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We study the integrated fishery planning problem (IFP). In this problem, a fishery man-
ager must schedule fishing trawlers to determine when and where the trawlers should go
fishing and when the trawlers should return the caught fish to the factory. The manager
must then decide how to process the fish into products at the factory. The objective is
to maximize profit. We have found that IFP is difficult to solve. The initial formulations
for several planning horizons are solved using the AMPL modelling language and CPLEX
with branch and bound. The IFP can be decomposed into a trawler-scheduling subprob-
lem and a fish-processing subproblem in two different ways by relaxing different sets
of constraints. We tried conventional decomposition techniques including subgradient
optimization and Dantzig-Wolfe decomposition, both of which were unacceptably slow.
We then developed a decomposition-based pricing method for solving the large fishery
model, which gives excellent computation times. Numerical results for several planning
horizon models are presented.

Copyright © 2007 M. B. Hasan and J. F. Raffensperger. This is an open access article dis-
tributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

1. Introduction and literature review

Modern commercial fisheries are often vertically integrated, that is, a firm may own fish-
ing trawlers and a processing factory. To maximise profit, a fishery manager must sched-
ule the fishing trawlers to determine when and where the trawlers should go fishing and
when the trawlers should return the caught fish to the factory. Given a trawler schedule,
the manager must then decide how to process the fish into products at the factory. The
objective is to maximise profit. The difficult part of this problem is coordinating trawler
scheduling and fish-processing.
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Wide-ranging research has been reported on fisheries. Many papers described biolog-
ical models, and only a few discussed production-planning. Mikalsen and Vassdal [1]
developed a multiperiod LP model for production-planning over a one month horizon
for smoothing the seasonal fluctuations of fish supply. Their model was market-driven
and incorporated the acquisition of raw material purchased, rather than acquired with
their owned fishing fleet. Jensson [2] developed a product mix LP model to maximize
profit of an Icelandic fish-processing firm over a five-period planning horizon. He ad-
dressed production-planning and labour allocation for that processing firm but did not
address any fleet-specific issue or quota issue. Gunn et al. [3] developed a model for cal-
culating the total profit of a Canadian company with integrated fishing and processing.
Their model included a fleet of trawlers, a number of processing plants, and market re-
quirements. However, their model ignored the trawler scheduling and labour allocation
in the processing firm. Indeed, none of these papers discussed models that integrated
both trawler scheduling and production.

We previously developed a model [4] for the integrated fishery problem (IFP). The IFP
is designed to coordinate trawler scheduling and processing and to allocate labour. It can
be updated and run periodically to aid in a manager’s decision making. We experimented
with real data from a New Zealand fishery. Unfortunately, for realistic planning horizons
of 20 periods or more, the computational times for the IFP were quite long.

To find an effective solution method, in this paper we report on our work with sub-
gradient optimisation (SO) and Dantzig-Wolfe decomposition (DWD). Despite experi-
menting with different alternatives for SO and DWD, we found that these algorithms are
ineffective. We then developed an effective decomposition-based pricing (DBP) method.

The remainder of the paper is organized as follows. In Section 2, we briefly present the
IFP in matrix notation and its LP relaxation. Section 3 describes SO with two different
Lagrangean relaxations. Section 4 describes the DWD, also with two different relaxations.
Neither SO nor DWD proved effective. Section 5 gives our decomposition-based pricing
procedure. While technically a heuristic, we found decomposition-based pricing to be
quite efficient. As DBP was developed for linear programs, we modified it for the fishery
model. We conclude the paper in Section 6 with a discussion of decomposition-based
pricing to other problems and future work.

2. The fishery model

In this section, we briefly describe our fishery model [4] in matrix notation.

