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The asymptotic estimate of the expected number of real zeros of the poly-
nomial T(O) glcosO + g2cos20 +...+ gncosnO where gj (j-1,2,...,n)
is a sequence of independent normally distributed random variables is
known. The present paper provides an upper estimate for the variance of
such a number. To achieve this result we first present a general formula
for the covariance of the number of real zeros of any normal process, (t),
occurring in any two disjoint intervals. A formula for the variance of the
number of real zeros of (t) follows from this result.
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1. Introduction

Let n

T(O) Tn(O w) E gj(w)cos j0, (1.1)
3--1

where gl(w), g2(w),..., gn(w) is a sequence of independent random variables defined on
a probability space (fl, A, Pr), each normally distributed with mean zero and variance
one. Much has been written concerning NK(O 2r), the number of crossings of a fixed
level K by T(0), in the interval (0,2r). From the work of Dunnage [2] we know
that, for all sufficiently large n, the mathematical expectation of N0(0 2r) _-- N(0, 2)
is asymptotic to 2n/v/-. In [3] and [5] we show that this asymptotic number of
crossings remains invariant for any K- Kn such that K2/n----O as n--.cx. However,
less information is known about the variance of N(0, 2r). The only attempt so far is
in [4], where an (fairly large) upper bound is obtained. Indeed this could be justified
since the problem with finding the variance consists of different levels of difficulties
compared with finding the mean. The degree of difficulty With this challenging
problem is reflected in the delicate work of Maslova [8] and Sambandham et al. [7]
who have obtained the variance of N for the case of random algebraic polynomial,

Printed in the U.S.A. ()1997 by North Atlantic Science Publishing Company 57



58 K. FARAHMAND

E: ogjx3; a case involving analysis that is usually easier to handle. Qualls [9] also
studied the variance of the number of real roots of a random trigonometric

n jO+polynomial. However he studied a different type of polynomial j 0ajcos
hi sin j0 which has the property of being stationary and for which a special theorem
has been developed by Cramfir and Leadbetter [1].

Here we look at the random trigonometric polynomial (1.1) as a non-stationary
random process. First we are seeking to generalize Cramfir and Leadbetter’s [1] works
concerning factorial moments which are mainly for the stationary case. To evaluate
the variance specially, and some other applications generally, it is important to con-
sider the covariance of the number of real zeros of ((t) in any two disjoint intervals.
To this end, let (t) be a (non-stationary) real-valued separable normal process
possessing continuous sample paths, with probability one, such that for any 01 02
the joint normal process ((01) ((02) ’(01) and (’(02) is non-singular. Let (a,b) and
(c,d) be any disjoint intervals on which ((t)is defined. The following theorem and
the formula for the mean number of zero crossings [1, page 85] obtain the covariance
of N(a, b) and N(c, d).

Threm 1: For any two disjoint intervals, (a,b) and (c,d) on which the process
(. is defined, we have

where for a 01 b and c O2 d, POl,O2(Zl, Z2, x,y) denoles lhe four dimensional

of
A modification of the proof of Theorem 1 will yield the following theorem which,

in reality, is only a corollary of Theorem 1.
Theorem 2: For POl,02(Zl, Z2,x,y) defined as in Theorem 1 we have

b b

By applying Theorem 2 to the random trigonometric polynomial (1.1) we will be
able to find an upper limit for the variance of its number of zeros. This becomes
possible by using a surprising and nontrivial result due to Wilkins [12] which reduces
the error term involved for EN(0,2r) to O(1). We conclude by proving the
following.

Theorem 3: If the coefficients gj(w), j-1,2,...,n in (1.1) be a sequence of
independent random variables defined on probability space (,A, Pr), each normally
distributed with mean zero and variance one, then for all sufficiently large n the
variance of the number of real zeros of T(O) satisfies

war {N(0, 7r)} 0(n3/2).

