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We consider a problem of a partial linearization of noninvertible differen-
tial equations with impulse effect and establish sufficient conditions for the
dynamical equivalence.
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1. Introduction

The theory of differential equations with impulse effect has been developing rapidly in
the recent years. These equations are convenient for description of evolutionary pro-
cesses suddenly changing their state at certain moments. For the general theory of
impulse systems, the reader is referred to the monographs by V. Lakshmikantham,
D.D. Bainov and P.S. Simeonov [7], D.D. nainov and P.S. Simeonov [2, 3, 5], D.D.
Bainov and V. Covachev [4] and A.M. Samoilenko and N.A. Perestjuk [10]. The
classification problems of impulse systems was first considered in [9] and [11]. This
article is concerned with a specific aspect of classification, that reduces a noninverti-
ble impulse system to a simpler one. Sufficient conditions for the dynamical equiva-
lence of noninvertible differential systems are established. There are extensive works
on classification for ordinary differential equations and maps [1, 6, 8].

2. The Statement of the Problem

Let X and Y be Banach spaces. The norms in these spaces are denoted by I" I.
Consider the following system of differential equations with impulse effect at fixed
moments:

1This work has been performed with the financial support of Latvian Council of
Science under Grant 93.809.
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(1)

where:
(i) the maps A:l---Hom(X), B:l--,Hom(Y) are locally integrable in nochner’s

sense, where Hom(X) is the set of all linear bounded maps from X to X;
(ii) the maps f: tt X Y-,X, g: It X YY are locally integrable in Bochner’s

sense with respect to t for fixed x and y and they satisfy the Lipschitz
conditions with small e uniformly with respect to t also:

f(t,x,y)- f(t,x’,y’)l <_ e(Ix-x’l + Y-

and, in addition
sup f(t,x,y) < + oe;
t,x,y

(iii) C e Horn(X), D e Horn(Y) for E N and the maps Ii:XxY---X, Ki:XxY---Y
satisfy the Lipschitz conditions with small e:

Ii(x,y) Ii(x’,y’) < ( x- x’ + Y- Y’ ),

K(x,y)-Ki(x’,y’)l < (Ix-x’l + Y-Y’I),

and, in addition
sup Ii(x,y) <
i,x,y

(iv) the moments r of impulse effect form a strictly increasing sequence and

li_+rnr.
Let O(.,to, xo, Yo):[to,+Oe)XxY be a solution of the system (1), where

(to + 0, to, Xo, Yo) (Xo, Yo) and (I)(t, to, Xo, Yo) (x(t, to, Xo, Yo), y(t, to, Xo, Yo))" At
the break points, the values are taken at ri- O, unless it is specified otherwise. Let
U(t, r) and V(t, r) be the Cauchy evolution maps of the corresponding linear systems
with impulse effect:

dU/dt- A(t)U,

AVlt=i--CiV(ri-O),

dV/dt- B(t)V,

AVlt=ri=DiV(vi-O).
In addition, we assume that they satisfy the following inequalities:
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L sup U(t, 7")l V(v,t)[dT-+ E U(t’7i)1 IV(vi-O’t) ll
t<_r /

M sup )U(t,v) d + U(t, Ti)
t<-ri

(2)

(3)

Let us consider (1) and the system

dx/dt- A(t)x,
dy/dt B(t)y + g(t, x + v(t, x, y), y),

zx :. c(-0),
Ay

ri DiY(ri-O) + Ki(x(ri- O)

+ v(,- 0, (,- 0), v(- 0)),(- 0)).

(4)

Definition: Two systems of differential equations with impulse effect (1) and (4)
are dynamically equivalent if there exists a map H:IxXxY--*XxY with the
following properties:
(i) H(t, .,. ): X xYX xY is homeomorphism;
(ii) H(t, (I?(t, to, Xo, Yo)) (t, to, H(to, Xo, Yo)), if t >_ to, where : [to, + ec)--X x Y,

(t, to, Xo, Yo) (xo(t, to, Xo, Yo), Yo(t, to, Xo, Yo)) is solution of the system (4);
(iii) if the system (1) is autonomous and without impulses, then H does not depend

on t.

3. The Main Theorem

Theorem 1" Let hypothesis (i)-(iv) be satisfied, and suppose the inequalities 4Le <_ 1
and 2Me < 1 + v/i- 4Le are satisfied, where the constants L and M are specified by
formulas (2) and (3).

