
Hindawi Publishing Corporation
Journal of Applied Mathematics and Decision Sciences
Volume 2009, Article ID 414507, 14 pages
doi:10.1155/2009/414507

Research Article
Warranty Optimization in a Dynamic Environment

Nedialko B. Dimitrov1 and Stefanka Chukova2

1 Department of Mechanical Engineering, University of Texas at Austin, 1 University Station C2200,
Austin, TX 78712, USA

2 School of Mathematics, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand

Correspondence should be addressed to Stefanka Chukova, schukova@mcs.vuw.ac.nz

Received 9 November 2008; Accepted 4 March 2009

Recommended by John E. Bell

A product warranty is an agreement offered by a producer to a consumer to replace or repair a
faulty item, or to partially or fully reimburse the consumer in the event of a failure. Warranties
are very widespread and serve many purposes, including protection for producer, seller, and
consumer. They are used as signals of quality and as elements of marketing strategies. In this
study we review the notion of an online convex optimization algorithm and its variations, and
apply it in warranty context. We introduce a class of profit functions, which are functions of
warranty, and use it to formulate the problem of maximizing the company’s profit over time as
an online convex optimization problem. We use this formulation to present an approach to setting
the warranty based on an online algorithm with low regret. Under a dynamic environment, this
algorithm provides a warranty strategy for the company that maximises its profit over time.
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1. Introduction

A product warranty is an agreement offered by a producer to a consumer to replace or repair a
faulty item, or to partially or fully reimburse the consumer in the event of a failure. Warranties
are very widespread and serve many purposes, including protection for producer, seller, and
consumer. They are used as signals of quality and as elements of marketing strategies. A
general treatment of warranty analysis is given by Blischke and Murthy [1, 2].

From the buyer’s point of view, the main role of a warranty in any business transaction
is protectional. Specifically, the warranty assures the buyer that faulty item will either be
repaired or replaced at no cost or at a reduced cost. A second role of warranty is informational,
as it implicitly sends out a message regarding the quality of the product and could influence
buyer’s purchase decision.

The main role of warranty from the producer’s point of view is also protectional.
Warranty terms may and often do specify the use and conditions of use for which the product
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is intended and provide for limited coverage or no coverage at all in the event of misuse of
the product. A second important purpose of warranty for the seller is promotional. As buyers
often infer a more reliable product when a long warranty is offered, this has been used as an
effective advertising tool. In addition, warranty has become an instrument, similar to product
performance and price, used in competition with other manufacturers in the marketplace.

Despite the fact that warranties are so commonly used, the study of warranties in
many situations remains an open problem. This may seem surprising since the fulfillment
of warranty claims may cost companies large amounts of money. Underestimating true
warranty costs will result in losses for a company, overestimating them will result in
uncompetitive product prices. The data relevant to the modeling of warranty costs in a
particular industry are usually highly confidential, since they are commercially sensitive.
Much warranty analysis therefore takes place in internal research divisions in large
companies.

The common warranty parameters of interest analyzed and evaluated are the expected
warranty cost and the expected warranty cost per unit time over the warranty length for a
particular item as well as the life cycle of the product; see Chukova and Hayakawa [3, 4].
Typically, the warranty length and the warranty policy are assumed to be known, which
identifies the failure model. Based on the adopted model of the failure process, the total
expected total warranty cost and sometimes the variance of this cost are evaluated.

The study presented here deviates from the traditional framework in warranty
analysis. For simplicity we assume that the warranty is one-dimensional and nonrenewing,
that is, the warranty is identified by its length, and it starts at the time the item is sold or the
service has began. We consider time periods, such that the manufacturer’s profit functions,
as functions of warranty, and the warranty may vary from time period to time period. In
general, we assume that the optimal warranty and the profit functions are unknown, but
the profit for the assigned warranty in any particular time period is known. The aim of this
study is to present an approach that will assure that if the warranty varies in a particular way,
suggested by an online algorithm, under reasonable, quite general assumptions on the profit
functions, the long run average of the manufacturer’s profit will be comparable with profit if
the optimal warranty was known at the time the product was launched on the market.