2. The Covariance of the Number of Crossings

To obtain the result for the covariance, we shall carry through the analysis for the
number of upcrossings, Nu. Indeed, the analysis for the number of downcrossings
would be similar and, therefore, the result for the total number of crossings will
follow. In order to find E{Nu(a,b)Nu(c,d)} we require to refine and extend the proof
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presented by Crarnr and Leadbetter [1, page 205]. However, our proof follows their
method and in the following, we highlight the generalization required to obtain our
result. Let ak (b a)k2 m + a and similarly b (d- c)12 m + c for k,1-
0, 1,2,...,2rn- 1 and we define the random variable Xk, m and Xl, rn &s

and

1 if ((ak) < 0 < ((ak + 1)
Xk, m

0 otherwise

X’ { 1 if ((bl) < 0 < (bt + 1)
l, rn

0 otherwise.
(2.1)

In the following we show that
2m_l 2m_l

1=0 k=0

tends to N(a,b)Nu(c,d as moe with probability one. See also [1, page 287]. We
first note that E{N(a,b)N(c,d)} is finite and therefore N(a,b)N(c,d) is finite
with probability one. Let u and 7" be the number of upcrossings of (t) in (a,b) and
(c, d), respectively, and write tl, t2,’", tu and t, t,..., t. for the points of upcrossings
of zero by (t) in these two intervals, counted by Nu(a,b and Nu(c,d). Suppose
Is, m and Js’m are the intervals of the form (ak, ak+l) and (bk, bk+l) which
contains ts and t’s, s 1,2,...,u and s’= 1,2,...,r, respectively. Then, by continuity
of (t), there can be found two sub-intervals for each I, m and such that (t)
in one is strictly positive and in the other, it is strictly negative. __hs it is apparent
that Ym will count each of tst ,. That is, Ym > uv, for all sufficiently large m. On
the other hand, if ((ak)(bk + 1I < 0 and ((b)((b- + )< 0 then (t) must have a zero
in (ak, ak + ) and (bl, b + 1) and hence Ym <-ur and hence Ym-.Nu(a,b)Nu(c,d) as

meo, with probability one. Now from (2.1) we can see at once that
2m_1 2m_l

E(Ym)-- E E Pr(xlc, mX},m-- 1)
/=0 k=O

2m 1 2TM 1

E E Pr(Xk, m- X,m 1). (2.2)
/=0 k=O

We write r/k for the random variable 2m[(ak+)--(ak)] and similarly r/ for

+ 1)-

Pr(Xk, m Xl, m

Pr{0 > (ak) > 2-mk and 0 > (bl) > 2-

=JJJ J
0 0 0 0

2--my

Pm, k,l(Zl,Z2, x,y) dzl dz2dxdy

where Pm, k,l(Zl,Z2, x,y) denotes the four dimensional normal density function for
(ak), (bt) t/k and . A simple calculation shows, see [6] or [1, page 207], that if 01
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and 02 are fixed in the interval, (a,b)and (c,d), respectively, and km and m are such

that akm < 01 < akra + 1
and blm < 02 < blra + 1

for each m, then all members of the

covariance matrix of Pm, k,l(Zl, Z2, x,y) will tend to the corresponding members of the

covariance matrix of POl,O2(Zl,Z2, x,y). This co-variance matrix is, indeed,

nonsingular. Now let t- 2mzl and r- 2rnz2 then from (2.2) and (2.3) we have

2m_1 2m_1 oo c x Y

/=0 k=0 0 0 0 0

k,/(2 rot, 2 mr, x, y) dt dr dx dy

a c 0 0 0

Y

/ I/m, 01 02(2 mr, 2 mr, x, y) dt dr dx dy dO1 dO2

0

(2.4)

in which m, Ol,02(t,r,x,y) -Pm, k,l(t,r,x,y) for ak < 01 < ak + 1 and b < 02 < b + 1"

It follows, similar to [1, page 206], that as rnoc

ra, 01 02(2 rat, 2 mr, x, y)--,P01,02(0 0, x, y)

which together with dominated convergence proves Theorem 1.