Parameters.
(i) c1, c2, c3 denote unit profit of trawler operation, raw fish inventory, and fish-

processing, respectively,

(ii) A0 denotes quantity of fish landed per trip in each period,

(iii) D1 denotes mass balance coefficients on each trawler in each period,

(iv) D2 denotes mass balance coefficients on fish within the processing factory,

(v) A1, A2 denote mass balance coefficients governing transformation of raw fish
into a finished product.
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Decision variables.
(i) w denotes binary variables indicating whether a trawler takes a given trip,

(ii) f denotes raw fish inventory, indicating the current quantity of each type of raw
fish in each period,

(iii) x denotes fish-processing variables, indicating that a given type of raw fish is
converted into a given product.

Model IFP : maximize c1w+ c2 f + c3x

subject to

Inventory supply constraints A0w+ f = 0, (2.1)

Trawler scheduling constraints D1w = b1, (2.2)

Processing constraints D2x = b2, (2.3)

Inventory demand constraints A1 f +A2x = b0, (2.4)

w ∈ {0,1}, (2.5)

f ,x ≥ 0. (2.6)

Equation (2.1) represents the relationship of the trawler-scheduling variables w to landed
fish f , as a mass balance in movement of fish from trawlers to the factory. Equation
(2.2) expresses the constraints involving only trawler scheduling, indicating, for example,
that a trawler may be in only one place at a time. Equation (2.3) expresses fish-processing
constraints, modelling the flow of fish through the factory as raw fish is made into various
products. Equation (2.4) represents the mass balance constraints, representing the flow
of raw landed fish inventory into the fish-processing factory.

When the integer constraints (2.5) are relaxed, the model is the usual linear program-
ming relaxation. However, other relaxations are possible. Observe that IFP decomposes
into a trawler-scheduling problem and a fish-processing problem if either constraint set
(2.1) or constraint set (2.4) were relaxed. In the next section, we use both decompositions
with SO.

3. Subgradient optimisation for the fishery model

Lagrangean relaxation is based on the existence of complicating constraints. When these
complicating constraints are relaxed, the resulting model is often easier to solve. Geof-
frion [5] introduced the term “Lagrangean relaxation,” developed relevant theories, and
explored its usefulness for IP branch and bound. Fisher [6] reviewed Lagrangean relax-
ation and documented a number of successful applications of this method. To obtain the
Lagrangean relaxation of IFP, we attach multipliers θ to complicating constraints of IFP,
and bring this term into the objective function. SO is a commonly used method of find-
ing the optimal multipliers θ (Held et al. [7], Held and Karp [8], and Shepardson and
Marsten [9]). This approach yields θ directly. In this section, we describe our attempts to
solve IFP with SO, with two different decompositions.
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Table 3.1. Numerical results for SO, relaxing constraint set (2.4).

5 periods 10 periods 30 periods

IP optimum $522 764 $1 065 775 $2 300 871

LP optimum $522 764 $1 066 350 $2 331 036

SO optimum $522 764 $1 065 991 $2 325 650

SO solution time (s) 718 1120 3625

3.1. Relaxation of inventory balance constraints. In this section, we use SO to solve the
fishery model by relaxing the complicating inventory balance constraints (2.4)

PR1(θ) : Max
f ,w,x

{
c1w+ c2 f + c3x− θ

(
A1 f +A2x− b0) |A0w+ f = 0,

D1w ≤ b1, D2x ≤ b2}.
(3.1)

The SO algorithm for IFP can be stated as follows. Denote θk as the Lagrangean multiplier
at iteration k.

Step 1. Initialize iteration k = 0 and set jump size tk. θ0 was taken from the dual values of
constraint set (2.4) from the LP relaxation.

Step 2. Solve PR1(θ) for θk.

Step 3. Let θk+1 = θk + tk(A1 f +A2x− b0).

Step 4. Set tk+1 = tk(0.9998)∗ (Lagrangean value−LP value)/slack, where slack= slack +
(A1 f +A2x− b0)2.

Step 5. For convergence:
if |θk+1− θk| < ε, then stop,
else if the maximum number of iterations was reached, then stop,
else let k = k+1 and go back to Step 1.

Table 3.1 shows numerical results for models with various different planning horizons.