The outline of this paper is as follows. In Section 2 we present a brief overview of the
online algorithm approach. The profit model is introduced in Section 3, and it is analysed,
using an online algorithm, in Section 4. Section 5 contains concluding remarks.

2. Miscellaneous Results: Online Algorithm

In this paper, we concern ourselves with profit maximization, thus we consider the online
convex programming problem with a sequence of concave functions and a maximization
objective. In its simplest form, an online convex programming problem (F, {p1, p2, . . .})
consists of a feasible region F ∈ Rn and an infinite sequence of concave “profit” functions
{p1, p2, . . .}, each going from F to R. An algorithm for the online convex programming
problem A(F, {p1, p2, . . .}) is an algorithm that produces a point wi, which is a function only
of the points w1, w2, . . . , wi−1, each previously produced by the algorithm, and the first (i − 1)
functions p1, . . . , pi−1. The regret of an algorithm is defined as

R(T) =

(
max
w∗∈F

T∑
i=1

pi
(
w∗

))
−

T∑
i=1

pi
(
wi

)
. (2.1)
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Interpreting, the regret measures the performance of the algorithm, which does not know pi
before producingwi, to pick the single best pointw∗ in the feasible region F given knowledge
of all the pi’s in advance.

Online convex optimization, introduced by Zinkevich [5], was originally motivated
by the notion of playing repeated games. Imagine playing an infinitely repeating game that
proceeds in rounds. In round i we must pick a strategy knowing only the strategies we
have chosen in the previous rounds, from 1 to (i − 1), and the payoffs we received in those
rounds. That is the motivation of the algorithm, which produces the point wi knowing only
w1, w2, . . . , wi−1 and the first (i − 1) functions p1, . . . , pi−1. Each wi can be thought of as the
strategy in the ith round, and each pi can be thought of as the payoff function in the ith round.
The payoff function may change from round to round arbitrarily, since we do not know the
strategies adopted by opponents in the game. In the repeated game settings, the regret then
measures the amount of utility lost by a player who follows the strategy as specified by the
algorithm versus picking the single best strategy to follow in all rounds.

Zinkevich exhibits an algorithm Af(F, {p1, p2, . . .}), in full-information settings (see
the Appendices), with regret R(T) = O(

√
T), which gives

lim
T→∞

R(T)
T
≤ 0. (2.2)

Interpreting, in the limit, following the strategies specified by the algorithm produces the
same per period profit as picking the optimal single strategy. The quantity R(T)/T is
commonly referred to as the average regret.

Online convex optimization has clear industrial applications. For example, consider
a company producing a product. The company’s profit could be a concave function of the
warranty offered by the company. However, the profit does not only depend on the warranty,
but it could also depend on the types of products offered by competitors or the changing
demands of customers. The profit function of the company in period i could be thought of as
the pi in the online convex optimization problem, and the wi could be the warranty offered
by the company in period i. An algorithm with low regret gives a warranty strategy for the
company to follow that maximizes the company’s profit over time.

One of the main hurdles to applying Zinkevich’s algorithm directly is that it requires
full knowledge of the function pi after round i. In specific, Zinkevich’s algorithm uses the
gradient of the function pi. However, in realistic settings, such as the example in the previous
paragraph, a company may not know the entire function pi. Instead, all the company learns
in round i is the value of pi(wi). In other words, all the company learns is the amount of
profit the company made in round i, not the entire profit function. Flaxman et al. [6] exhibit
an algorithm for online convex optimization, Ab(F, {p1, p2, . . .}), in bandit settings (see the
Appendices), using only the value pi(wi) of the profit function of the previous round and
with regret R(T) = O(T3/4).