3. The Variance of the Number of Real Zeros

It will be convenient to evaluate the EN(N-1) rather than the variance itself since
N(N-1) can be expressed much more simply. The proof is similar to that
established above for covariance, therefore we only point out the generalization
required to obtain the result. To avoid degeneration of the joint normal density,

pol,0,(zl, z2, x, y), we should omit those zeros in the squares of side 2 m obtained
from %qual points in the axes (and therefore to evaluate EN(N- 1)). To this end for
any g (gl,g2) lying in the unit square and e > 0, let Ara denote the set of all
points g in the unit square such that for all s belonging to the squares of side 2- m

containing g we have Sl s2 > c. Let , denote the characteristic function of the
set Ame. Finally, similar to the covariance case, let

1 if ((ak) < 0 < ((ak + 1)
Xk, ra

0 otherwise

for k=0,1,2,...,2m-l,whereak=(b-a)k2-m+a. Now let
2TM 1 2TM 1

Mrne E E Xk, mXl, marne(2 ink, 2 ral). (3.1)
k=O (t=O, tCk)

Similar to [1, page 205] we show that Mrae is a nondecreasing function of rn for any
fixed e. It is obvious that Mrac is a nondecreasing function of e for fixed m, and then
by two applications of monotone convergence it would be justified to change the
order of limits in lim_olimra__,Mra. To this end, we note that each term of the
sums of Mine corresponds to a square of side 2- m. For fixed e > 0, the typical term
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is one if both of the following statements are satisfied: (i) every point s (sl, s2) in
the square is such that Sl s21 > e and (ii) Xk, m Xl, m 1. When rn is increased
by one unit, the square is divided into four subsquares, in each of which property (i)
still holds. Correspondingly, the typical term of sum is divided into four terms,
formed by replacing rn by m + 1 and each k or by 2k and 21, for ak + 1 and a + 1"
Since Xk, m Xl, m 1 we must, with probability one, have at least one of these four
terms equal one. Hence Mine is a nondecreasing function of rn.

In the following, we show that

lim limM Nu(Nu- 1).m---oo {--,0 m

We first note that if the typical term in the sum of Mine is nonzero it follows that

Sl-S2l >1, since it is impossible to have (ak)<0<(ak+l) and
(ak + 1) < 0 < (ak + 2)" Therefore, the characteristic function appearing in the
formula for Mm in (3.1) is one and hence

2m 1 2TM 1

limM Xk, mXl m" (3.2)
--,0 m

=0 ( =0, )
(3.2) is clearly in the form of Ym defined in Section 2 except that the summations in
(3.2) cover all the k and such that k 1. Hence from (3.2), we can write

lim limM Nu(Nu- 1).rn---,o e---0 m

Therefore the same pattern as for the covariance case yields

E[Nu(a,b){Nu(a,b 1}]

:lim//e0 / / ’xylP0102(OO’x’y)dxdydOld02, (3.3)
D(e) 0 0

where D() denotes the domain in the two dimensional space with coordinates 01,02
such that a<01, 02<b and 101-021 >e. Now notice that for 01-02-0 the

POl,02(O,O,x,y) degenerates to just Po(O,x), the two dimensional joint density

function of ((0) and ’(0). Hence from (3.3) we have

b b cx o

E[Nu(a,b){Nu(a,b)-1}]- ]" / / /
a a 0 0

xylPOl,O2(O,O,x,y)dxdydOld02

Now since f f Ix P0(0, x)dO is ENu(a b) the result of Theorem 2 follows.
a 0

4. Random Trigonometric Polynomial

To evaluate the variance of the number of real roots of (1.1) in the interval (0, r) we
use Theorem 2 to consider the interval (’,r-’). The variances for the intervals
(0, d) and (r- d, r) are obtained using an application of Jenson’s theorem [10, page
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332] or [11, page 125]. We chose e’-n -1/2 which, as we will see later, yields the
smallest possible error term. First, for any 01 and 02 in (d, zr-d), such that

101 -01 > where e n- /, we evaluate the joint density function of the random
variable T(01) T(02) T’(01)and T’(O). Since for any 0 we have

E cos jO [sin {(n + 1/2)0}/sin(0/2) 1]/2
3=1

and also since for the above choice of 01 and 02, 01 -t-02 < 2(r- d) we can show
n