3.2. Relaxation of landed fish constraints. We next attempted SO by relaxing constraint
set (2.1) as follows:

PR2(θ) : Max
f ,w,x

{
c1w+ c2 f + c3x− θ

(
A0w+ f

) |D1w ≤ b1, D2x ≤ b2, A1 f +A2x=b0}.

(3.2)

Numerical results of various planning horizon models are shown in Table 3.2.
SO was ineffective in both of these decompositions, taking far too long to converge.

Subgradient optimization has been reported to result in unpredictable convergence be-
haviour (Guignard and kim [10]) and such was the case with this model. We experi-
mented with modifications to update the Lagrangean multipliers, but this decreased com-
putational time only slightly. We therefore turned to Dantzig-Wolfe decomposition.
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Table 3.2. Comparison between LP and LR relaxation solutions and true optimum (IP).

5 periods 10 periods

IP optimum $522 764 $1 065 775

LP optimum $522 764 $1 066 350

LR optimum $522 764 $1 070 450

SO solution time (s) 952 1360

4. Dantzig-Wolfe decomposition (DWD) for the IFP

In this section, we apply DWD (Dantzig [11]). DWD yields θ as the dual variable associ-
ated with the relaxed constraints. This decomposition may be interpreted in the follow-
ing way: the fishery manager uses a master model to generate prices for raw fish. These
prices are passed to the fishing-trawler captains who propose trawler schedules, and to
the factory manager who proposes a production schedule. Their proposals are passed to
the fishery manager, who uses the master model to find the best mix of proposals and
new prices for raw fish. The procedure terminates when no new proposals come from the
subproblems.

Algebraically, we express the feasible region of the trawler-scheduling subproblem as
a convex combination of the extreme points for constraint sets (2.1) and (2.2). Since the
trawler-scheduling variables are bounded, this set is bounded. Similarly, we can express
the feasible region of the production-planning subproblem and constraint set (2.3) as a
convex combination of its extreme points. Without loss of generality, these variables are
bounded, so their convex set is bounded. Let λ1 and λ2 be variables associated, respec-
tively, with the subproblems for trawler scheduling and fish-processing, with extreme
points numbered 1, . . . ,K1 and 1, . . . ,K2. We can then write the DWD master problem as
follows:

Maximize
K1∑

k=1

λ1k(c1w+ c2 f
)

+ λ2k
K2∑

k=1

c3x, subject to

Inventory balance rows
K1∑

k=1

λ1k(A1 f
)−

K2∑

k=1

λ2k(A2x
)= 0, (4.1)

Trawler scheduling
K1∑

k=1

λ1k = 1,

Fish-processing
K2∑

k=1

λ2k = 1, λ1k,λ2k ≥ 0.

(4.2)

Note that λ1k is continuous, so this model will only provide an upper bound.
Let θ be the dual prices associated with the inventory balance constraint (4.1). The

subproblems are as follows.
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(1) Trawler-scheduling subproblem Sk1,

maximize c1w+ c2 f − θ
(
A1 f

)
, subject to

constraint sets (2.1) and (2.2),

f ≥ 0, w ∈ {0,1}.
(4.3)

(2) Processing subproblem Sk2,

maximize c3x− θ
(
A2x

)
, subject to

constraint set (2.3),

x ≥ 0.

(4.4)

We used AMPL [12] to solve IFP with DWD on a Pentium3 computer. The results were
really quite disastrous. Giving the master a good initial feasible solution, a small five-
period model required 1168 iterations and 4 hours, 54 minutes. Giving the master an
initial feasible solution of the zero vector, the five-period model required 1068 iterations
and 3 hours, 59 minutes, but a direct solution with CPLEX takes only four seconds to
solve a five-period model directly. We further attempted to use DWD to solve models
with more periods, but these took a very long time to solve.

