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Calculation of Steady-State Probabilities of
M/M Queues: Further Approaches
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Abstract. This paper draws attention to the risk of rounding error in the numerical
evaluation of steady-state probabilities for the M/M family of queues. A method for
avoiding the risk is presented which is easy to program for calculation in practice.
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1. Introduction

The M/M family of queues is generally the first to be introduced to students
of operational research and queueing theory. The assumptions made in the
model are that customers arrive randomly at a service point at a known
rate λ per unit time, wait until a server is available and then require a ran-
dom time with an exponential distribution with mean 1/µ for service. It is
possible to calculate the steady state probabilities for the number of cus-
tomers in the queue system for many variants of this family of queues, and
the results appear in many textbooks.

However, little notice appears to have been taken of the practicalities
of calculating these probabilities numerically. Recently, Pasternack and
Drezner([2]) presented a recursive approach which avoided some compu-
tational difficulties. In this note, we suggest a different approach which
gives similar computational accuracy, and is easy to use by students who
are familiar with spreadsheets. Our interest in the problem arose when
circumstances were encountered where the obvious approaches to solving
the queueing models proved liable to severe rounding error.

† Requests for reprints should be sent to David K. Smith, School of Mathematical
Sciences, University of Exeter, Exeter EX4 4QE United Kingdom
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2. Rounding Errors

In most references to computational accuracy, computer programmers are
warned about the risks of rounding errors, and particularly truncation of
small numbers to zero. For instance, the first chapter of Knuth[1], a text
familiar to many students of computer science, works through an example
of how rounding errors quickly lead to inaccurate results in a computational
algorithm. Numerous examples can be cited of the need to avoid particu-
lar types of calculation, known to cause difficulties. A simple instance is
the calculation of the sum and the individual terms of a geometric series,
SN =

∑N
0 xn for |x| < 1. Leaving aside the possibility of finding the sum

analytically, the calculation may be organized from “left to right” or from
“right to left”. The first would calculate the first term, and then subse-
quent terms by multiplying by x; the second would calculate the last term,
and then use division by x to find the others. The second method relies
on the accurate calculation and storage of xN , which is liable to rounding
errors, depending on the values of x and N . For small values of x and
large N , say x = 0.1 and N = 100, xN may be too small to be treated as
distinct from zero. This rounding may not be registered by the computer,
so that the user will be ignorant of the inaccuracy of calculation. The re-
currence relation will generate all terms in the sum to be zero as well, and
the sum will be found to be zero. In contrast, the first method will be more
accurate.

3. Calculating the Steady State Probabilities of Queues

This problem can be encountered when attempting to find the steady state
probabilities of busy multi-server queues. For the sake of illustration,
a queue with several servers and limited waiting room will be discussed.
Pasternack and Drezner discussed the problems of rounding errors where
the waiting room is infinite, although this can be treated as a special case
of the model with finite room.

Given an M/M/C/K queue (that is Poisson process arrivals, exponential
service time, C servers and space for K ≥ C customers in the system), the
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steady state probabilities can be readily derived to be:
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where λ is the arrival rate and µ the service rate. Such a result can be
found in both general textbooks of operational research (e.g. Taha[3]) or
specialised discussions of queueing models (e.g. Tijms[4]). In many cir-
cumstances, the order of calculations will be to find Q first of all, then
to take its reciprocal to obtain p0, and then make use of the recurrence
relationship to find all the steady state probabilities. Working in this way,
very little computer storage is needed, and the recurrence formulæ can be
evaluated rapidly. Essentially, using these equations, one is calculating the
probability that the system is empty, and then building on that.

However, such a form of calculation is prone to errors, in circumstances
where Q is so large that p0 is negligible. The precise values of the queue
parameters when this may occur will depend on the accuracy of one’s com-
puter/calculator. For the sake of illustration, we assume that all calcu-
lations are rounded to five decimal places, although most students would
have the facilities to work to greater accuracy.

For an M/M/30/40 queue, which might be appropriate for modelling a
telephone call centre, λ = 10µ would give p0 = 0.00005, rounded up from
six-figure accuracy of 0.000 045. Use of the formulæ leads to the absurd
position that the sum of all the steady state probabilities is more than
1, since all the terms in the sum will be scaled by the constant multiplier
0.000 05/0.000 045 or an increase of 11%. Increasing λ to 15µ gives p0 = 0.0
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to five decimal places, and so all the steady state probabiliies would be
treated as zero. Other values of the queue parameters could lead to the
rounded value of p0 being almost twice, or about two-thirds, of its correct
value.

In order to try and avoid these rounding errors, one could adopt the
method employed for calculating the sum of the geometric series earlier,
and start with the last term, which is the probability that the system is
full. The order of calculation would be essentially the reverse of that given
earlier.

pK = 1/Q′

pK−1 =
Cµ

λ
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. . . . . .
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λr

In this set of equations, instead of defining the steady-state probabilities
from an empty queue up to a full one, the calculation runs from a full queue
to an empty one.

Sadly, the same problem occurs. Truncation error may mean that the
value of pK is zero, or is rounded to be significantly different from its
correct value. For instance, with λ = 20µ, use of Q′ leads to 1.1% error in
the evaluation of the probabilities, and with λ = 15µ, 1/Q′ is zero when
rounded to five decimal places.

4. A Safer Method of Calculating Steady State Probabilities.

A third recursive way of finding the steady state probabilities exists, and
this is much safer than the two widely taught methods. Minimal rounding
errors will occur if the probabilities of the steady states are calculated
relative to the largest such probability. For the M/M/C/K queue, this is
pK if λ ≥ Cµ or pr with r = bλ

µc (the integer part of λ
µ ) otherwise. The

case where pK is largest has been described above, but the second case
presents a new situation.

