Q̃OW̃

−1/2
admits the spectral representation

W̃
1/2
Q̃OW̃

−1/2 =
nO∑
i=1

λi xix
�
i , (4.4)
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where λ1,λ2, . . . ,λnO are the eigenvalues of Q̃O, which are all real (as W̃
1/2
Q̃OW̃

−1/2
is

symmetric) and strictly negative, and x1,x2, . . . ,xnO is a corresponding orthonormal set
of right eigenvectors.

Substituting (4.4) into (4.3) yields

FUO(t)=
nO∑
i=1

αi eλit (t > 0), (4.5)

where, for i = 1,2, . . . ,nO, αi = 1�W̃
1/2
xix

�
i W̃

1/2
1 = (x�i W̃

1/2
1)2 ≥ 0. Thus, if {X(t)} is

time-reversible and in equilibrium, then TO is distributed as a mixture of at most nO
negative exponential random variables; this distribution is obtained from Ball et al. [9,
Equation (3.17)] (by taking their c = 1).

4.2. Total charge transfer during a burst. For i ∈ O, let ci denote the current when
X(t) = i, that is, when the channel is in open state i. The total charge transfer during
a burst is the integral of the current over the burst, which is given by

∫ TO
0 cX̃(t)dt, as-

suming that the burst starts at t = 0 and the current is zero when X(t) ∈ C. Suppose
that ci > 0 (i ∈ O). Let {X̂(t)} and {X̂M(t)} denote the random time-changed versions
of {X̃(t)} and {X̃M(t)}, respectively, obtained by running the clock at rate c−1

i when
X̃(t) = i (i ∈ O). Let C = diag(c), where c = (c1,c2, . . . ,cnO)�. The transition-rate ma-
trix, Q̂ say, of {X̂(t)} admits the decomposition Q̂ = Q̂O + Q̂G + Q̂I , where Q̂O = C−1QO,
Q̂G = C−1QG, and Q̂I = C−1QI . It is easily verified that {X̂(t)} has equilibrium distribu-
tion, π̂ say, given by π̂� = (π̃�C1)−1π̃

�
C, and that {X̂M(t)} is time reversible if and only

if {X̃M(t)} is time reversible.
Let T̂O be the time elapsing between two successive I-transitions of {X̂M(t)}, that is,

the total charge transfer over a typical burst (since all closed sojourns have been omitted
and the open sojourns concatenated). Then, in equilibrium, the distribution of T̂O is

given by (4.2), with π̃ replaced by π̂, Q̃O replaced by ˜̂QO = Q̂O + Q̂G, and μTO replaced by

μ̂TO =−(π̂�O
˜̂QO1)−1. Further, it follows as in Section 4.1, that, if {X(t)} is time-reversible,

then, in equilibrium, T̂O is distributed as a mixture of at most nO negative exponential
random variables; see Ball et al. [9, Equation (3.17)].

4.3. Number of openings during a burst. Let NO be the number of openings in a burst.
Note that NO = k if and only if, in {X̃M(t)}, the number of G-marks between two succes-
sive I-marks is k− 1. The (substochastic) transition matrix between two successive marks
in {X̂M(t)} is −Q−1

O QG if the second mark is a G, and −Q−1
O QI if the second mark is an I .

Thus, in equilibrium, and using Lemma 3.3,

P
(
NO = k

)= (π�OQI1
)−1

π�OQI

(−Q−1
O QG

)k−1(−Q−1
O QI

)
1 (k = 1,2, . . .). (4.6)

Suppose that {X(t)}, and hence {X̃M(t)}, is time reversible. The strictly positive def-
inite matrix −W1/2

O QOW
−1/2
O is then symmetric, so (−QO)−1/2 exists and AO defined by
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AO =W1/2
O (−QO)−1/2W−1/2

O is symmetric. Thus,

P
(
NO = k

)
= (π�OQI1

)−1
1�WOQI

(−QO)−1/2[(−QO

)−1/2
QG

(−QO

)−1/2]k−1(−QO

)−1/2
QI1

= (π�OQI1
)−1

1�W1/2
O W1/2

O QI

(−QO

)−1/2
W−1/2

O

[
W1/2

O

(−QO

)−1/2
QG

(−QO

)−1/2
W−1/2

O

]k−1

×W1/2
O

(−QO

)−1/2
QIW

−1/2
O W1/2

O 1.
(4.7)

The matrix W1/2
O (−QO)−1/2QG(−QO)−1/2W−1/2

O = AO(W1/2
O QGW

−1/2
O )AO is symmetric

and positive (semi-) definite (noting that the eigenvalues of QG are nonnegative for both
types of burst) and hence admits the spectral representation

W1/2
O

(−QO

)−1/2
QG

(−QO

)−1/2
W−1/2

O =
nO∑
i=1

ρiyiy
�
i . (4.8)

Further, the eigenvalues satisfy 0≤ ρi < 1 (i= 1,2, . . . ,nO) as the matrix on the left in (4.8)
is similar to the substochastic matrix −Q−1

O QG. Substituting (4.8) into (4.7) yields

P
(
NO = k

)= nO∑
i=1

βiρ
k−1
i (k = 1,2, . . .), (4.9)

where βi=(π�OQI1)−11�W1/2
O W1/2

O QI(−QO)−1/2W−1/2
O yiy

�
i W

1/2
O (−QO)−1/2QIW

−1/2
O W1/2

O 1.
Now, as {X̃M(t)} is reversible,

W1/2
O QI

(−QO

)−1/2
W−1/2

O

=W1/2
O QIW

−1/2
O AO =

[
AOW

1/2
O QIW

−1/2
O

]� = [W1/2
O

(−QO

)−1/2
QIW

−1/2
O

]�
.

