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1. Introduction

Let {Xi,i 1} be a sequence of nonstationary random variables with c.d.f.’s
{Fi,

_
1) defined on the real line and assume Fi-F as i--,oc for some fixed

distribution function F. Also, let Fn(x be the corresponding empirical distribution

function based on Xi,...,Xn, that is, n(x)- n-l= lU(X- Xi), where

(.)_ , >0

0, elsewhere.

Consider the sequence of perturbed empirical distribution functions given by

Fn(x) n- l - Kn(x Xi), n >_ l, x e N,
i=1
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where {Kn} is a sequence of continuous c.d.f.’s converging weakly to the c.d.f, with
unit mass at zero. Such an Fn can be expressed as the integral (or c.d.f.)

/ 7n(t)dt, x e ,
of a kernel density estimator fn of the type

fn(X) rt -1 a- 1] an
i=1

suggested by Rosenblatt [16] and [12], where k is a probability density function and
{an} is a sequence of positive real constants tending to the limit zero. The study of
the asymptotic properties of Fn was first elucidated by [11]. For related
investigations in this direction we refer to [18, 19, 20] and [22].

Let g(xl,...,xm) symmetric in its arguments, be a measurable kernel (of degree
m), and let Un be the corresponding U-statistics given by

Un g(Xil,..., (1.1)
C.t m

where Cn, m denotes the set of all (,) combinations of m distinct elements (/1," ira)
from (1,..., n).

Now consider the perturbed empirical distribution Fn evaluated at Un, which is
quite useful; e.g., in the estimation of F() when F is unknown and -fNmg(xl,...,xm) l-[r=xdF(xi). As with many problems in probability and

statistics, the study of the asymptotic behavior of Fn(Un) has previously been
conducted mainly in the i.i.d, case. Thus, under the i.i.d, set-up, [14] proved the
asymptotic normality of Fn(Un) and [10] established the almost sure representation,
a law of iterated logarithm and an invariance principle for Fn(Un). In recent years,
however, there has been much interest in the cases of dependence in probability and
statistics in general and mixing conditions in particular. The latter represent degrees
of weak dependence in the sense of asymptotic independence of past and distant
future ([6] an..d [5]). In this connection, recently [17] has proved the asymptotic
normality of Fn(Un) for the case where Xi’s form an absolutely regular stationary
sequence.

In this paper we study the asymptotic behavior of Fn(Un) in the case where the
sequence {Xi, >_ 1} is strong mixing, which is more general then the absolutely
regular case and is about the weakest mixing condition (see, e.g., [3] and [5]). More-
over, we do not assume stationarity. Specifically, we give the almost sure representa-
tion, a law of the iterated logarithm and an invariance principle for Fn(Un). Thus
the results obtained here extend or generalize those of [14], [10] and [17].

We adopt the following notation and general assumptions. Let {Xn, n >_ 1} be a

sequence of random variables on some probability space (f,A,P) satisfying the
strong mixing condition. We will use the mixing coefficients Cn(k), defined by

an(k sup{ P(A B) P(A)P(B) A r(Xi" 1 <_ <_ m), (1.2)

Beo’(Xi:m+k<_i<_n,l <_m<_n-k)}, k<_n-1
an(k O for k>_n.

The coefficient of strong mixing introduced by [15] then can be written as
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a(k) sup cn(k for k . (1.3)

2. Basic Lemmas

Let p>l and l_<il,i2<...<ipbearbitraryintegers. For anyj(l_<j_<p-1),we
define

Fi (Xl,X2,.",Xp) P(Xi
1
< Xl, Xi2

< x2,...,Xi < Xp). (2.1)1’2"’" p p-

Lemma 2.1: For any integer p>l and integers (il,...,ip) such that
1 <_ I < 2 <... < p, let g be a Borel function such that

’i g(xl,...,xp) 1 + 6dFil,i2 ij(Xl"’"xj)dFij + 1 ip(xj + 1"" .,Xp) <__ i

.for some S > O and some M > O. Then we have

/ g(xl’’’’’xp)dFil’i2" ""i

./ dFil dFij (xj + 1,"’,Xp)g(xi,...,Xp) ij(Xl,...,Xj) + 1’ ip

1 5-- 4M1 + 5[(ij + 1 ij)]l + 5.

