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1. Introduction

The theory of impulsive differential equations has become an important area of
investigation. Initial value problems of such equations have been discussed in detail
in recent years (see [3]). In this paper, we shall use cone theory and the monotone
iterative technique to investigate the existence of a minimal nonnegative solution of
the terminal value problem (TVP) for a first order nonlinear impulsive integro-
differential equation of mixed type in a Banach space.

2. Prehminaries

Let E be a real Banach space and P be a cone in E which defines a partial order in
E: x<y if and only ify-xEP. P is said to be normal if there exists a positive
constant N such that 0_<x<y implies Ilxll -<NllY]I, where 0 denotes the zero
element orE. P is said to be regular (or fully regular) ifxl<x2<..._<xn<...<y
(or xl<x2<...<xn<... with supllXnll <cx3) implies ]Ixn-xll----O as n--<x for

n

some x E E. The full regularity of P implies the regularity of P, and the regularity
of P implies the normality of P (see [2], Theorem 1.2.1). Moreover, if E is weakly
complete (in particular, reflexive), then the normality of P implies the regularity of
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P (see [1], Theorem 2.2).
Consider the TVP in E"

x’- f(t,x, Tx, Sx),

I,
t C J, t =/= tm,

(m 1,2,3,...), (1)

where J [0, cx), f C(J x P x P x P, P), 0 < tI <... < tm <..., tm--*c and
m--,c, Im e C(P, P)(m- 1,2,3,...), z* e P, z(o)-tmz(t), and

o

(Tx)(t)- J k(t,s)x(s)ds, (Sx)(t)- f h(t,s)x(s)ds, (2)
0 0

kGC(D,R+), D-{(t,s) GJxJ’t>_s}, hGC(JxJ, R+). Axlt=t =x(t+m)--
m

x(tn which denotes the jump of x(t) at t-tm. Here x(t+m) and x(t) represent
the right- and left-sided limits of x(t) at t- tin, respectively.

Let PC(J,E)- {x’x is a map from g into E such that x(t) is continuous at
t=/=tm and left continuous at t-tm and x(t+m) exists for m-1,2,3,...,
BPC(J,E) {x PC(g,E)’sup II x(t) II < } and TPC(J,E) {x PC(J,E):

tJ
x(c) lira x(t) exists}. Evidently, TPC(J,E) C BPC(J,E) and BPC(J,E) is a

t--,cx)

Banach space with norm II x II B sup II x(t)II. Let BPC(J, P) {x BPC(J, E)"
tJ

x(t)>_O for tJ}, TPC(J,P)- {xTPC(J,E)’x(t)>_O for tCJ} and J’=
J\{tl,...,tm,...}. A map xTPC(J,P) CI(j’,E) is called a non-negative
solution of TVP(1) if it satisfies (1).

3. Main Results

Let us list some conditions.

(H1) k* -sup f k(t,s)ds < oc, h*-sup f h(t,s)ds < oc and
tJO tJo

] h(t’,s)- h(t,s) lds O, t elim J.
t-.t

0

(H2) Ilf(t,x,y,z) ll <- p(t) + q(t)(a ll x ll + b ll Y ll + c ll z ll ), t e J, x,y,z, e P, and

Il Im(x) ll - am + bm ll X ll x C P(m 1,2,3,...),
where p,qC(g,R+) and a>_O, b>_O, am>_O bm>_O (m-1,2,3,...)
satisfying

p*- p(t)dt < cx, q*- q(t)dt < co, a*- am < oc, bm <
0 0 m=l m=l

(Ha) f(t,x,y,z) is nonincreasing in x,y,z e P and Ira(x is nonincreasing in x e P
(m- 1,2,3,...), i.e.
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f(t,x,y,z)< f(t,5,y,), tEJ, x> >_O,y>_y >_O,z>_ >0

and

Im(x)<Im(5), x_>5 >0 (m-1,2,3,...).
It is easy to see that when (H1)is satisfied, T and S, defined by (2), are
bounded linear operators from BPC(J,E) into BPC(J,E).
Lemma 1: If conditions (H1) and (tt2) are satisfied, then for any x E