(4.10)

Thus,

βi =
(
π�OQI1

)−1[
1�WOQI

(−QO

)−1/2
W−1/2

O yi
][

1�WOQI

(−QO

)−1/2
W−1/2

O yi
]� ≥ 0,

(4.11)

so if {X(t)} is time-reversible and in equilibrium then NO is distributed as a mixture of
at most rank(QG) geometric random variables; cf. Ball et al. [9, Equation (3.28)].

4.4. Other properties. Various other properties of bursts may be obtained by using ap-
propriate marked processes. For example, suppose that nO > 1 and consider a proper sub-
setA⊂O of the classO of open states. Let TA denote the time {X̃(t)} spends inA between
two successive I-transitions. For example, if A denotes the open states that have a speci-
fied conductance level, then TA is the total time the channel spends at that conductance
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level during a typical burst. Let B =O\A. Now partition Q̃O and ψ , giving, respectively,

Q̃O =
[
Q̃AA Q̃AB

Q̃BA Q̃BB

]
, ψ� = [ψ�A ,ψ�B

]
. (4.12)

Then, in equilibrium, the probability that the channel visits A during a burst is given by
P(TA > 0) = ψ�A1 +ψ�B (−Q̃BB)−1Q̃BA1. Note that it is possible for this probability to be
strictly less than one, in which case P(TA = 0) > 0.

The distribution of TA | TA > 0 can be obtained by a further concatenation of {X̃(t)},
in which sojourns in B are deleted. Denote the resulting process by {X∗(t)} and the cor-
responding marked process by {X∗M(t)}. The transition-rate matrix of {X∗(t)}, Q∗ say,

admits the decomposition Q∗ =Q∗A +Q∗G +Q∗I . Moreover, if Q̃
∗
A =Q∗A +Q∗G, then argu-

ing as for (2.8) yields Q̃
∗
A = Q̃AA + Q̃AB(−Q̃−1

BB)Q̃BA.
Suppose that {X∗M(t)} is in equilibrium and letUA denote a typical excess lifetime from

an arbitrary time until the next I-transition of {X∗M(t)}. Then UA has survivor function

given by FUA(t) = (π∗)� eQ̃
∗
At 1 (t > 0), where π∗ = (π�A1)−1πA is the equilibrium distri-

bution of {X∗(t)}. Arguing as in Section 4.1 now shows that, if {X(t)} is time reversible
and in equilibrium, then TA | TA > 0 is distributed as a mixture of at most nA negative
exponential random variables, where nA is the number of states in A. The distribution
of the total charge transfer whilst in A during a burst can be determined using a random
time transformation of {X∗M(t)}, as in Section 4.2; details concerning this distribution are
given in Ball et al. [9, Equations (3.13) and (3.14)].

Let NA denote the number of visits to A during a burst. The distribution of NA com-
prises a point mass at zero, given by P(NA = 0) = P(TA = 0), and a (possibly defec-
tive) distribution on the positive integers. Moreover, similar arguments to those used
in Section 4.3 show that if {X(t)} is time-reversible and in equilibrium, then NA |NA > 0
is distributed as a mixture of at most rank(PA) geometric random variables, where PA =
(−Q̃−1

AA)Q̃AB(−Q̃−1
BB)Q̃BA is the (substochastic) transition matrix for entry states of two

successive visits to A during a burst; for details see Ball et al. [9, Equation (3.32)].

5. Concluding remarks

In previous papers, notably Ball et al. [4, 8, 9], we have derived results about ion channel
gating behaviour by exploiting structure arising from relevant Markov renewal processes
that are embedded in the underlying Markov or Markov renewal process which describes
the channel gating. Especially, in [8, 9] the focus was on derivation of burst properties.
The present paper has shown that many of the results of those two papers can be obtained
much more simply using a suitably marked continuous-time Markov chain which is de-
rived from the assumed underlying continuous-time Markov chain by deleting closed
sojourns and concatenating the open sojourns. Other results in those papers, such as
the form of autocorrelation functions of burst properties, can also be obtained using the
present framework but details are omitted owing to space restrictions. The clarity of the
derivations appears to result from them accessing precisely the details of structure which
are relevant in each situation, and from exploiting two other aspects. First, the use of ex-
cess lifetimes simplifies the derivation of properties of sojourn time pdfs, since they avoid



Frank G. Ball et al. 13

the use of burst entry process equilibrium distributions and consequently lead more di-
rectly to mixtures of exponentials. Second, the expression for the burst entry process
equilibrium distribution given in Lemma 3.3 (that arises naturally in the present setting)
leads to more efficient derivations of mixture properties than in [9]. The approach of the
present paper is not readily applicable when knowledge of the time spent in the deleted
closed sojourns is required (e.g., in determining the distribution of burst duration). Also,
the method is generally less useful in cases where the channel gating behaviour is mod-
elled by a Markov renewal process that is not a continuous-time Markov chain; the con-
catenated process is a Markov renewal process but its semi-Markov kernel usually does
not take a simple form. Concatenated processes may also prove useful in other areas of
application of aggregated processes, such as system reliability (cf. Csenki [19]).
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