Another concern with the direct application of online convex optimization is that the
average regret results are in the limit as the number of rounds goes to infinity. Traditional
industries, such as car manufacturing, have warranty on the order of years. Thus, even a few
periods of the repeated profit maximization may take a human lifetime. However, warranties
come in many varieties, and today’s markets can be largely autonomous. For example,
consider a competition between online brokerage firms. A firm could offer a warranty on the
amount of time required to execute a purchase or sell an order. The warranty offered could
change dynamically throughout the trading day. The broker’s customers could themselves be
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automated programs that dynamically choose which brokerage firm to use to execute trades.
In such a scenario it is easy to imagine thousands of profit maximization rounds per day.
Regardless of the plausibility of using online convex optimization in a specific application,
the average regret results imply the startling conclusion that a company can attain nearly
maximum profit in a dynamically changing environment, without knowing anything about
the future.

In this paper, we study online convex optimization as applied to the warranty
applications described in this section.

3. The Profit Model

In what follows, we propose a general form of profit functions {p1, p2, . . .} to be used with
the two online convex optimization algorithms Af and Ab for the warranty optimization
examples in Section 2. Firstly, similarly to Bell et al. [7], we define the market share function
m(w) as a function of warranty w as follows

m(w) =
a + gw

a + gw + c
, (3.1)

where a is a parameter of initial “attractiveness” or “reputation” of the company, g is the
increase of the total attractiveness (a+gw) of the company per unit increase of warranty, and
c is the total attractiveness of the competitors of the company in the marketplace. It is easy to
see that m(w) is an increasing function of w.

This form of the profit function is appropriate in modeling different market structures.
For example, if c = 0, the company has a monopoly in the marketplace, whereas altering the
value of c will model the arrival or departure of a competitor.

To gain some intuition on the market share function, suppose that the warranty w is
zero. We then have

m(0) =
a

a + c
. (3.2)

One can think of this equation as follows. Suppose a customer picks which company to
use randomly, but with weights proportional to the company’s attractiveness. The form
of m(0) in (3.2) is the probability the customer selects to do business with our company
instead of a competitor, given that the company assigns no warranty to its products. Another
interpretation of (3.2) is that, if the company assigns no warranty to its products it will have
m(0) share of the market. Now, consider form (3.1) and letw → ∞. We have limw→∞m(w) =
1, which means that if the company offers a large warranty it will dominate the entire market.

Now, using the market share function m(w) given in (3.1), we introduce the profit
function p(w), again as a function of warranty. We propose

p(w) = Pm(w) − Rm(w)F(w), (3.3)

where P is a constant equal to the total market value of the considered industry, R is a constant
equal to the penalty of total recall of all sold products, and F(w) is the cumulative distribution
function of the lifetime X of the product. The latter function represents the quality and
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reliability of the production and governs the process of failures and related warranty claims.
We assume a linear relationship between P and R of the following form:

R = γP, 1.0 ≤ γ ≤ 2.0. (3.4)

In the case of γ ≤ 1, even if all products are recalled, offering a large warranty will guarantee
that the company will end up with a profit. On the other hand, if 2.0 ≤ γ , in order to avoid
heavy penalties, the most appropriate strategy for the company is to sell the product with no
warranty. Therefore, in both of these cases the optimal strategy of the company is known, and
we will focus our study on the nontrivial case of 1.0 ≤ γ ≤ 2.0.

4. Modeling a Dynamic Environment

In what follows we display the performance of Af and Ab in several differing models of a
dynamic environment. First, we present an environment with a quality improvement under
two failure scenarios: a gradual failure modeled with an exponential lifetime distribution
and a shock failure modeled with a Weibull lifetime distribution. Second, we present an
environment with increasing competition again under two scenarios: a gradual increase in
competition and a shock increase in competition. Finally, we present an environment where
we increase the penalty for faulty products. We show that in all these environments, the
algorithms Af , and Ab perform well as compared to algorithm “opt fixed” which selects a
single, optimal warranty for all rounds, even though neitherAf norAb know the future profit
functions. As algorithm Ab is a randomized algorithm and its theoretical guarantees are in
expectation, in each scenario we present the expected behavior of Ab over 50 independent
runs. In addition, we include in the comparison the algorithm “opt round” that selects the
optimal warranty in each round.

