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Most of the investments in practice are carried out without certain horizons. There are many
factors to drive investment to a stop. In this paper, we consider a portfolio selection policy with
market-related stopping time. Particularly, we assume that the investor exits the market once his
wealth reaches a given investment target or falls below a bankruptcy threshold. Our objective is to
minimize the expected time when the investment target is obtained, at the same time, we guarantee
the probability that bankruptcy happens is no larger than a given level. We formulate the problem
as a mix integer linear programming model and make analysis of the model by using a numerical
example.
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1. Introduction

Portfolio theory deals with the question of how to find an optimal policy to invest among
various assets. The mean-variance analysis of Markowitz [1, 2] plays a key role in the
theory of portfolio selection, which quantifies the return and the risk in computable terms.
The mean-variance model is later extended to the multistage dynamic case. For this and
other expected utility-maximization models in dynamic portfolio selection, one is referred
to Dumas and Luciano [3], Elton and Gruber [4], Li and Ng [5], Merton [6], and Mossion [7].

An important assumption of the previous portfolio selection model is that the
investment horizon is definite. That means an investor knows with certainty the exit time
at the beginning of the investment. However, most of the investments in practice are carried
out without certain horizons. There are many factors, related to the market or not, which
can drive the investment stop. For example, sudden huge consumption, serious illness,
and retirement are market-unrelated reasons. Also, those market-related reasons may more
strongly affect the investment horizon. A natural example is that the investor may exit
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the market once his wealth reaches an investment target, which is closely related to the
market and also the investment policy itself. Because of the disparity between theory and
practice, it seems sympathetic to relax the restrictive assumption that the investment horizon
is preknown with certainty.

Research on this subject has been investigated in continuous setting. Yaari [8] first
deals with the problem of optimal consumption for an individual with uncertain date of
death, under a pure deterministic investment environment. In 2000, Karatzas and Wang [9]
address the optimal dynamic investment problem in a complete market with assumption
that the uncertain investment horizon is a stopping time of asset price filtration. Multiperiod
mean-variance portfolio optimization problem with uncertain exit time is studied by Guo and
Hu [10], where the uncertain exit time is market unrelated. A continuous time problem with
minimizing the expected time to beat a benchmark is addressed in Browne [11, 12], where the
exit time is a random variable related to the portfolio. Literatures of portfolio selection focus
on the case that the stopping time is market-state independent. While, the state-dependent
exogenous stopping time is considered by Blanchet-Scalliet et al. [13] in dynamic asset pricing
theory.

In this paper, we consider a portfolio selection problem with endogenous stopping
time in discrete framework, which has not been well discussed in literatures. Specially, we
assume that the investor exits the market once his wealth hits an investment target or he is
bankrupt. This assumption actually reflects most investors’ investment behavior in real life.
Our objective is to minimize the expected time that the investment target is obtained, at the
same time we guarantee that the probability of which bankruptcy happens is no larger than
a given threshold. The investment process is represented by a multistage scenarios tree, in
which the discrete stages and notes denote the decision time points and the market states,
respectively.

The rest part of the paper is organized as follows. In Section 2, we introduce
the statement of the problem, including notations and the general form of the problem.
Following, Section 3 is devoted to derive the deterministic formulation of the problem, in
which we define a list of integer variables to indicate different states during the investment
process. Finally, we make analysis of the model by using a numerical example in Section 4.

2. The Problem Statement

Consider the following investment problem. We distribute the investment budget among a
set of assets, and the portfolio can be adjusted at several discrete decision time points during
the investment process. At the beginning of the investment, we assign a target wealth and also
a bankruptcy threshold. Our objective is to obtain this target wealth and stop the investment
as soon as possible. At the same time, we also need to avoid that the bankruptcy occurs before
the target wealth obtained.

The problem is based on a finite multistage scenarios tree structure. Our portfolio
includes a set of m assets. The underlying dynamic scenarios tree is constructed as follows.
There are T stages denoted from time 0 to T . The portfolios can be constructed at the
beginning of each stage in the scenarios tree. We denote Nt to be the index set of the scenarios
at time t, and Snt as the nth scenario at time t, for n ∈Nt, t = 0, 1, . . . , T . For those data at this
scenario, the price vector of the risky assets is denoted by unt ∈ Rm, and the payoff vector of
the assets is denoted by vnt ∈ Rm. The decision variables at this scenario are the number of
shares of holdings of the assets xnt ∈ Rm. We denote the wealth at this scenario to be Wnt, and
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the initial wealth to be B. We denote a(n) and c(n) as the parent node and the children nodes
of node n, respectively. Moreover, let Sa(n),t−1 be the parent scenario of Snt, and Sc(n),t+1 be the
set of immediate children of Snt. The probability of scenario Snt happens is pnt.