We next tried to solve IFP by relaxing the landed-fish constraint set (2.1). This proved
even worse computationally. A trivial three-period model required 1367 iterations with
a naive initial solution, and 1787 iterations with an initial solution of the zero vector. A
five-period model required 3923 iterations, and a ten-period model was abandoned after
4536 iterations.

We conclude that Dantzig-Wolfe decomposition is not effective for IFP.

5. Decomposition-based pricing (DBP)

In this section, we apply decomposition-based pricing (DBP) for the efficient solution
of IFP. Mamer and McBride [13] developed DBP for multicommodity flow problems.
As with DWD, subproblems are created by dualizing some constraints, and these sub-
problems are identical to Sk1 and Sk2 from the DWD. Instead of using the subproblem to
produce an extreme point of the relaxed polytope for inclusion in a master problem, the
optimal basic columns of the subproblem are included in a restricted master. The DWD
master is replaced by a version of the original problem with all of the original rows and
a subset of original columns. This restricted master problem is solved to obtain an im-
proved primal solution and new dual prices. The restricted master is not the same as the
DWD master. It has a full IFP formulation with restricted rows. The procedure termi-
nates when no positive variables entered into the restricted master or when the objective
value of the subproblems and that of the restricted master are equal. Dual prices from the
inventory balance constraints (2.4) are passed to the subproblems.

The fishery problem is an MILP model, so we cannot guarantee strong duality (outside
of a custom branch and bound algorithm). Hence this is a heuristic method. However,
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Table 5.1. LP relaxation solution and IP solution of different planning horizon models.

Planning horizon Variables in original problem LP objective value IP objective value

5 2193 $522 764 $522 764

10 4423 $1 066 350 $1 065 775

15 6803 $1 607 944 $1 582 008

20 9333 $1 898 411 $1 880 196

25 11 989 $2 141 757 $2 121 887

30 16 139 $2 331 037 $2 300 871

through a careful choice of initial feasible solution and stopping criteria, we obtain ex-
cellent bounds, and the solution times obtained are much faster than the direct solutions
with CPLEX.

5.1. DBP procedure for the fishery model. We use Lagrangean relaxation to relax the
inventory balance constraints (2.4), as in Section 3. Let θ be the simplex multipliers for
the restricted master where θ is associated with the inventory balance constraints (2.4).
We define the restricted master as the original problem for IFP, but restricted to a smaller
set of variables Ik. Set Ik is the set of positive variables in the master at iteration k. Set Ik

increases in size with each iteration because each iteration of the subproblems adds new
variables to Ik. Computationally, we found (as did Mamer and McBride [13]) that the
number of variables in Ik at any iteration is much less than the number of variables in the
original problem:

(
Mk
)
maximize c1w+ c2 f + c3x, subject to

constraint sets (2.1) to (2.4),

f ≥ 0, w ∈ {0,1}, x ≥ 0,

(5.1)

with f ,w,x ∈ Ik, here Ik is the index set of all positive variables f ,w,x ≥ 0.
Our decomposition-based pricing procedure is summarised as follows.

Step 1. Initialize. Set iteration k = 1. We used three alternate methods to pick an initial
set of prices θ1.

(I1) Start with θ1 = 0.
(I2) Start with θ1 as the dual prices from the relaxed constraints of the IFP LP relax-

ation.
(I3) Start with heuristic dual prices, θ1

ilt = −
∑

j:Fi j>0Pi j /(2.5 · Fi j), where Fi, j is the
fillet percentage of raw material and Pi, j,l is the profit of processing product j of
quality l from raw materials i.

Step 2. Solve subproblems Sk1 and Sk2. For each fi, wi, or xi > 0, add the variable to Ik.
Thus, Ik = { fi,wi,xi > 0 in S1 or S2 for any iteration 1,2, . . . ,k}.
Step 3. Solve the restricted master Mk and get dual prices θk.
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Table 5.2. Numerical results for dbp under different initial dual prices and stopping criteria.