4.1. Environment with Quality Improvement

Refer to the profit functions defined in (3.3). Our next goal is to use these functions for
decision making related to warranty, in environment with quality improvement. We model
the dynamic environment with quality improvement by using the cumulative distribution
function FX(w) of the lifetime X of the product. We consider two cases.

Case 1. Firstly, we assume that X ∼ Exp(λ), that is,

FX(w) = 1 − e−λw, (4.1)

and the mean time to failure is E(X) = 1/λ. Based on (4.1) we define a sequence of profit
functions as

pi(w) = Pm(w) − Rm(w)
(
1 − e−λiw

)
, (4.2)

and use them in full-information settings, that is, withAf(F, {p1, p2, . . .}) as well as in bandit
settings, that is, withAb(F, {p1, p2, . . .}). The results are presented in Figure 1.
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Figure 1: In (a) are represented several profit functions, with pi representing the profit function in round
i. In (b) is represented the warranty offered, as a function of the round number, by various algorithms. (c)
represents the profit earned, as a function of the round number, by each algorithm. Finally, (d) represents
the average regret of the two algorithms, Af and Ab. The algorithm “opt fixed” selects a single, optimal
warranty for all rounds. The algorithm “opt round” selects the optimal warranty in each round.

In this example, we model quality improvement by additively increasing the
parameter of the exponential distribution representing the lifetime of the product. The mean
of the distribution changes linearly from 4 to 8. The resulting profit functions are presented
in Figure 1(a). As you can see, in later rounds, as the quality increases, the company can offer
a larger warranty to capture a larger fraction of the market and thus receive higher profit.
Figure 1(b) shows the warranty offered by the various algorithms. Algorithm Af starts by
offering a zero warranty, the imposed initial starting point, and follows an upward trend as
the rounds increase. Algorithm Ab has an initial starting point, dictated by the algorithm
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itself, around the middle of the feasible region. In all our examples, the feasible region is
{w | 0 ≤ w ≤ 15}, that is, the acceptable warranty is between 0 and 15. That is why, initially,
the warranty of Ab decreases from 7.5 and then increases as the rounds increase. Figure 1(c)
shows the profit earned in each round by each algorithm. The figure illustrates the benefits of
using Ab, as it closely follows the profit received by optimizing the warranty in each round,
but it assumes very limited information of the profit functions. Figure 1(d) shows how the
average regret ofAb decreases to zero as the rounds increase. In other words, the per period
loss of Ab as compared to following the optimal fixed warranty decreases to zero as the
rounds increase. Even better results are pictured in Figure 1(d) for Af ; however, it assumes
knowledge of the gradient of the profit function in each round, where as Ab only assumes
knowledge of the evaluation of the profit at a single point.

Case 2. Secondly, we assume that X ∼Weibull(γ), that is,

FX(w) = 1 − e−wγ

, (4.3)

and the mean time to failure is E(X) = Γ(1 + 1/γ) and create the sequence of profit functions

pi(w) = Pm(w) − Rm(w)
(
1 − e−w

γ

i
)
. (4.4)