Evaluating the probabilities relative to pr (r defined above) provides
a safe and straightforward method of calculation, when λ < Cµ. This
can be stated as an algorithm:

1. Find the most probable state of the system, r = bλ
µc
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2. Let tr = 1

3. For 0 ≤ i < r, let ti be defined as

ti =
(

(i + 1)µ
λ

)
ti+1

with the calculation starting with i = r − 1 and descending to i = 0

4. For r < i ≤ C, let ti be defined as

ti =
(

λ

(i− 1)µ

)
ti−1

(i ascending)

5. For C < i ≤ K, let ti be defined as

ti =
(

λ

Cµ

)
ti−1

(i ascending)

6. Let

Q′′ =
K∑

i=0

ti and then pi =
ti
Q′′ i = 0, . . . ,K

Results of this process are shown in tables 1, 2 and 3. It will be seen that
the calculations are much more precise than the examples quoted with Q
and Q′, and the method has accurately given non-zero probabilities in all
the cases included. Further, the sum of all the steady-state probabilities
(K + 1 terms) are very close to 1.

It may be argued that most calculations in practice will be carried to
much greater accuracy than has been seen here. This is true. However,
the problems of rounding and error propagation will exist to some extent,
whenever steady state equations for queues of the form described here are
evaluated. In many applications, the most likely state of the queueing
system is for many servers to be busy. It would be dangerous to calculate
the steady state probabilities on the basis of an event of small probability.
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Table 1. Steady state probabilities: λ = 10µ, recurrence defined by p10 rounded to 5
decimal places

λ = 10µ
Number in system Exact probability Prob. from recurrence

0 0.000 045 0.000 05
5 0.037 833 0.037 84
10 0.125 110 0.125 11
15 0.034 718 0.034 72
20 0.001 866 0.001 87
30 0.000 000 17 0.0
40 2.9× 10−12 0.0

Sum(all states, i=0 to 40) 1.0 1.000 01

Table 2. Steady state probabilities: λ = 15µ, recurrence defined by p15 rounded to 5
decimal places

λ = 15µ
Number in system Exact probability Prob. from recurrence

0 0.000 000 31 0.0
5 0.001 936 0.001 94
10 0.048 610 0.048 61
15 0.102 433 0.102 43
20 0.041 809 0.041 81
30 0.000 221 0.000 22
40 0.000 000 22 0.0

Sum(all states, i=0 to 40) 1.0 1.000 01

Table 3. Steady state probabilities: λ = 20µ, recurrence defined by p20 rounded to 5
decimal places

λ = 20µ
Number in system Exact probability Prob. from recurrence

0 0.000 000 002 1 0.0
5 0.000 055 0.000 05
10 0.005 799 0.005 80
15 0.051 498 0.051 50
20 0.088 576 0.088 58
30 0.008 319 0.008 32
40 0.000 144 0.000 15

Sum(all states, i=0 to 40) 1.0 1.000 09
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5. Further Examples and the Use of Spreadsheets

If the waiting room is infinite, then the queue will have a steady state only
if λ < Cµ. The steady state probabilities can be found using the algorithm
that has just been described. However, instead of treating Q′′ as the sum
of a finite number of terms, it will be necessary to use the analytic form of
the sum of the infinite series:

∞∑
i=C

ti = tC

(
1 +

( µ

Cλ

)
+

( µ

Cλ

)2

+ . . .

)
=

tCλ

(Cλ− µ)

With this modification, the steady state probabilities can be found for such
queues.

Other properties of these queues may readily be found. The mean number
of customers in the system L, is the sum of rPr; the mean number waiting,
Lq is found by summing (r − C)pr for r > C. Little’s formulae apply in
their modified form, L = λ(1−pn)W,Lq = λ(1−pn)Wq allowing the mean
waiting anad queuing times to be calculated.

The algorithm is also well-suited to calculation in a spreadsheet, such
as Excel, where there are logical tests available for calculating cell values.
For given values of the four parameters λ, µ, C, K, a column can be defined
whose values are the ti values. Then the value of the individual cells can
be found by nesting several logical expressions.

1. Find the state r which will have tr = 1 by the rule: “if µ
λ > C then

r = K else r = bµ
λc”.

2. Find the individual values of ti.

• If i > K, then ti = 0.

• If i = r then ti = 1.

• If i < r then ti = ti+1 ×
(

min(C,i+1)µ
λ

)
• If i > r then ti = ti−1 ×

(
λ

min(C,i)µ

)
3. Summing the column gives the reciprocal of pr and the steady state

probabilities follow at once.

In a spreadsheet, other queueing situations can be developed with similar
structures to this. The author has used Excel with a student class to
find the minimum number of servers that would maintain a given service
level when the waiting room size K was fixed relative to C. A student
project on a telephone call-centre provided an unusual service rule: when
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the number waiting exceeds a particular value, the office manager starts to
accept telephone calls. Although the duration of calls was not exponentially
distributed, a spreadsheet model which mimicked the varying number of
servers with the size of the queue provided a “quick-and-dirty” way of
studying this queue.

Finally, similar recurrence relations arise in consideration of the proba-
bilities of a Poisson distribution, for large means. Instead of calculating
p(X = 0) = exp(−λ) and p(X = i) =

(
λ
i

)
p(X = i − 1) one can find the

mode of the distribution and calculate the probabilities relative to that.

6. Conclusion

This paper has shown how errors may arise when using two obvious ways
of finding steady state probabilities for queues in the M/M/C/K family,
and has demonstrated a safer approach to such calculation. The approach
is easy to code into a spreadsheet, and can be used with a wide range of
elementary queues.
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