Moreover, if g is bounded, say Ig(xl,...,Xp) < M*, then we can replace the
right-hand side of (2.2) by 2M*a(ij + 1 ij).

Proof: Let P(op) Fil ip(Xl,...,Xp) and

PP) Fi i2 ij(Xl"’"xj)Fij + 1’ p1
(Xj + 1,...,Xp). (2.3)

For fixed j (1 <_ j < p), put

A {(Xl,...,Xp): g(xl,...,Xp)

_
M- [a(d)]-

where d j
mixing that

1. Then, it follows from the definition of strong-ij and /-+.

_< 2M[a(d)]1-
_

2M[a(d)]6/.
(2.4)

Let Ac be the complement of A. Then we have

M O6[a(d)] 5 M[a(d)], (i 0, 1).

Combining (2.4) and (2.5), we obtain Lemma 2.1.
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We shall take a(n) pn, 0 < p < 1, in the remainder of this paper.
The following lemma gives the Bernstein-type of inequality for the rv’s satisfying

the strong mixing condition.
Lemma 2.2: Let {Yi, >_ 1} be a sequence of strong mixing ranliom variables

with mean O. Assume that sup/> 1 Yi <- Mo and sup/> 1 [Var Yi 2 <_ M. Then
for any A > O and m <_ n,

P n 1 Y > A < 2rn exp
i=1 4mnM2 + MoAmn + 2ha(m). (2.6)

P Yi >_m
i=1

For j 1, 2,..., m, let

Proof: Let { i,i > 1} be an independent copy of Yi’s with common dfF That
is, {Yi, >_ 1} is a sequence of i.i.d, rv’s with common dfF. Then, from the
Berstein inequality (see [2]), we have for any m e 7/+

2m3M2+MOxrn
Vx > 0. (2.7)

where kj kj, n

k.m

S(J) E Yj +
=1

is the largest integer for which j + kjm <_ n. Let

1 if +1 -1xlYil__ m
hi(Y1"", Yj + 1)

0, otherwise.

First, we prove by induction that for g- 1, 2,...

E(h(YJ’YJ+m"’"Yj+m))<- / h(Yl"’"Y+I)H dF(Yi)+2ct(m).(2.8)
i=1NI+I

Clearly, (2.8) is true by Lemma 2.1 when 1 1. Assuming (2.8) is true for g, then
applying Lemma 2.1 again, we have

Eh + I(Yj, Yj + m,...,Yj + ( + 1)m)
(2.9)

_<El /l+lh+l(Yl"’"Y’+l’YJ+(+l)m)drj J+m(YI"’"Y’+I)1
+

_< 2a(m) + E 21a(rn) + h+l(Yl,...,y,+l,gjT(,T1)m) dF(Yi).

t+1
i=1

This proves (2.8). Therefore (2.7) and (2.8)imply

P( S(Y) >_rn-lx)<_P EY+im
i=0 (2.10)

2m2M2(kj + 1) + Moxrn + 2kjo(rn).
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n+lMoreover, for kj+l< m ,weobtain

P Yi > x <_ E P IS(J) > m- ix (2.11)
i=1 j=l

Therefore, (2.6) holds by using (2.10) and replacing x by n in (2.11).
Next, we provide the following lemma as a generalization of a result of [1].

F’ niformly bounded in ( 5, + 5),Lemma2.3: For some h > O if{ i,i > l ) is u
let A* supn t-l < 6/2An(t)’ where

An(t sup Fn(x Fn(t F,(x) + Fn(t) (2.12)

1 1
1 Fi anddn dn 2(log log n)2 as n, for some constant d, Fn n ni=l Fi’

o, &. e
3

lim n 4 n ,
(2.13)n+

An 0 a.s.