We consider an objective related to the achievement of performance goal and
bankruptcy. The investment stops once the goal is reached or the bankruptcy occurs, the
related stopping time is denoted as tu and tl, respectively. Specifically, for given wealth levels
l and u, with l < B < u, we say that the performance goal u is reached if Wnt ≥ u, denoting
this time as tu, that is, tu = inf{t > 0;Wnt ≥ u}; that the bankruptcy occurs if Wnt < l, denoting
this time as tl, that is, tl = inf{t > 0;Wnt < l}. Our objective is to minimize the expected time
that the goal is reached, at the same time we guarantee the probability that the bankruptcy
happens before the goal is reached is no more than a given level, say q, 0 < q < 1. Thus, the
investment problem can be represented in the general form

min E
[
tu
]

s.t. P(W < l) ≤ q
budget constraints

t ∈ {0, 1, 2, . . . , T},

(M)

where the first constraint is a probability constraint of bankruptcy, in which W generally
represents the realized wealth by investment. Moreover, the budget constraints are the wealth
dynamics during the investment horizon. We will continue the discussion on the determistic
formulation of the model in Section 3.

3. The Problem Formulation

In this section, we will derive the deterministic formulation of the problem (M). Most efforts
are devoted to present the objective function and the probability constraint. Actually, we do
this by introducing a list of indicator variables. Before we start this work, let us first consider
the budget constraints first.

3.1. The Budget Constraints

Based on the previously given notations on the scenarios tree, we first have the allocation of
the initial investment wealth represented as B = u′0x0. At scenario Snt, n ∈ Nt, t = 0, 1, . . . , T,
the wealth Wnt should be the realized payoff during the previous period, that is,

Wnt = v′
ntxa(n),t−1. (3.1)

Also, for a self-financing process that we are considering here, the realized wealth will
be reinvested at this decision point, which means

Wnt = u′ntxnt. (3.2)
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Therefore, we conclude the budget constraints at scenario Snt, n ∈ Nt, t = 0, 1, . . . , T ,
by the set of equations as follows:

u′0x0 = B,

v′
ntxa(n),t−1 = u′ntxnt, n ∈Nt, t = 1, 2, . . . , T.

(3.3)

3.2. The Objective and the Probability Constraint

We come to the formulation of the objective function and the probability constraint. Let us
consider the investment process. There are basically three different outputs at a given scenario
Snt. The first one is that we succeed to obtain the target wealth and stop the investment on
this scenario, and this is really the objective. The second one is that we unfortunately fall into
bankruptcy on this scenario and have to exit the investment. In either case, we cannot restart
it again. In addition to the above two cases, the investment may be continued to next period.

Now, we define two 0-1 variables to describe the investment story. On scenario Snt, n ∈
Nt, t = 0, 1, . . . , T , first define εnt ∈ {0, 1} such that

εnt =

⎧
⎨

⎩

1, Wnt ≥ u, 1 ≤Wa(n),j < u, ∀j < t,
0, otherwise.

(3.4)

Parallel to εnt, we define ηnt ∈ {0, 1} such that

ηnt =

⎧
⎨

⎩

1, Wnt < l, l ≤Wa(n),j < u, ∀j < t,
0, otherwise.

(3.5)

Reading the definitions, εnt = 1 indicates the first case, where the investment reaches
the target and stops at scenario Snt, and ηnt = 1 represents the second case that bankruptcy
happens at scenario Snt. By using εnt and ηnt, we can write our objective as

E
[
tu
]
=

T∑

t=0

(

t ·
∑

n∈Nt

pntεnt

)

, (3.6)

and the deterministic form of the probability as

P(W < l) =
T∑

t=0

∑

n∈Nt

pntηnt ≤ q. (3.7)

We consider again the indicator variables εnt and ηnt. Their values on scenario Snt
actually depend on both the current state and also all of the ancestor states. Take εnt as an
example, εnt = 1 holds if and only if the following two conditions are both satisfied. One
is that the investment continues to the current scenario, and the other is that the payoff at
the current scenario is no less than the target wealth. If either of the above conditions is not
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achieved, we should get εnt = 0. Moreover, the case of ηnt is for the same logic but about the
bankruptcy part. Thus, we introduce another two sets of variables to track the current state
and the historical states separately.