A(01,02) coy {T(01), T(02)} E cs j01cs J02
g----1

[sin {(n + 1/2)(01 02)}/sin {(01 02)/2}

+ sinI(n + 1/2)(01 + 02)}/sin {(01 -[- 02)/2} 2]/4

O(1/) + O(1/d). (4.1)

Similarly, we can obtain the following two estimates
n

C(O1, 02) cv{T’(01)’ T(02)} E j sin jO1 cos jO2
j=l

(0/001){A(01,02)}

and
B(01’02) cv{T’(O1)’T’(02)} E j2 sin jO1 sin jO2

j=l

--(0/002){C(01,02)}

(4.2)

(4.3)

Also in the lemma in [3, page 1405] we obtain

var (T(01)) n/2 -- O(’-- 1), var (T’(01)) n3/6+O(n2/e’+ rile’2 + e,-3)

and
cov {T(O1),T’(O1)} O(n/e.’ + e.’- 2).

These together with (4.1)-(4.3) give the covariance matrix for the joint density
function T(01) T(02), T’(01) and T’(02) as

n/2 -[- O(e.’ 1) A(O1 02 C(01 01 C(02 01
A(01, 02) rt/2 -4- O(’- 1) C(01 02 C(02 02
C(Ol,O1 C(Ol,O2) n3/6 .-1- O(n2/e. ’) B(01,02)
C(O2, 01 C(O2, 02) B(O1, 02) rt3/6 -+- O(n2/e’)

(4.4)
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This covariance matrix, for all n k 4, 0 < 01, 02 < 71" such that 01 02, is positive
definite. Hence EI > 0 and, if Eij is cofactor of the (ij)th element of E, then

33 > 0, 44 > 0 and E34 E43. From [1, page 26] we have

POI,O2(O,O,x,Y)
(4r)- 1 E 1/2exp[_ {Eaax2 + 44y2 _}_ (Z34

_
E43)aY}/2 E ]. (4.5)

Now let q (E33/I E 1/2x and s (E44/lzl)l/2y. Then from (4.5) we can write

(42)-1] S[3ls41 / / [qs exp{- (q2 +2 + 2pqs)/2}dq ds (4.6)

where p (E34 + E43)/2(E33E44)1/2 and 0 < p2 < 1. The value of the integral in
(4.6) can be obtained by a similar method t-[1, page 211]. Let u- (1- p2)l/2q and
v- (1- p2)1/2S then we have

0 0

0 0
p

7r(1 p2)- 1/2{1/2 (Tr)- 1 / (1 z2) 1/2dz}
o

(1 p2) 1/2arccos p

sc (4.7)

where p cos. Use has been made of the fact that (see for example [1, page 27])

/ / exp{-(u2 + v2- 2puv)/2(1 p2)}dudv
0 0

p

r(1 p2)1/2/2 + (1 p2)1/2 / (1 z2) 1/2dz.
0

Therefore from (4.7) by differentiation we can obtain

(dI)/(dp) csc2(1 cot ). (4.8)

Using (4.8) we can easily show that
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cx 0

/ / qsexp{-(q2+ s2+ 2pqs)}dqds

= csc2{1 + (r- )cot }

which together with (4.8) evaluates the integral in (4.6) as

]" ] qs ]exp{- (q2 + s2 + 2pqs)/2}dqds

4csc2{ 1 + (r/2 )cot }. (4.9)

Now from (4.4) we can show

44 rib/24 -4- O(n4fc’) 33 (4.10)

and

34 O(t4/c’) 43"
Also from (4.10) and (4.11) and with the above choice of ’, we can obtain

P (]34 + 43)/2(3344)1/2 O(1/nd)-,O as n---,cx.

(4.11)

Therefore --,r/2, for all sufficiently large n and hence from (4.9), we can see

f / Iqslexp{-(q2+s2+2pqs)/2}dqds

=4+O(1/nd). (4.12)

Also from (4.1)-(4.4) we can write

{n/2 -4- 0(’ 1)}2{n3/6 A- O(n2/c’))2.