Proof: For t e [ 26-, + 26--], define

Bn(x Fn(x Fn(t Fn(x + Fn(t), x E , (2.14)
1

and let {Cn, n >_ 1} be a sequence of positive integers such that cn n4 as n--oo. For
d

a fixed n, we partition the interval [t dn, t + dn] by the points i, n t + i-, O,
+ 1,..., :t: c and let

n

qi, n Fn(ti + 1,n)- Fn(ti, n)"

Since Fn and Fn are nondecreasing, it follows from (2.14) that we have for
x E [ti, n, ti + l, n]

B() _< f,(t + 1,)- F(t)- F,(ti,,)+ f(t)

and
Bn(ti + 1,n) + qi, n

Bn(x) > Bn(ti, n)- qi, n"

From (2.12), (2.15)and (2.16), we have

An(t)<Tn+Vn
where

(2.15)

(2.16)

(2.17)

ti, max qi n" (2.18)max Bn( n) Vn i= o, 4-1,., 4-cTn O, 4-i 4-cn n

Let 7 > 0 be arbitrary; to prove (2.13), we will show that for r/e (0,)
p ng-nA,, _> 7 i.o. -0. (2.19)

Since {F, >_ 1} is uniformly bounded in a neighborhood of t, there exist CO > 0 and
NO such that for all n >_ No,

3 1

Vn <_ Con 4(log log n)2. (2.20)
Moreover, we have
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where

3

and e(n7) 7n
g + 7.

Also, there exists NI>NO such that for j-l,2,...,n

VarYj

_
Fn(ti, n)- Fn(t) C2dn, where

C sup F(x)
e (-,+)

Now, applying Lemma 2.2 with m [n’], we obtain

and n >_ N1,

P( Bn(ti, n) >_ e?)) _< 2nTexp(- O(nT)) + 2na([nT]), (2.22)

where

2_(r/)..1 + 74nl + 7C2dn + 3"n

and Ix] is the integer part of x. From (2.18), (2.21) and (2.22)it follows that there
exists N2 > N1 such that for n >_ N2

P(Tn >_ e(n7)) <_ (2cn + 1)(2n%xp (-0(n7)) + 2nc([n7]))
(, + ) for some s > 1

(2.23)

Now, let j, n + j---

some C5, we obtain zvf’

Hence, there exists an N3 such that for n >_ N3

P(An(t >_ 2e(n7)) _< n- (1/2+ "). (2.24)
1

j- 0, =t= 1,..., [n2], then from (2.24), for n > Na and

1 1

P ( max An(j,n)>2e(n7))<C5nn (+s)=c5n-S.

Using the triangular inequality, we obtain

A _< 3 max

Combining (2.24) and (2.25), we have for some C6,
oo 3 oo

E P(A >_ 7n- + 7)<_ C6E n
n N3 n N3

This proves (2.19).
We introduce the following two sets of conditions:

(A)

An(tj, n)" (2.25)

-s < c. (2.26)

(B)

(i)
(ii)

{F, k 1} is uniformly bounded in the neighborhood of .
foo

(i) {Fi, >_ 1} is twice differentiable with uniformly bounded tF:’i,, >_ 1} in
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the neighborhood of .
(ii) f_oox2k(x)dx < oo and there exists a 7 > 0 such that k(x)- k(-x),

The almost sure representation theorem given in section 4 highly relies on the
following two lemmas.

Lemma 2.4: Suppose {Fi, >_ 1} and k satisfy (a) and a(n) pn, for 0 < p < 1.
Then there exists an e > 0 such that

3 1 1

sup n(x) n(x) o(n--g+ n) + O(ngan(loglogn)-g) a.s. (2.27)

g {F,i 1} . ai4u (), (2.2Z) ot wi O(%(logog) )
by O(na(log log n) 1).

Proof: Suppose {Fi, I 1} and k satisfy (A) and let 6 > 0 be such that
{F,i 1} is uniformly bounded on (-6, + 6), that is, there exists M1 such that
In(x- t)- n(x) M1 tl for tl and Ix- < . Then, for any x with

x- l < /2, we have

Fn(x)- Fn(x) J [Fn(x- t)- Fn(x)]kn(t)dt

Fn(x- t)- Fn(x Fn(x t) + Fn(x)kn(t)dt (2.28)
ltl 5d.