For the current state, we define δnt, ξnt ∈ {0, 1} as follows:

δnt =

⎧
⎨

⎩

1, Wnt ≥ u,
0, Wnt < u,

ξnt =

⎧
⎨

⎩

1, Wnt < l,

0, Wnt ≥ l,

(3.8)

and for the ancestor states, we define φnt ∈ {0, 1} such that

φnt =

⎧
⎨

⎩

1, l ≤Wa(n),j < u, ∀j < t,
0, otherwise,

(3.9)

where φnt = 1 means that the investment has kept going on to the current scenario and φnt = 0
means that it has stopped on the parent scenario or other ancestor scenarios before.

Combine the above definitions and review εnt and ηnt, we realize the relations

εnt = δnt · φnt,
ηnt = ξnt · φnt.

(3.10)

If we replace these nonlinear constraints by a set of linear constraints, then the problem
can be hopefully formulated as a linear programming problem, which will benefit for the
further research on solution methods and applications. Since the indicator variables are all
defined as binary 0-1 variables, we derive the transformation

εnt = δnt · φnt ⇐⇒
⎧
⎨

⎩

δnt + φnt − εnt ≤ 1,

δnt + φnt − 2εnt ≥ 0.
(3.11)

It is direct to check that for given values of {δnt, φnt}, εnt must realize the same value
either by εnt = δnt · φnt or by the constraints

δnt + φnt − εnt ≤ 1,

δnt + φnt − 2εnt ≥ 0,
(3.12)

and similar case for ηnt,

ηnt = ξnt · φnt ⇐⇒
⎧
⎨

⎩

ξnt + φnt − ηnt ≤ 1,

ξnt + φnt − 2ηnt ≥ 0.
(3.13)
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Therefore, we now replace (3.10) by the following set of inequalities:

δnt + φnt − εnt ≤ 1,

δnt + φnt − 2εnt ≥ 0,

ξnt + φnt − ηnt ≤ 1,

ξnt + φnt − 2ηnt ≥ 0.

(3.14)

Up to now, we have almost derived out the formulation of the model based on a
series of indicator variables, including ε, η, δ, ξ, φ. The remaining task is to construct the
dynamics of φnt and also the constraints of δnt and ξnt, so that the definitions here can be
implemented in the model.

3.3. The Dynamics of Indicator Variables

Consider the constraints of δnt and ξnt first. Given a large enough number M1 > u and a small
enough number M2 < l, we have for δnt,

δnt =

⎧
⎨

⎩

1, Wnt ≥ u,
0, Wnt < u,

⇐⇒
⎧
⎨

⎩

Wnt −
(
M1 − u

) · δnt < u,
Wnt +

(
u −M2

) · (1 − δnt
) ≥ u

(3.15)

and for ξnt, we have

ξnt =

⎧
⎨

⎩

1, Wnt < l,

0, Wnt ≥ l,

⇐⇒
⎧
⎨

⎩

Wnt −
(
M1 − l

) · (1 − ξnt
)
< l,

Wnt +
(
l −M2

) · ξnt ≥ l.

(3.16)

We combine the constraints of δnt and ξnt as the constraint set

Wnt −
(
M1 − u

) · δnt < u,
Wnt +

(
u −M2

)(
1 − δnt

) ≥ u,
Wnt −

(
M1 − l

)(
1 − ξnt

)
< l,

Wnt +
(
l −M2

) · ξnt ≥ l.

(3.17)
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Next, let us focus on the dynamics of φnt. At the beginning point of the investment,
φ0 = 1 holds. During the investment process, we first write out the dynamics and then explain
the underlying reasons:

φ0 = 1,

φnt = φa(n),t−1 −
(
εa(n),t−1 + ηa(n),t−1

)
.