BPC(J, P), the integral

f(t,x(t),(Tx)(t),(Sx)(t))dt (3)
0

and the series

Im(x(tm) (4)
m=l

are convergent.
Proof: Let x BPC(J,P). By virtue of (HI) and (H2) it is easy to see that

II f(s, (s), (Tx)(s), (S)(s)) II d
0

<_ f p(s)ds + (a q- bk* + ch*) Ii x II s f q(s)ds <
o 0

and

II Im((tm))II am + II II B bm < ,
m=l m=l m=l

so, integral (3) and series (4) are convergent. E!
Lemma 2: Let conditions (Hi) and (H2) be satisfied. Then

x TPC(J,P) fq CI(j’,E) is a solution of TVP(1) if and only if x BPC(J,P) is a
solution to the following impulsive integral equation

x(t) x* j f(s,x(s), (Tx)(s), (Sx)(s))ds E Im(x(tm)), t e g. (5)
t<tm<CX

Proof: Let xeTPC(J,P) fqCI(J’,E) be a solution of TVP(1). We first
establish the following formula:

x(t) x(O)-- / x’(s)ds-}- E [x(t+m )- X(tm)], t e J.
o O<tm<t

(6)

In fact, let tm <_ t <_ tm + 1" Then

1

X(tl)--x(O / x’(x)ds, x(t2)-x(tl-I-) j
o 1

2

x’(s)ds,

X(tm) x(t +m 1) / x’(s)ds,
m--1

(t)- .(t+ f ’()d.
m



74 DAJUN GUO

Summing up these equations, we get

/(t)- (0)- [(t+)_ (t)] ’()a
i=1 0

(i.e., (6) holds). Substituting (1)into (6), we obtain

x(t) x(O) + / f(s,x(s), (Tx)(s), (Sx)(s))ds + E Im(x(tm))’ t J. ()
J
0 O<tm<t

By Lemma 1, integral (3) and series (4) are convergent, hence, from (1) and (7) we

get

x* x(O) + f(s,x(s), (Tx)(s), (Sx)(s))ds + Im(x(tm) ). (S)

Solving x(O) from (8) and substituting it into (7), we find that x(t)satisfies equation
().

Conversely, if x BPC(J,P) is a solution of equation (5), direct differentiation
of (5) implies that x CI(j’,E) and x(t) satisfies TVP(1).

Consider operator A defined by

-*- [ (,.(),(T.)(),(S.)())d- I(.(t)). ()(A.)(t)
ttm<

Lemma 3: If conditions (H1) and (H2) are satisfied, then A defined by (9) is an

operator from BPC(J, P) into BPC(J, P).

Proof: Let x E BPC(J,P). Since f E C(J x P x P x P, P), Im C(P, P)
and x*P, we see that (Ax)(t)>O for tJ, and clearly AxPV(J,P). By (H1)
and (H2) we have

[I (Ax)(t) II <_ [[ x* II + / p(s)ds + (a + bk* + ch*) I[ x II B / q(s)ds

< m <

-< II x*ll + p* + a* + [b* + (a + bk* + ch*)q*] II x i] B, t

_
J,

and therefore

II Ax II B < II * II / p* / a* -t-[b* -t- (a zt- bk* -t- ch*)q*] II x II B. (10)
Hence Ax

In the following, let J0- [0, tl] Jm- (tm, tm+ 1] (m- 1,2,3,...).
Theorem 1" Let cone P be fully regular and conditions (H1) (H2) (H3) be

satisfied. Assume that
r b* + (a + bk* + ch*)q* < 1, (11)

where constants k*, h*, a, b, c, q*, b* are defined by (HI) and (H2). There exists a

nondecreasing sequence {Xn}CTPC(J,P) f3CI(J’,E) which converges on g
(uniformly in each Jrn, m-0,1,2,...) to the minimal solution TPC(J,P) V1
cl(g’,E) of TVP(1) in TPC(J,P)
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TPC(J,P) gl CI(j’,E) of TVP(1), we have

Moreover,

and

x(t) >_ 5 (t), t e J. (12)

(t)>_5(t’)>_x*, 0_<t<t’<ec, (13)

II II < (1 r)- 1( II *ll + ;* + a*), (14)

where r is given by (11) and p*,a* are defined by (H2).
Proof: Let xo(t -O, xn(t -(Axn 1)(t) (n- 1,2,3,...), i.e.,