+ kn(t)dt + ]Fn(x- t)- F,(x)]kn(t)dt
t] >d ]tl

where kn(t 1 {].t
For large n, the last term of (2.28) is bounded by

M1 ff ]t]kn(t)dt O(an) (2.29)

and the second term of (2.28) is bounded by

nan(loglogn t k(t)dt 0 nan(loglogn (2.30)
d

FTherefore, (2.27) holds by applying Lemma 2.3, (2.29) and (2.30) For { i,i > 1}
and k satisfying (B), using the Taylor expansion in the last term of (2.28), we obtain

/

-]
Itl <dn

7,()F’n(X)ant +--- ant kn(t)dt (2.31)

2 f t2< anM2 k(t)dt O(a2n)
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where xtliesbetweenx-t and xandsupxe((_5,(+5) lr}’(x)l <-M2"
Similar to (2.30), the second term of (2.28) can be bounded by

na2n(log log n) 1 / t2k(t)dt O(na2n(log log n) 1). (.)
d
nItl>

Combining (2.31) and (2.32), and applying Lemma 2.3, we complete the proof.
Lemmn2.5: Suppose {Fi, l} and k satisfy (A) and a(n) pn, for O < p < 1.

Then we have
3

sup Pn(x) Pn()-- n(x) + Pn() (n-+ r) + O(an a.s. (2.33)
Ix-l < d

If {Fi, 1} and k satisfy (B), then (2.33) holds with O(an) replaced by O(a).
Proof: Let e>O;for x-l dn, we have

r(.)- r()- r() + r.()

(-t)- r(- -t)- r.(- t) + r(- t) l(t)dt (.34)
Itl<

+ ,(t)t + sup I(- t)- r() (t)t.

The proof is completed by applying Lemma 2.3 and similar reasons as in (2.29)-
(.a).

mark 2.1: It is true that under the following global conditions (i) [Fi, 1} is
twice differentiable on the real line with bounded second derivative {F’,i 1} and
(ii) f xk(x)dx 0 and fxk(x)dx < (instead of local condition (B)),
the second parts of Lemma 2.4 and Lemma 2.5 remain true.

Since we do not assume stationarity, we will need to introduce some new
notations for the U-statistics to obtain the following lemma, which generalizes the
result of [21].

For every p( p N m) and n R m, let 1 1 ... p n be arbitrary integers
and put

p,n(Xl,...,Xp) (Xl,...,Xp;ip+ 1,..., gin) (2.35)
(ip + 1 ira) I

where

and

](Xl,...,Xp;ip+ 1,...,im) g(xl,...,Xm) dff .(xj)
m--p j=p+l 3

I--{(ip+l,...,im)" 1 _ip+ 1 7...7im _n, ij_(il,...,ip),p+l <_j<_m}.

Also, denote
m

qLo(Xl"’"Xp) E g(xl"’"Xm)H dFij(xj)
(il m) e I0 Rm j l

(2.36)

whereI0-{(il,...,ira), l_<i17...7im_<n}. For every p(l _< p <_ m), set
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/
P

(I[xi3 Fij(xj))U(nP) u-[m] E qp,n(Xl"’"Xp H d <xj]-
1_i1 #...#ip_n p j=l

where n-[m] (n(n-- 1)...(n-- m + 1))- 1.
Lemma 2.6: If there exists a positive number such that

sup max
n (in im) eCn, m Nm j=l J

sup max E(lg(Xil,...,X )4+)/o<, (2.39)
mn (il ira) Cn, m

3(4 + g)/(2 + ’)), then we havead foo (0 < ’ < ), () O(n

E(U:)) 0( ) (.40)

( ’)/(4 + )( + ’) > 0 ae
E(U))

Prf: We proceed as in Lemma 3 of [21]. Since
4

E(U))4 (n -[m])4 g((Ill, i12),(i21, i22), (i31, i32), (i41, i44))
j 1 1 ijl,ij2 n

where
J((i11, i12), (i21, i22), (i31, i32), (i41, i44))

=E I I /q’l’2,n(Xjl’Xj2)dlI[xi <
j 1

N2
jl xjl Fijl I[zij2

(2.41)

(2.42)

where cu.2,n(Xjl,X2 is defined as in (2.35).
Now, let i.k (<_ n) (7- 1,2,3,4, k 1,2) be mutually different and reorder

as l_<k1< k2 <... < ks <_n, then, we have

(2.44)J((i11, i12), (i21, i22), (i31, i32), (i41, i42)) E[g(Xkl,..-, Xk8)]"