Therefore from this (4.6) and (4.12) the integrand that appears in (3.3) is asymptoti-
cally independent of 01 and 02 and since by the definition of D(e), the area of the inte-
gration is (r 2d)2 (r- 2d) + c2 r2 + O( + d), we have

E[N(d, r e’){N(c’, r e’) 1}] n2/3 + O(n/d + n + n’). (4.13)

We now evaluate the mathematical expectation of N2 in the interval (0, d). Similar
to [2] or [3, page 1407] we apply Jensen’s theorem on a random integral function of
the complex variable z,

T(z,w) E gj(w)cosjz.
3--1

Let g(r) denote the number of real zeros of T(z,w) in z < r. For any integer j from
[3, page 1408] we have

Pr{N(’) > 3n’ + j) < (2/V/-)e j/2 + exp( j/2 n2eJ/2) < 3e j/2. (4.14)
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Let n’-[3ne’] be the smallest integer greater than or equal to 3nU then since

N(’) < 2n is a nonnegative integer, from (4.14) and by dominated convergence, for
sufficiently large n we have

EN2(’) (2j- 1)Pr(N(U) > j)
3>0

(2j- 1)Pr(N(U) > j)-4- (2n’- 1 -4- 2j)Pr(N(U) > n’+ j)
O<j<n j=l

n n

_< 1) + a + 1 + n + O(n’)
1=1 1=1

O(n2e’2). (4.15)

The interval (r- U, r) can also be treated in exactly the same way to give the same
result. Now we can use the delicate result due to Wilkins [12] which states that
EN(O, r) n/v/-t- O(1). From this and (4.13), (4.15) and since e ’, we obtain

var{N(0, r)} E{N(0, U) + N(e’, r U) A- N(r U, 7r)}2 {EN(0, r)}2

n2/3 -4- O(n2e’2 + ./U -4- n2’) {n/v/- + O(1)}2

Use has been made of the fact that EN(e’,r-U).. EN(O,e’)- O(ne’), see [5, page
556] and therefore E[N(0, U)N(U,r- e’)] nO(U(O,e’)) O(n2e’) and also from
(4.15), EN2(0, U) EN2(r- e’,r) O(n2U2). Finally from (4.16) and since
U= n- 1/2, we have the proof of Theorem 3.

Acknowledgement

The author is most grateful to the referee whose detailed comments improved an

earlier version of this paper.

References

[1]

[4]

Cramr, H. and Leadbetter, M.R., Stationary and Related Stochastic Processes,
Wiley, New York 1967.
Dunnage, J.E.A., The number of real zeros of a random trigonometric
polynomial, Proc. London Math. Soc. lfi (1966), 53-84.
Farahmand, K., On the average number of level crossings of a random
trigonometric polynomial, Ann. Probab. 18 (1990), 1403-1409.
Farahmand, K., On the variance of the number of real roots of a random
trigonometric polynomial, J. Appl. Math. Stoch. Anal. 3 (1990), 253-262.
Farahmand, K., Level crossings of a random trigonometric polynomial, Proc.
Amer. Math. Cooc. 111 (1991), 551-557.



66 K. FARAHMAND

[6] Farahmand, K., Local maxima of a random trigonometric polynomial,
Theor. Prob. 7 (1994), 175-185.

[7] Thangaraj, V., Sambandham, M. and Bharucha-Reid, A.T., On the variance of
the number of real roots of random algebraic polynomials, Stoch. Anal. Appl. 1
(1983), 215-238.

[8] Maslova, N.B., On the variance of the number of real roots of random
polynomial, Theory Prob. Appl. 19 (1974), 35-52.

[9] Qualls, C., On the number of zeros of a stationary Gaussian random
trigonometric polynomial, . London Math. Soc. 2 (1970), 216-220.

[10] Rudin, W., Real and Complex Analysis, McGraw-Hill, New York 1974.
[11] Titchmarsh, E.C., The Theory of Functions, Oxford University Press, Oxford

1939.
[12] Wilkins, J.E., Mean number of real zeros of a random trigonometric

polynomial, Proc. Amer. Math. Soc. 111 (1991), 851-863.