Solution
method

Planning
horizon

Iterations
Solution
time(s)

Variables in
final master

DBP
solution

Solution
gap (%)

I1-SC1 5 26 156 1308 $522 764 0.00%

I1-SC1 10 29 257 2815 $1 065 775 0.00%

I1-SC1 15 32 341 4272 $1 579 440 0.16%

I1-SC1 20 29 365 5691 $1 874 097 0.32%

I1-SC1 25 29 414 7026 $2 119 938 0.09%

I1-SC1 30 25 544 8115 $2 293 803 0.31%

I1-SC2 5 29 211 1252 $522 764 0.00%

I1-SC2 10 30 258 2576 $1 065 538 0.02%

I1-SC2 15 32 335 3881 $1 579 309 0.17%

I1-SC2 20 27 348 5065 $1 870 047 0.54%

I1-SC2 25 29 557 6253 $2 118 528 0.16%

I1-SC2 30 31 1,737 7324 $2 288 997 0.52%

I2-SC1 5 27 192 1356 $522 764 0.00%

I2-SC1 10 33 292 2873 $1 065 531 0.02%

I2-SC1 15 30 322 4378 $1 579 321 0.17%

I2-SC1 20 28 496 5874 $1 864 368 0.84%

I2-SC1 25 27 433 7135 $2 117 990 0.18%

I2-SC1 30 32 1,042 8277 $2 266 274 1.50%

I2-SC2 5 28 208 1282 $522 764 0.00%

I2-SC2 10 28 252 2724 $1 065 712 0.01%

I2-SC2 15 35 373 4092 $1 579 466 0.16%

I2-SC2 20 29 359 5420 $1 875 597 0.24%

I2-SC2 25 35 534 6540 $2 111 616 0.48%

I2-SC2 30 30 650 7623 $2 292 894 0.35%

I3-SC1 5 26 178 1325 $522 764 0.00%

I3-SC1 10 32 275 2784 $1 065 775 0.00%

I3-SC1 15 30 312 4130 $1 579 447 0.16%

I3-SC1 20 31 351 5524 $1 876 023 0.22%

I3-SC1 25 32 487 7135 $2 120 282 0.08%

I3-SC1 30 27 613 8052 $2 295 376 0.23%

Step 4. For stopping criterion, we used two alternate methods.
(SC1) Stop when the objective values of the subproblem and restricted master are equal,

v(Sk1 + Sk2)= v(Mk+1). Here, we solve the trawler-scheduling subproblem as an LP.
By solving this subproblem as LP, we find good variables to add to the restricted
master, with fast computation time.
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Figure 5.1. Comparison of the number of decision variables in DBP and that of IP.

(SC2) Stop when no new variables come into the restricted master problem. Here, we
solve the trawler-scheduling subproblem as an IP.

Else go to Step 2.

Step 5. After the LP optimum is found, solve the final restricted master problem as an IP.

Table 5.1 shows the optimal LP and IP objective values. Depending on the initial fea-
sible solution and stopping criterion, we ran the DBP algorithm in five different ways:
I1-SC1, I1-SC2, I2-SC1, I2-SC2, and I3-SC1, as shown in Table 5.2.

The objective values obtained from our DBP procedure are very close to the opti-
mal solutions. The best method, I3-SC1, had an average percentage solution gap of only
0.12%. Thus DBP takes far fewer iterations and much less time than DWD.

Figure 5.1 shows that the number of variables in the final DBP restricted master is
typically fewer than half the number of original variables.
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6. Conclusion

In this paper, we described our work with relaxation and decomposition techniques for
the IFP. We found that both subgradient optimization and Dantzig-Wolfe decomposi-
tion were ineffective, under either of two different decompositions. Finally, we applied
decomposition-based pricing to IFP. Our decomposition-based pricing procedure was
the most effective method by far. We used real data from a commercial fishery, but the
work has not been implemented in the fishery operation as yet. Using DBP, we see no
impediment to implementation. More importantly, we believe that DBP can be adapted
for other integer programs. Future work includes continuing to explore ways to improve
the efficiency of DBP for integer programs.
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