Since

/ g(xl,...,x8)dP?)--O j-1,7

Rs
where P!.P)is defined as in (2.3). Applying Lemma 2.1 we obtain

4 2+5

( n[m] )M0[c(]8-]c7)]4+5, if8-7-d(1)E[g(X"’"Xs)] n(n- 1)
and

( )4N[9(XI"’"Xi)] n(- 1) M[(- 1)]4 + ’ if k- d(1),

where d() is the kth largest difference among (kj + 1- kj), j- 1,..., 7. Therefore,

E Eg(Xk"’"Xks)
1 _<kI <... < k8_< n

ks_k7__d(1) or k2.k1--d(1)
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( n[m] )4 4j_l
2+5

<-M n(n-1)
n (j+l)3[a(j)]4 +5.

Also, for some Ji (2 < Ji < 6, 1 < < 4),

]Ji A-1- Ji- d(i) (1 _< < 4).
Then applying again Lemrna 2.1 we obtain

(n[m])4 4 2+5
Eg(Xkl’ ""Xk8) -- n(n--1) ME[(]cJi+l-kJi)]4+5

i=1

and

E Eg(Xk "’"1 Xk8)
1 <_k1 <...<k8<_n

kji + 1- kj d(i)’ 1 -<
_

4

Hence,

(2.47)

(2.48)

n[m] )4 n 2 + 5

<_ 4
n(n 1) Mn4E (J + 1)3[c(j)]4 + 5. (2.49)

j=l

E Eg(Xk1’ "’Xk8)<M(n[m]);=l(J + 1 2+5+5
n(n 1) )3(c(J))4

1 <k1 <... < k8 < n

0 (rt4m 3 ’) (2.50)
where M > 0 is some constant.

A similar method can be used to estimate the sums in the other cases and thus
obtain (2.40). The proof of (2.41), which is analogous, is omitted.

Lemma 2.7: Under the conditions of Lemma 2.6, we have

Un--mU)+Rn (2.51)
1

where Rn -O(n-l(loglogn)
Proof: The proof of the lemma follows by applying Lemma 2.6 and the approach

of Theorem 1 of [21].
Lemma 2.8: Let {Yni, 1 <_ <_ n,n >_ 1} be a sequence of strong mixing random

variables with mean O. Suppose for any n, rn such that rn >_ rn and any J C {1,...,
with Card J rn

j.J

for some r2 > 0. Then, the process {Yni, l <- <- n,n >- l} obeys the law of the
iterated logarithm if the following conditions are satisfied for some 6 and ’ such that

sup max E IYnil 2 +5-M<c (2.53)
n>l 1 <_i<_n

and

E {c(n)}2 + 5’< c. (2.54)
n---1

Proof: The lemma was proved by [7], Lemma 5.6 for a sequence of random
variables satisfying the strong mixing condition with mean zero.

Lemma 2.9: Let [Yni, 1 <_ <_ n,n >_ 1} be a sequence of random variables
satisfying the strong mixing condition with coefficient a(n). Let X be

r(Yni,l <_ <_ j <_ n) measurable and Y be (r(Yni < j + rn <_ <_ n) measurable. If
E IX[ 2+’<cxz andEIY[ 2 + "<cx, where 3’ is apositive number. Then
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Coy(X, Y)[ <_ 10(E X 2 + )2 + (E y 2 + [(m)]2 + .
Proof: This is Proposition 2.8 of [4]. Also, see [9].
Lemma 2.10: Let [Xn, n

_
1} be a sequence of random variables satisfying the

strong mixing condition. Also, assume EXn- 0 and EX2n < cx for all n E 5, and
there exists > 2 with

1 -2
supEIXl z < c, [()] <c.

ES2n/n--+cr2 for some <7 > O, as n--+cx

then

wnD--+W on (c[O, 1],d) (2.56)
1

where Sn E: 1Xj, Wn(t, w) S[nt](w)/rn2 t [0, 1], w G , d is a uniform
metric, and W is a standard Wiener process on [0, 1].

Proof: This is Theorem 0 of [8]. A similar theorem is also proved by [5], p. 46,
Theorem 1, for stationary, strong mixing random variables.