In this example, we introduce quality improvement with a Weibull lifetime distribution.
In a Weibull distribution, there is a sharp threshold at which most products fail. That is
why in Figure 2(a) the profit functions fall sharply as the warranty increases. Figure 2(c)
represents the profit of the various algorithms. Notice that the profit for “opt fixed” begins
negatively and sharply increases as the rounds increase. This is because the single warranty
chosen by “opt fixed” in early rounds is greater than the failure threshold of the product,
but is less than the failure threshold in later rounds. The profit earned by Ab is negative
in early rounds, since Ab begins with an initial point in the middle of the feasible region,
which is much larger than the failure threshold of the initial Weibull distributions. As the
rounds increase,Ab decreases the warranty, as pictured in Figure 2(b). Since both the failure
threshold increases and Ab decreases the warranty in later rounds, Ab eventually begins to
make a profit. In late rounds,Ab begins to approach the performance ofAf and “opt round”,
which outperform “opt fixed”, since they can increase the warranty as the failure threshold
increases. As expected, sinceAf outperforms ”opt fixed”, the average regret forAf , pictured
in Figure 2(d), is negative. The average regret forAb increases in the early rounds, whileAb

is making poor profit, and quickly decreases in the later rounds.

4.2. Environment with Increasing Competition

We model the increase in competition in the profit function through the parameter c included
in the market share function (3.1). In this example, we additively increase the competition
from 2 to 50, with the parameter a set to 1. Interpreting, this means that initially the company
has roughly 1 to 2 odds of attracting a customer. Toward the final round, the company has
only 1 to 50 odds of attracting a customer, thus the competition has increased. Figure 3(b),
through the graph for “opt round”, shows that the warranty that should be offered by the
company increases as competition increases. This is to capture a larger fraction of the market
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Figure 2: These figures represent the algorithms’ performance with a Weibull lifetime distribution. In
a Weibull lifetime distribution, there is a sharp threshold before which most products are functioning
properly and after which most products have failed. That is why in (a) we see profit functions that fall
sharply as the warranty increases.

as dictated by expression (3.1). The warranty ofAb decreases throughout, as it initially begins
at the middle of the feasible region. Algorithm Af , on the other hand, begins initially with a
warranty of zero and closely follows the performance of “opt round”. Figure 3(d) shows that
Ab looses less than 15% of the total profit at the end of the example. This percentage would
decrease to zero as the rounds go to infinity, by the results of Flaxman et al. [6].

This example shows the algorithm behavior when there is a shock increase in
competition. In round 2000, the arrival of a competitor decreases the market share of the
company significantly; the value of c jumps from 2 to 50. This leads to the sudden drop
pictured in Figure 4(c), for all warranty settings, even for “opt round”. Though the profit for
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Figure 3: In this example, the competition increases additively from 2 to 50. As the competition increases,
the company’s share of the market decreases and so does the profit as shown in (a). (d), shows the regret in
round i as a percentage of the total profit received by “opt fixed” from rounds 0 through i. It illustrates that
the theoretical results showing that the average regret tends to zero as the rounds tend to infinity translate
into results showing that the percent of profit missed by Ab and Af tends to zero as the round tends to
infinity.

all algorithms has a sudden drop, it is interesting to see the algorithm’s reaction in changing
the warranty, pictured in Figure 4(b). Again, due to the different information settings of Af

andAb, algorithmAf is near the optimal setting before the competition increase and needs a
short time to readjust after the increase. On the other hand,Ab begins, as usual, in the middle
of the feasible region and is decreasing the warranty toward the optimal setting in the initial
rounds. After the competition increase,Ab continues to decrease the warranty but at a slower
pace. Even though the warranty offered by Ab seems far from the warranty offered by the
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Figure 4: These graphs represent a shock increase in competition. In round 2000, the parameter c in the
market share increases from 2 to 50.

other algorithms, Figure 4(d) shows that its regret, as a percentage of the total profit gained
by “opt fixed”, is once again steadily decreasing toward zero.