Xn(t x*- j f(S, Xn_l(S),(TXn_l)(S),(SXn_l)(S))ds

E Im(xn_l(tm)), t e J(n- 1,2,3,...). (15)
<_trn < CX)

By Lemma 3, xn BPC(,P) (- 0,1,,...) n l(t)>_ 0- o(t) for t , so,
(15) and (H3)imply tha,t

O xo(t <_ xl(t)_<x2(t)_<...<_xn(t)<_..., t J. (16)
On the other hand, from (10) we know

II II B II Ax_ 1 II <_ d + II -1 tl B, ( 1, 2, 3,...),
whe d II *11 + P* + a* nd is given by (11), thu

II II B <-- d + (d + II ,- 2 II B) -- d - rd + r2(d + r II - 3 I1 B)
<_ d + rd +... + rn- ld + rn 11 x0 [1B d + rd +... + rn- ld d(1 rn)(1 r)- 1

_< d(1 r)- 1, (rt 1,2,3,...). (17)
It follows from (16), (17), and the full regularity of P that the following limit exists:

lirnxn(t (t), t e J. (18)
Now we have, by (17),

[[ f(S, Xn-l(S),(Txn-1)(s),(SXn-1)(8)) [[
<_ p(s) A- (a -f- bk* -4- ch*) II - 1 II Bq(s)

<_ p(s) + (a + bk* + ch*)d(1 r)- lq(s), s e J (n 1,2,3,...), (19)

so, from (15) we know that functions {Zm(t)} (n- 0,1,2,...) are equicontinuous in

Jm (rn O, 1, 2,...), where Jm [tin, tm + 1] and

Xn(t), tm < t

_
trn-t-1;

(t)-
(t+ ), t t.

Hence, observing (18) and using the Ascoli-Arzela theorem, we see that {Xmn(t)}
(n- 0,1,2,...) is compact in C(Jm, E (m- O, 1,2,...). and therefore, by diagonal
method, {Xn(t)} has a subsequence which converges to (t) uniformly in each Jm
(m- 0, 1,2,...). Since P is also normal and {xn(t)} is nondecreaisng, on account of
(16), we conclude that the entire sequence {xn(t)} converges to 5(t) uniformly in
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each Jm (m 0,1,2,. .), hence, T e PC(J,P).
T E BPC(J,P) and II T II B -< d(1- r)-1, i.e., (14) holds.

From (18 and (19), we see that

f(s, xn l(S), (Txn 1)(s), (Sxn )(s))-f(s, T (s), (TT )(s), (ST
as n---+cx:), s J

and

Moreover, from (17) we know that

(20)

II f(s, mn- (s), (Txn )(s), (Sxn )(s))- f(s,T (s), (TT )(s), (ST)(s))II
<_2p(s)+2(a+bk*-4-ch*)d(1-r)-lq(s), sEJ (n-1,2,3,...).

In addition, (17), (18) and (U2)imply that

(.._(t))-( (t))s .- (.- ,,3,...)
and

(21)

(22)

In Im(xn- l(tm))II am + d(1 r)-E bm (n 1,2,3,...), (23)
m--j rn--j m--j

E IlIm(T(tm))ll <- E am +d(1-r)-lE bm" (24)

Observing (20)-(24) and taking limits in (15) as noc, we obtain by virtue of the
dominated convergence theorern that

(t) x* / f(s,T (s), (TT)(s), (ST)(s))ds E Im(T (tm)), t G J, (25)
t<-tm<CX

which by Lemma 2 implies that T TPC(J,P) 71C(J’,E) and (t) is a solution of
TVP(1). From (25) we see clearly that (13) holds.

Finally, we prove the minimal property of T (t). Let x TPC(J,P) 
by any solution of TVP(1). By Lemma 2, x(t) satisfies equation (5). We have
x(t) >_ xo(t for t J. Assume that x(t) >_ x_ (t) for t E J. Then (15), (5) and
(H3) imply that x(t) >_ xn(t for t J. Hence, by induction, x(t) >_ x(t) for
t J(n- 0,1,2,...), and by taking the limit, we get x(t)>_ T(t) for t J, i.e., (12)
holds. The proof is complete.