3. A Law of the Iterated Logarithm for Un

Let {F*n,n >_ 1) be any sequence of continuous cumulative distribution functions on
[2 with marginals F, and denote

p(1) g2(xl"’"Xm)H dF(xi)- 2 (3.1)
Rm i=1

fl(i) 2/ / g(Xl"" Xm)g(Xm + 1"" X2m)dg(xl’ Xm +1)
L 2m

dF(xn) dF(xk)_2 Vi>2
n=2 k=m+2

Let Fi, j be the distribution function of (Xi, Xi) 1 < j. We have the following
law of the iterated logarithm for the nonstationary U-statistics. Such a result
generalizes the result of [21], who proved a similar theorem for the stationary U-
statistic under a strong nixing set-up.

Theorem 3.1: Suppose the sequence {Xi, 1} is strongly mixing with a(n)
satisfying a(n) pn, 0 < p < 1. Furthermore, assume that for any n > 1, there

2exists a continuous d.fi Fn on with marginals F such that

1 <IIr ,/  _i11-o. 0
for some 0 < Po < 1, where I[ II denotes the total variation.
conditions (2.38)and (2.39)are satisfied. Then, if

exists and is finite, we have i= 2

limsup 1 1 =t=1 a.s.

22ran(log log n)2

Suppose also,

(3.4)
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Proof: From Lemma 2.7, it suffices to prove that

n li--1Xni-- :t:1 a.s.limsup 1 1

22mr(log log n)2

where

Xi--n-[m-1](Cll’n(Xi) /
and CtIl,n(x is defined as in (2.35).

We will apply Lemma 2.8 to prove (3.5). That is, we have to verify that the
sequence {X,i, 1 _< _< n, n >_ 1} satisfies conditions (2.52)-(2.54).

It is clear that conditions (2.53) follows from (2.38), and condition (2.54) follows
from the assumption that a(n)- pn, 0 < p < 1. Therefore, we have only to show
that {Xi, 1i n, n 1} satisfies (2.52). That is, for any n,m such that n m
and J {1,..., n} with Card J vn

E X;i ma2(1 + o(1)). (3.6)

Let us consider first the case when Card J-n; the case when Card J < n has a
similar proof.

Now, it is easy to see that

Xi (n [m- 1])
n 1 n-

i=1 i=0 j=l i=1

n--1 n-i c

(n- [m- 1])2 E E (i’j)--lgE (n-i)p(i)
i--0 j=l i=1

where

and

i=n+l

n (x) 3

P(i) + E E P(k) E Ini
i=1 k=i i=1

99(i,i) Var[qIl,n(Xi)], >_ 1,

(i, j) 2Cov(ClJ,,1,n(Xi), CU.l,n(Xj)), < j, (3.9)

Cl,n(X being defined as in (2.35).
From condition (3.3), we have [In1 -o(1). From condition (2.38), we deduce that

5 2

p(i)] < (c(i))2 + 6’Mg + 6’ by assumption c(n)-pn, 0 < p < 1, we obtain that

Ini--*O as n--,oc for i- 2 and 3. Theorem 3.1 is proved.

Almost Sure Representation and a Law of Iterated Logarithm for

F.(U.)

Theorem 4.1: Suppose that Vi >_ 1, F’() exists and is finite and let {Fi, >_ 1) and k
satisfy (A). Furthermore, suppose the assumptions of Lemma 2.6 are satisfied and
let r > O andes(n)- pn, O < p < l. Then

Fn(Un) Fn(( + Xi + Rn (4.1)
i=1
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where Xni is defined as in (3.5) and

3

Rn o(n 4 7) + O(an a.s. (4.2)
1 Moreover, if {Fi} and k satisfy (B), then we may replaceas n---oo and 0 < r < g

O(an) b$10(a2n) in (4.2).
Proof: If {Fi, >_ 1} and k satisfy (A), using notations in (2.37) and Hoeffding’s

projection method (see, e.g. [21]), we obtain

c( ) ( ) (c) (4.3)U,-+ m U )-+mU )+ m U
C C n

From Theorem 3.1, we have
1 1 1

}Un-1 <_ (1 + )22mffn 2(loglogn)2 a.s. (4.4)
as n---oo, for some > 0. With the aid of Lemma 2.5, we have

3

n(Vn) ’n() n(Vn) n() + o(n-4- 7) -90(an) a.s.,

Using Young’s form of Taylor’s theorem and (4.4), we get

(4.5)