(3.18)

The dynamic equation holds for the following reasons.
First, suppose the investment has been continued to the scenario Sa(n),t−1 and does not

stop at that scenario, which means we already held φa(n),t−1 = 1, and εa(n),t−1 = ηa(n),t−1 = 0,
then, the investment must keep going on to the current scenario Snt. In this case, we should
have φnt = 1 base on the definition of φ. The recursive equation in (3.18) succeeds to realize
this case and gives φnt = 1 − 0 = 1.

Second, if the investment has stopped, either on the parent scenario Sa(n),t−1 or on any
of the ancestor scenarios before, we should hold φnt = 0. This case can also be realized by the
dynamic equation (3.18). In case that the investment stopped on the parent scenario Sa(n),t−1,
that is, φa(n),t−1 = 1, and either εa(n),t−1 = 1 or ηa(n),t−1 = 1, then (3.18) gives φnt = 0; in the other
case of stopping before the previous stage, we already had φa(n),t−1 = 0, also both εa(n),t−1 = 0
and ηa(n),t−1 = 0, the result of (3.18) is still φnt = 0.

3.4. The Deterministic Formulation

Now, we have derived all the constraints of the indicator variables by (3.3), (3.14), (3.17),
(3.18). Together with the objective function and the probability constraint represented by
(3.6) and (3.7), respectively, the problem (M) can be finally written as a mix integer linear
programming problem:

min
T∑

t=1

(

t ·
∑

n∈Nt

pntεnt

)

s.t.
T∑

t=1

∑

n∈Nt

pntηnt ≤ q

(3.3), (3.14), (3.17), (3.18)

εnt, ηnt, δnt, ξnt, φnt ∈ {0, 1},
n ∈Nt, t ∈ {1, 2, . . . , T}.

(P)

Next, we construct an example to analyze the model and illustrate the solving process.
The problem is input by an MATLAB program, and numerically solved by using Cplex
software.

4. An Example

The investment process is represented by a 3-stage triple tree, noted from time 1 to time 4, as
showed in Figure 1. The portfolio can be organized and reorganized at the beginning of each
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Figure 1: The scenario tree of example.

Table 1: The selected solutions of example.

Time 1 Time 2 Time 3 Time 4

Payoff target obtained

Scenario None None S1,3 S8,3 None

Solution
ε1,3 = 1 ε8,3 = 1
δ1,3 = 1 δ8,3 = 1
φ1,3 = 1 φ8,3 = 1

Bankruptcy happens

Scenario None None S4,3 S19,4 S27,4

Solution
η4,3 = 1 η19,4 = 1 η27,4 = 1
ξ4,3 = 1 ξ19,4 = 1 ξ27,4 = 1
φ4,3 = 1 φ19,4 = 1 φ27,4 = 1

stage. We simply consider a portfolio of two assets, and the prices on each decision point
are given. Also, the conditional probabilities of the three notes in any single-stage subtree
are P = {.3, .36, .34} in order. For other essential constants, we assume the initial budget
B = $100, the target payoff u = $104, and the bancruptcy banchmark l = $95. In addition, we
take M1 = 10 000 and M2 = −10 000 as those two large enough numbers for formulating the
problem. Finally, we assign the largest accetable bancruptcy probability to be q = 0.2.

Cplex takes 0.41 second to optimize the problem. Reading the solution file, we find that
there are chances to obtain the payoff target before the investment horizon, as clearly as in the
third stage on the scenarios of {S1,3, S8,3}, respectively. Accordingly, the bankruptcy possibly
happens on the third and the fourth stages, on the scenarios of {S4,3, S19,4, S27,4}, which
makes the total probability of bankruptcy is 0.178. Details of selected optimal solutions are
shown in Table 1. Other solutions are also carefully checked, it turns out that the construction
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of indicator variables does work. For example, on the children scenarios of the stopping
scenarios {S1,3, S8,3, S4,3}, the values of φ are all zero as the investment has been stopped
before.

For two-stage problem, there are well-known algorithms such as branch-and-bound,
Lagrangian relaxation, or cutting plane methods for solving it. When we extend it into the
multistage case, as we are doing now, the problem becomes much more complex. As the
size of the problem increases, the existing solution methods become less efficient. We will
further investigate on more applicable solution methodologies. In addition to the solution
methodology, another relevant research topic is to compare the investment policies under
different objectives and risk constraints.
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