Example 1: Consider the TVP of infinite system for scalar nonlinear impulsive
integro-differential equations

e-t -2t / -(t+l)s )1/33(1 + x, + v/x + + 2x2n + 1)- e3n e Xn(s)ds
cx) 0

/ X2n(s)ds. 1e4n ( l+t /5, Ot<,
0

1
(26)

xn(cx , (n 1, 2, 3,...).

Corollary: TVP(26) has a minimal, nonnegalive and continuously differenliable
on [O, cx)\ {1,2,3,...} solution {xn(t)} (n-1,2,3,...) satisfying
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0_< < x n=l

Proof: Let E 121 {x (Xl,...,Xn,...)" Xn < ] with norm 1] x ]l
n=l

Ixn and P {x (Xl,...,Xn,...) gl:xn 0, n 1,2,3,...}. Thus, P is a
n=l

normal cone in E. Since 121 is weakly complete, we conclude that P is regular. We
now prove that P is fully regular. Let xk (Xkl Xkn, .) E 121 (k 1, 2, 3,...)
satisfy xl_<x2<_..._<xk_<.., and M=supllxkll <c" Then, Xln _< x2n <_ <_

k

xkn<...<M (n--1,2,3,...), so, limx- --yn (n--12,3 .) exist For any
kcx n

,’"

positive integer i, we have xkn <-M (k 1,2,3,...), so, by letting k--<x, we
n=l o

find y < M. Since /is arbitrary, it follows that Yn I-< M < oe, and
n=l n=l

therefore y (Yl,’"Y,’") E 121. It is clear that x1

_
x2 xk y, con-

sequently, the regularity of P implies that II xk-x.II 0 as koe for some x 121.
Hence the full regularity of P is proven.

Now, system (26) can be regarded as a TVP of the form (1), where k(t,s)=
e--(t -l- 1)s h(t s) (1 + t + 82) 1

X- (Xl’" Xn’" "’)’ Y--(Yl"’"Yn"’’)’ Z--

(zl,"’,zn," "), f= (fl"" fn"")’ in which

e -t e -2t 1/3 -t
f,(t,x,y,z)- 2.+3(1 +xn+ Xn_l_l-lr-2X2r+l)--fi--yn e’4n Z/5

and tm m, Im (Iml,...,Imn,...) with

1Iron(x)-- 2n+m+2(xn+xn+2) (re, n--l,2,3,...),

and x*-(1.. 1.,,...)P. Evidently, fC(JxPxPxP,-P)
n

C(P, P) (m 1, 2, 3,...). (H1) is obviously satisfied since

and Im

tjsup / e -(t -t-1)Sds_ sup.o - 1(1 -e-(t + 1)t)<1
t.to

and

h* sup / ds </ ds r

tJ 1+t+s2- l+s2-2’
0 0

1 + t’ + s2
1 ds

t’ s2
0

ds <_-l -ricO

as t’--t. It is easy to verify the following scalar inequality:

us_<l-a+cu, 0<u<cx,0<a<l,
so, for tEJ, x,y, zGP,

If,(t,x,y,z)
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-<2h+ + + 3n + yn)+ + z2)

e- 2t 2 e- t{4__--< 2n + 3( 1 -1- II x II + e3n (- -t- 1/2 II Y II + 4 ,5 + II z II ),

and therefore,
o (n_ nln )II f(t,x,y,z) II f,(t,x,y,z) < e-t 1 2

o 4_,--" 1
n=l 2n+3 - -[’5nZ’=14n

-t

n=l n=l

120
e -4-e II II + II Y II + II z I1 ).

In addition, we have, for x E P,

1Im() < 2, + , + 1 II II,
and so

1II Ira(x)II I/mn() <
2TM + a II II.

Hence (H2)is satisfied for p(t)-(87/120)e -t, q(t)-e -t, a-l/8, b-1/6,
c-1/15, am-O and bm-l/2m+l (m-1,2,3,...), and therefore p*-87/120,
q*=l, a*=0andb*=l/2.

On the other hand, (Ha) is obviously satisfied, and

i.e., (11) holds. Hence the assertion follows from Theorem 1.
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