Fn(Un) ’n() (Un )’n() -90(n 1log log n) a.s. (4.6)

The proof can be completed using (4.5), (4.6) and L-emma 2.6.
If {Fi, >_ 1} and k satisfy (B), the proof is similar.
Theorem 4.2: Suppose that {F’({),i >_ 1} exist and are finite and let {Fi, i>_ 1},

and k satisfy (A). Furthermore, suppose the assumptions of Lemma 2.6 are satisfied
and t(n) pn, for O < p < l. Then

where
n(Un) r- I E Yni -9 Rn

i=1
(4.z)

Xni is defined as in (3.5) and
3 1

nn o(n - + r) -90(nan(loglogn)
as n---,oo and 0 < q <. Moreover, if F and k satisfy (B), then (4.7) holds with

1 1

O(nan(log log n) -if) replaced by O(na2n(log log n) 1).
Proof: Let {Fi, i>_ 1} and k satisfy (A). From Theorem 4.1, we have

--! n

i=1
(4.9)

where
Rn o(n

3

7) -90(an a.s. as n-+cx3.4

Moreover, from Lemma 2.4 it follows that

Fn() F,() + o(n
3 1 1
4 +rl)-90(nan(loglogn)-) a.s. (4.10)

Combining (4.9) and (4.10) leads to (4.7). The proof under (B) is similar.
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As an application of Theorem 4.2, we have the following law of iterated
logarithm for F,(Un).

Theorem 4.3: Suppose that F’() exists and is finite for each i>_ 1 and let F
and k satisfy (A). Furthermore, suppose the assumptions of Lemma 2.6 are satisfied,
a(n) pn, for O < p < 1, and an o(n-lloglogn). Then

1

n-(n(Un)- F()
(4.11)limsup 1 a.s.

n- V/2721og log n

where

and

r2 A2(x)dF(x) + 2 A(x)A(y)dF(x, y)
k=l

m

A(x) u(- x)- F() + mr’()(gl(x ), gl(x) g(xl"" "’Xm) H dr(xi)"
i=2

3 3

Moreover, if {Fi, >_ 1} and k satisfy (B) and an o(n 4(loglogn)4), then (4.11)
holds.

Proof: Using Theorem 4.2, the proof follows easily by applying Lemma 2.8.

5. An Invariance Principle for Fn(Un)

Let

where

Denote

Y,i- u(- Xi)+ mF’()X*ni

Xi n -[m l](q.Ll,n(Xi) ECkl.l,n(Xi)).

Zni-Yni-Fi(),

(5.1)

then it is clear that EZni 0 and EZ2ni < oe. Let Sn ’ i=lnZni. Then, we shall
prove the following fact

1 2nlirn -ESn exists and is finite. (5.3)

Hence, we write
7
.*2 -nlirn ES2n/n.

We will use (3.6) and Lemma 2.9 to prove (5.3). Now, note that

ES E .’.() X + [(- X)- F()]
i=1 i=1

1(())E X + E ((- X)- F())
i=1 i=1

+ r()E x; ((- x)- r())
i=1

(5.4)

11 + 12 + 13.
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So ES2n/n 11In + I2/n + I3/n. We first estimate I1/n. By (3.6),

11 [Fn()]2

n n nr2(1 + o(1)) (.5)

m2[ ]2r2(1 + )) m2(’())2r2() o(1 ---, < c as n--oe.

Note that by assumption, c(n) pn, 0 < p < 1, we have
6

[()] + ’ <o, forO< <1.
n=l

Next, we write 12/n as

I2n 1 E E(u( Xi)- Fi())2 +lgE ECov (u(- Xi),u( Xj)) (5.6)
i=1

r,()(1-r,())+1 Cov((-x,), (-x)).
i=1

Since the nt term of (5.6) converges to F()(1- F()), we will estimate the second
term of (5.6)+by,applying Lemma 2.9. Note that E(u(-Xi)-Fi())-0 and
E lu(- Xi)) _< 1, for some 5’ > 0, so we obtain:

Cov (( x),( x))
6 6n-1 n-i

_< 2gE E 10[(j-i)]2+6’= 24 E E
3> 6

i=1 k=l

20 [()] + ’< , ,.
j=l

inally, the last term of (5.4) can be bounded by using Lemma 2.9 again. That
is, for n N0 with N0 sufficiently large and E[Xi Mo, we obtain:

L 2,() x ((- x)- ()) (a.8)
i=1 i=1

< 2m, (E *,, lx,(( x,) r,())
i=1

+() E[x;((- x)- F())]

6

2mP(()Mo + 4MomP() [(k)]2 + 6’

k=l

6

2m’()M0 + 4mM0P’( [(n)] + 6’ < , as n.

rom (5.5)-(5.8), we have (5.3). This ensures the finiteness of r*.
Next, let W be a random Nnction of [0, 1] defined as
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(_) { 0, if0<_i<_m-1
Wn i(i(Ui)- Fi()) if m < < n1

r*n2

and Wn(t), 0 _< t _< 1 defined elsewhere, by linear interpolation.
Thus, Wn has continuous sample paths and belongs to (7[0, 1], the space of all

continuous functions on [0, 1].

Theorem 5.1: Assume that (i)IF’() exists (finite), >_ 1, (ii) F and k satisfy (A),
and (iii) an o(n-l(loglogn)g) as n--+oo. Then

WnW on (C[0,1],d) (5.10)

where d is uniform metric, and W is a standard Wiener process on [0, 1]. Moreover,
3 1

if F and k satisfy (B), then (5.9)holds iran -o(n 4(loglogn)2) as n-+oo.

Proof: Define the random function W,, n > 1, on [0, 1] by W(0) 0.

*(i) Ej=I[YnJ -Fi()]
Wn 1 if 1 _< _< n (5.11)

T*n2

where Ynj and r* are defined as in (5.1) and (5.3), respectively. Note that W, also
have continuous sample paths and they belong to C[0, 1].

If conditions (A) are satisfied, then by Lemma 2.10 and (5.3), we have w*D--W
on (C[0, 1], d). Therefore, it suffices to show that

d(Wn, w)P---,O as n---,oo. (5.12)
Note that

where

and

1

d(Wn W) < max 1
q- gni

n<i<n
T*/12 T*n2 1

1 n

V lz’(n(Un)- n-1 E Yni)"
i=1

So (5.12) holds if we prove the following two facts:

For any e > O, 1 [Yni[ > e -+0 as n--+oo

7..n i=1

1

max
i: Vi P-+ 0 as n+oo.

m<i<n 1

Tt2T*

(5.13)

(5.14)

(5.15)

(5.16)

(5.15) holds by applying the Chebyshev inequality and noting that E IYni < M,

P E IYni >e < i=lElYni[ --+0 as n--+cx:)
1

r.n 1 r.en

Next, we prove (5.16).
1

o(n- l(loglogn)) to obtain

To this end, we first use Theorem 4.2 and an

ILrnV 0 a.s. (5.17)
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Therefore, by Egoroff’s Theorem, for any 5 > 0, e > 0, there exists a measurable set A
such that P(Ac) < 1/25, where Ac is the complement of A, and V, converges to zero
uniformly on A; so there exists a positive integer no such that for n > no,
IVn(w) <eforallwEA. Forn>_n0, wehave

P max 1 > e:
m<i<n

n2T,

<- E P i-lVil > nTr*e +P
i--m

Now, clearly, the first sum on the right side of (5.18) tends to 0 as n--+oo.

On the other hand, since

1 /max 1 > w*(
nO + 1 _< _< n n7

(5.18)

P ({n0+lmax<_i<_n [Vi’ >e}f"lA) -0’

it follows that

iUlv lP max 1 > "/’*
no + 1 <_ _< n n7

_< P ({ n0+lmax<-i<-n Vi[> e};3 A)+ P(ZC)< 1/25. (5.19)

The proof of the theorem follows from (5.18) and (5.19). If conditions (B) are

satisfied, the proof is similar.
Remark 5.1: Theorem 5.1 clearly contains the Central Limit Theorem for

Fn(Un) which extends the result of [17] for absolutely regular stationary random
variables. In addition Theorem 5.1 provides information such as for x > 0,

( 1)P max i((u)- Fi() > xr*n ---+211- (I)(x)], as n--+oo.
l<_i<_n
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