Thn ad () a daica va*.
Proofi Step 1: Let us consider the Banach space B1 of the bounded maps that

are continuous for (t,x,y) (’i, vi + ]xXxY and have first kind breaks for t ’i"

BI-{vlv:RxxxYXand t,x,
[v(t,x,y) <c}

with the norm II v II supt, x, u Iv(t, x, y) l.
Let us define the set"

Ge(P) {v e Be II v(t,,z)- v(t,,z’)l < p lz- z’l }. (5)

Gl(p) is a closed subset of the Banach space B1. In Gl(P) we consider the functional
equation:

+
vl(to, Xo, Z / U(to’7)f(v’Xo(V) + Vl(V, Xo(’r),z(v)),z(v))d7

o

E U(to’ri)Ii(xo(7i-O)+ Vl(7"i-O’xo(7"i-O)’z(Ti-O))’z(7"i-O))
to<_ v

(6)
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and
z(t) V(t, to)z + / V(t,’)g(’,Xo(" + Vl(Z,Xo(7"),z(7)),z(’r))d7

o
-[- E V(t’Ti)Ki(xo(Ti-O) -[- Vl(7"i--O’xo(vi--O)’z(7"i--O))’z(Ti--O))’
to<t

where Xo(r U(r, to)xO.
To solve the functional equation (6) we introduce the operator E from Gl(p) to

B1 by the formula:
+o

Ev(to, Zo, Z / U(to, r)f(r, Xo(r) +
o

and

E U(to’7i)Ii(xo(ri-O)+ Vl(Ti--O’Xo(Ti--O)’z(Ti--O))’Z(7i--O))
to_< r1

z(t) V(t, to)z -- / V(t, 7")g(v, Xo(" -t- Vl(7, Xo(V),z(7)),z(7))dT"
o

+ E V(t’vi)Ki(xo(ri-O) + Vl(Ti--O’xo(7"i--O)’z(Ti -O))’z(Ti-O))"
to<t

Next, we determine the difference IIEVl(to, Xo, z)-Ev(to, Xo, Z’ II, taking into
account the properties of f, Ii, v. We obtain that"

II Eve(to, Xo, Z) Evi(to, Xo, Z’)II <_ / 1) U(to, r)[ z(r) z’(r)[dr

+ IU(to, ri) Iz(ri-O)-z’(ri-o)ll+eMllVl-V’ II. (7)
tour /

On the other hand, we estimate the difference Iz(t)-z’(t) I, taking into considera-
tion the properties of g and Ki:

z(t)- z’(t) < V(t, to) z- z’ + c(p + 1) IV(t,’)l z(r)- z’(r) ldr
o

/ IV(t, ri) z(r -O)- z’(r -0)l ’to<r

+ II Vl V II IV(t, r) d" + IV(t, ri)
to o <

Multiplying the difference z(t)-z’(t)l by U(to, t) and integrating from to to
+ cx, we obtain:

+

/ U(t0, t) z(t)- z’(t) ldt < z- z’l / U(to, t) IV(t, to) ldt
o o
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+supr /
o

If(T, t) IV(t, r) ldt e(p + 1) U(to, T) Z(T) Z’(T) IdT
o

/ f(to, ri) z(ri-0)-z’(ri-0)l}
to< r /

(8)

Multiplying the same difference by U(to, r)l and summing for all with respect to
to <_ v’i, we get"

to<r

< z-z’l U(to, ri) W(ri-O, to)
to<r

+sup
rt0 o

U(to, ’)1 z(-)-

+ If(to, Ti) z(ri- 0) Z’(T 0) ’to<r ]

+ellVl_vill / /oto
Summing up (8) and (9) we get:

U(to, T) z(t)- z’(t) ldv /
to o _< ri

U(to, )1 z(-- o)- z’(,- o)

/ / /<_ L Iz-z’l +c(p+ 1)
o

U(to, r) z(r) z’(r) ldT

+ 1 U(to,’)I z(-i-o)-z’(--o) ’+ eM II Vl--Vl II .
to<r ]

(9)

(10)

Let us designate

U(to, 7)1 Z(T) z’(r) ldt + U(to, T)I Z(T- O) Z’(T- 0) Q.
to<r
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We suppose that

Inequality (10) means"

(p + 1)L <: 1.

Q <_ L(Iz z’ + e(p + 1)Q +M II Vl Vl II ).

Thus we have shown that

L( z- z’ + eM [I Vl Vl II)
1 L(p + 1)

Taking into consideration inequalities (7) and (10), we get

II EVl(to, Xo, Z)- Evi(to, o,Z’) II

1)L( z z’ + eM 11 v vi II)(P + 1 L(p + 1)
If 4L <_ 1, then there is p > 0 satisfying

We choose

eL(p + 1)
1- eL(p + 1) -< p"

1 2eL- V/1 -4eL

+M II Vl vl II. (11)

Then,
p+l-

1 V/1 4eL

and 2L(p + 1) _< 1. We insert this p into (11) and obtain

II EVl(to, Xo, Z) Evi(to, Xo, Z’) II _< p lz- z’ / eM(p -t- 1)II Vl vl I1"
If 2eM < 1 + v/1- 4eL, then eM(p / 1) < 1. We conclude that E is a contraction. It
shows that there is only one solution in Gi(p) satisfying the functional equation (6).