4.3. Environment with Changeable Penalties

In this example, we study a linear increase in the penalty from a faulty product. In specific,
we alter the ratio γ between P and R in the profit function (3.3) from 1 to 2. A larger γ models
a larger cost to replace a failed item. As can be seen in Figure 5(a), as the penalty for a faulty
product increases, the optimal warranty goes to zero. Figure 5(b) shows how the warranty
of Af starts at zero, increases until it passes the optimal warranty offered by “opt round”,
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Figure 5: Additive increase in penalties.

and decreases back toward zero. It can also be seen that Ab starts with a warranty of
7.5 and decreases toward zero. Figure 5(c) shows a similar performance of “opt round”,
“opt fixed”, and Af . In that figure, it is clear that Ab starts with a poor performance, but
in the long run approaches the performance of “opt fixed”. The graph in Figure 5(d) can be
explained through understanding the performance of algorithmAb, which is outlined in the
appendices.

In our penalty example, the optimal warranty approaches zero quickly. So, algorithm
Ab cannot set a warranty close to zero because of the algorithm’s projection to a subset of the
feasible region. As the algorithm’s parameter α approaches zero,Ab can set a warranty closer
and closer to zero. Thus, we can expect the regret shown in Figure 5(d) to decrease toward
zero at a speed of O( 6

√
n), matching that of the parameter α.
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5. Conclusions and Future Research Directions

In this paper we have presented a framework for analysis of warranty using an online
convex optimization algorithm. We have introduced a class of profit functions that can be
used to model a competitive market with warranties. We have shown that under incomplete
information regarding the future changes in the environment, the decision maker could
choose a warranty strategy that achieves a profit similar to the profit, that could have been
generated by the unknown optimal warranty. In specific, we use the results of Zinkevich
and Flaxman et al. to exhibit strategies achieving near optimal profits, that is, strategies with
regret approaching zero in a long term. We exhibit several settings of changing environment
and show that in each of these, the online algorithms can provide a reasonable support in
warranty-related decision making.

This study demonstrates that it is feasible for a company to maximize profit through
adjusting warranty in a dynamic environment, without knowledge of the current or future
market conditions. However, the algorithms presented here do have explicit limitations that
should be noted before use in a real environment. First, as most optimization algorithms,
the algorithms presented in the paper are guaranteed to work for convex objective functions.
However, if the profit function of the company is not convex, it is possible for the algorithm
to get stuck in a local optimum. Furthermore, as mentioned earlier, some products, such
as cars, may not be appropriate for use with these algorithms because of the real-time
length of a round, which is on the order of years. As demonstrated, specifically for the
bandit algorithm, a large number of rounds are required to approach the optimal warranty
period.

Furthermore, we are able to identify two possible directions for further research. One
option is to focus on reducing the limitations of the used online algorithms. It would be
interesting to see if these algorithms can be coupled with existing algorithms for avoiding
local optima. For example, is it possible to pair the bandit algorithm with simulated
annealing? What would such a pairing do to the regret guarantees of the original bandit
algorithm? Would such a pairing deliver good performance in avoiding local optima?
Another possible direction for further research is to try to apply our results to a real data;
related to the performance of brokerage firms. Firstly, it will be challenging to find the
appropriate set of real data. Moreover, it would be interesting to come up with a method
for estimating the parameters of the profit function from real data; parameters such as the
total market size, the failure CDF, and the market share as a function of warranty period.
Such an estimation would make it possible to investigate the application of these algorithms
in a realistic situation.

Appendices

A. The Online Algorithm

As mentioned earlier, we concern ourselves with profit maximization. Thus, consider an
online convex programming problem consisting of a maximization objective, a feasible region
F ∈ Rn, and an infinite sequence of concave functions {p1, p2, . . . , pi, . . .}, each going from F
to R. We present the main ideas of the online algorithm in two different settings: firstly, in
full-information settings, when the profit function pi is fully known after each round and
secondly, in bandit settings, when the profit function pi is unknown, and only its value pi(wi)
is revealed after the ith round.
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Assumptions and Definitions

(i) The feasible region F ∈ Rn is

(1) a bounded set, that is, for any x, y ∈ F, there exists N ∈ R, so that d(x, y) ≤N,
where d(x, y) = ‖x − y‖ and ‖x‖ =

√
x · x;

(2) a closed set, that is, for any sequence {wi}∞1 , wi ∈ F, if there exists x ∈ Rn such
that x = limi→∞wi, then x ∈ F;

(3) a nonempty set;
(4) a convex set.