Next, we construct the map:

Hl(to, Xo, Z (hl(to, Xo, Z),Z (x0 -- vl(to, Xo, Z),Z).

It can easily checked that:

Hl(t, (t, to, xo, Yo) ((t, to, Hl(to, xo, Yo) ).

Step 2: In the same space Gl(P) we define the map by the following formula:

v2(to, Xo, Yo) J U(to, r)f(r, (I)(r, to, Xo, yo))dr
o

+ E U(to’ri)Ii(((ri-O’to’xo’Yo))"
to <_ "
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Next, we compute that
+

v2(t ((t, to, Xo, Yo)) J U(t, 7)f(v, (I)(7, to, Xo, yo))d7

+
t<_r

We construct the map"

(12)

H2(to, Xo, Yo) (h2(to, Xo, Yo), Yo) (Xo + v2(to, Xo, Yo), Yo)"

Applying (12), we conclude that

h2(t (t, to, Xo, Yo)) U(t, to)h2(to, Xo, Yo)"

Step 3: Let us prove that H2(to, Hl(to, xo, Yo) -(zo, Yo). It is sufficiently to check
that

h2(to, Hl(to, xo, Yo) hl(to, xo, Yo) + v2(to, Hl(to, xo, Yo))

x0 + vl(to, xo, yO) + v2(to, Hl(to, xo, Yo))

x0 / U(to’7)f(7’d(7’to’Hl(to’xo’Yo)))d7
o

E U(to’Ti)Ii(O(Ti-O’to’Hl(to’xo’Yo)))
to<v

+ ] U(to’7)f(7’dp(7’to’Hl(to’xo’Yo)))d7
o

+ E U(to’Ti)Ii(O(Ti-O’to’Hl(to’xo’Yo)))- Xo"
to <_r

St__t$ 4: Now let us prove Hl(to, H2(to, xo, Yo)) (xo, Yo). Let us consider the Banach
space B2 of the bounded maps that are continuous for (t,x,y,z) E(Ti, Ti+l]XXx
Y x Z and have first kind breaks for t

B2 -{v Iv: R,x X x Yx Z---+X and sup
t,x,y,z

with the norm II v II supt, z,u,z Iv(t,x,y,z) l.
Let us introduce the set:

v(t,x,y,z)[ <

Gu(p)--{veBullv(to, x,y,z)-v(to, x,y,z’)l <_plz-z’l }. (13)

In the space G2(P) we consider the functional equation:

v3(to, Xo, Yo, z) / U(to, 7)(f(7, O(7)) f(7, x(7) + v3(7 0(7), z(7)), z(7))d7
o
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+ U(to. )(((- o))
o < r

Ii(x(T O) 2t- v3(T O, ((T O),Z(7 O)),Z(7" 0))) (14)

and

(t) v(t. to)Z + f v(t. -)(-, () + (-, (-), (-)), z())d-
o

+ E V(t’vi)Ki(x(vi -0)+
to <_r

We introduce the operator E:

Ev3(to, Xo, Yo, z) / U(to, T)(f(7", ((T)) f(T, X(T) - V3(T (I)(T), Z(T)), Z(T))dT
o

+ U(to.)(((- o)) (.(- o)
r0<_r

+ v3(-o,(-O),z(-o)),z(-o))). (15)
In the same manner as we proceeded in the first step, we determine the difference

II Ev3-Ev I1" We make the same decisions and finally obtain that E is a contrac-
tion in G2(p). There is only one solution for the functional equation (14). Next, we

construct the map"

H3(to, Xo, Yo, z) (h3(to, Xo, Yo, z), z) (x0 + v3(to, Xo, Yo, z), z).

We notice that the map

((to, xo, Yo, Z v2(to, Xo, Yo) + vl(to, h2(to, xo, Yo),Z)

also satisfies the functional equation (14) and c E G2(P), therefore

v3(to, Xo, Y0, z) v2(to, x0, Yo) + vl(to, h2(to, Xo, Yo), z).

Now we set equal the third and the fourth argument of v3 and put them into the
expression. We obtain va(to, Xo, Yo, Yo)-O. Therefore Hl(to, U2(to, xo, Yo)
(o,o),

hi (to, H2(to, Xo, YO)) h2(to, Xo, Yo) -- Vl (to, H2(t0, Xo, Yo))

x0 + v2(to, xo, Yo) + vl(to, H2(to, xo, Yo)) xo.

We get that Hl(t .,. is a homeomorphism establishing dynamical equivalence of
systems (1) and (4).
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