(ii) The profit functions are differentiable.

(iii) There exists N ∈ R, so that for all i and for all x ∈ F, ‖∇pi(x)‖ ≤N.

(iv) For all y ∈ Rn, there exists an algorithm to produce arg minx∈F d(x, y).

(v) For all i, there exists an algorithm, given x, to get ∇pi(x).
(vi) The projection of y over F is P(y) = arg minx∈F d(x, y).

(vii) The regret ofA until T is RA(T) = (maxx∗∈F
∑T

i=1 pi(x
∗)) −

∑T
i=1 pi(wi).

(viii) A function p(x) satisfies an L-Lipschitz condition if there exists a real constant L
such that d(p(x), p(y)) ≤ Ld(x, y).

B. Online Gradient Descent Algorithm Af in
Full-Information Settings

Assume that the profit function pi is fully known after the ith round. Select an initial w1 ∈ F
and an updating sequence η = {η1, η2, . . . , ηi, . . .} with each ηi ∈ R+. In time step (i + 1), after
evaluating the profit function pi(wi), move to the next point, which is

Af : xi+1 = P
(
xi − ηi∇pi

(
wi

))
. (B.1)

Assuming that the updating sequence η has the form ηi = 1/
√
i, Zinkevich [5] has shown

that the regret of the algorithmAf , given in (B.1), is

RAf (T) ≤
‖F‖2

√
T

2
+
(√

T − 1
2

)
‖∇p‖2. (B.2)

Therefore,

lim sup
T→∞

RAf (T)

T
≤ 0, (B.3)

where

‖F‖ = max
x,y∈F

d(x, y), ‖∇p‖ = sup
x∈F,i∈{1,2,...}

∥∥∇pi(x)∥∥2
. (B.4)
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Imposing stronger assumptions on the profit functions and choosing appropriately the step
sizes, Hasan et al. [8] have extended Zinkevich’s ideas by proposing several algorithms
achieving logarithmic regret.

C. Online Gradient Descent Algorithm Ab in Bandit Settings

In bandit settings, after the ith round, the profit function pi is unknown, and only its value
pi(wi) is revealed. Therefore, the gradient of pi, needed for Af , cannot be accessed directly.
The main difficulties in bandit setting is to obtain a one-point estimate of the gradient∇pi(wi).
Algorithm Ab works as follows. It has a sequence of points yi at which it would like to
perform gradient descent, as in algorithm Af . However, to estimate the gradient at yi, Ab

select a uniformly random point wi from a small circle around yi. AlgorithmAb then sets yi+1

to yi shifted in the direction of wi with distance proportional to pi(wi). To be sure that yi+1 is
in the feasible region, the algorithm does a projection to a subset of the feasible region that
has a small border around it. The reason for this projection to a subset is that future estimates
of the gradient using randomly chosen points in a small circle should be entirely contained
in the feasible region.

The algorithm then has three main parameters that change as the round number
increases. Using the notation of Flaxman et al., the first parameter δ denotes the radius of
the small circle around yi from which we choose a uniformly random point wi. The second
parameter ν denotes the distance with which we move in the direction of the chosen pointwi.
And the final parameter α denotes the border that we keep around the subset of the feasible
region. Each of these parameters goes to zero as the round number increases. The parameters
δ, ν, and α go to zero at speeds of O( 3

√
n), O(

√
n), and O( 6

√
n), respectively. Flaxman et al. [6]

have shown that if the profit functions are L-Lipschitz the guarantee on the expected regret
of Ab is O(T3/4). Moreover, if no Lipschitz or bounded gradient assumptions are placed on
the profit functions, the guarantee on the expected regret is O(T5/6). For more details, see
Flaxman et al. [6].
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