RANDOM FIXED POINTS OF NON-SELF MAPS AND RANDOM APPROXIMATIONS¹

ISMAT BEG

Kuwait University, Department of Mathematics and Computer Science P.O. Box 5969, Safat 13060, Kuwait E-mail: IBEG@MATH-1.SCI.KUNIV.EDU.KW

(Received June, 1996; Revised December, 1996)

In this paper we prove random fixed point theorems in reflexive Banach spaces for nonexpansive random operators satisfying inward or Leray-Schauder condition and establish a random approximation theorem.

Key words: Random Fixed Point, Nonexpansive Random Operator, Weak Inward Condition, Leray-Schauder Condition.

AMS subject classifications: 47H10, 60H25, 41A50.

1. Introduction

Lin [6] proved a random version of an approximation theorem of Fan [3] and obtained several random fixed point theorems. Recently Xu [12] and Lin [7] obtained some more random fixed point theorems for self and non-self nonexpansive or condensing random operators. For other related work we refer the reader to [1, 2, 8, 9, 10, 11, 13]. In this paper we prove random fixed point theorems in reflexive Banach spaces for nonexpansive random operators, and generalize the results obtained by Lin [6, 7] and Xu [11]. A random version of best approximation theorem of Fan [3] is also derived.

2. Preliminaries

Throughout this paper, (Ω, Σ) denotes a measurable space with Σ a sigma algebra of subsets of Ω . Let (X,d) be a metric space, 2^X be family of all subsets of X, and WK(X) be family of all nonempty weakly compact subsets of X. A mapping $F:\Omega \to 2^X$ is called *measurable* if for any open subset C of X, $F^{-1}(C) = \{w \in \Omega: F(w) \cap C \neq \emptyset\} \in \Sigma$. A mapping $\xi: \Omega \to X$ is said to be a *measurable selector* of a measurable mapping $F:\Omega \to 2^X$ if ξ is measurable and for any $w \in \Omega$, $\xi(w) \in F(w)$. Let M be a subset of X. A mapping $T:\Omega \times M \to X$ is called a *random operator* if for any

¹This research partially supported by the Kuwait University research grant No. SM 119.

Printed in the U.S.A. ©1997 by North Atlantic Science Publishing Company

 $x \in M$, $T(\cdot, x)$ is measurable. A measurable mapping $\xi: \Omega \to M$ is called a random fixed point of a random operator $T: \Omega \times M \to X$ if for every $w \in \Omega$, $\xi(w) = T(w, \xi(w))$.

A mapping $T: M \to X$ is called k-set-Lipschitz $(k \ge 0)$ if T is continuous and for any bounded subset B of M, $\alpha(T(B)) \le k \alpha(B)$, where $\alpha(B) = \inf\{e > 0: B \text{ can be}$ covered by a finite number of sets of diameter $\le e\}$. The number $\alpha(B)$ is called the (set)-measure of noncompactness of B. A k-set-Lipschitz mapping T is a k-set-contraction if k < 1. A mapping $T: M \to X$ is called (set-) condensing if T is continuous and for each bounded subset C of M with $\alpha(C) > 0$, $\alpha(T(C)) < \alpha(C)$. Clearly a kset-contraction mapping is condensing. A mapping $T: M \to X$ is called nonexpansive if $||T(x) - T(y)|| \le ||x - y||$ for all $x, y \in M$. A random operator $T: \Omega \times M \to X$ is continuous (condensing, nonexpansive, etc.) if for each $w \in \Omega$, $T(w, \cdot)$ is continuous (condensing, nonexpansive, etc.) A random operator $T: \Omega \times M \to X$ is said to be weakly inward if for each $w \in \Omega$, $T(w, x) \in cl I_M(x)$ for $x \in M$, where cl denotes closure and $I_M(x) = \{z \in X: z = x + a(y - x) \text{ for some } y \in M \text{ and } a \ge 0\}$. When M has a nonempty interior, a random operator $T: \Omega \times M \to X$ is said to satisfy the Leray-Schauder condition if for each $w \in \Omega$, there exists an element $z \in int(M)$ (depending on w) such that

$$T(w,y) - z \neq a(y-z) \tag{1}$$

for all y in the boundary of M and a > 1.

A mapping $T: M \to X$ is said to be *demiclosed at* $y \in X$ if, for any sequence $\{x_n\}$ in M, the conditions $x_n \to x \in M$ weakly and $T(x_n) \to y$ strongly imply T(x) = y.

Theorem 2.1: [Xu, 12]. Let C be a nonempty closed convex subset of a separable Banach space $X, T: \Omega \times C \rightarrow X$ be a condensing random operator that is either (i) weakly inward or (ii) satisfies the Leray-Schauder condition. Suppose, for each $w \in \Omega$, T(w, C) is bounded. Then T has a random fixed point.

Remark 2.2: Theorem 2.1 remains true if C is separable instead of X being separable.

3. The Main Results

Theorem 3.1: Let C be a nonempty closed bounded convex separable subset of a reflexive Banach space X and let $T: \Omega \times C \rightarrow X$ be a weakly inward nonexpansive random operator. Suppose for each $w \in \Omega$, $I - T(w, \cdot)$ is demiclosed at zero. Then T has a random fixed point.

Proof: Take an element $v \in C$ and a sequence $\{k_n\}$ of real numbers such that $0 < k_n < 1$ and $k_n \rightarrow 0$ as $n \rightarrow \infty$. For each n, define a mapping $f_n: \Omega \times C \rightarrow X$ by $f_n(w,x) = k_n v + (1-k_n)T(w,x)$. Then, f_n is a weakly inward $(1-k_n)$ -set-contraction random operator. Hence by Theorem 2.1 (i) and Remark 2.2, there is a random fixed point ξ_n of f_n . Since X is a reflexive Banach space, $w - cl\{\xi_i(w)\}$ is weakly compact.

Let C be a weakly closed and bounded subset of X containing $w - \operatorname{cl}\{\xi_i(w)\}$. For each n, define $F_n: \Omega \to WK(C)$ by $F_n(w) = w - \operatorname{cl}\{\xi_i(w): i \ge n\}$. Let $F: \Omega \to WK(C)$ be a mapping defined by $F(w) = \bigcap_{n=1}^{\infty} F_n(w)$. Then, as in Itoh [5, proof of Theorem 2.5], F is w-measurable and has a measurable selector ξ . This ξ is the desired random fixed point of T. Indeed, fix any $w \in \Omega$, then some subsequence $\{\xi_m(w)\}$ of $\{\xi_n(w)\}$ converges weakly to $\xi(w)$. On the other hand, we have $\xi_m(w) - T(w, \xi_m(w)) = k_m \{v - T(w, \xi_m(w))\}$. Thus $\{\xi_m(w) - T(w, \xi_m(w))\}$ converges to 0. Since $I - T(w, \cdot)$ is demiclosed at zero, it follows that $\xi(w) = T(w, \xi(w))$.

If $T: \Omega \times C \rightarrow C$ then we have the following:

Theorem 3.2: Let C be a nonempty closed bounded convex separable subset of a reflexive Banach space and let $T:\Omega \times C \rightarrow C$ be a nonexpansive random operator. Suppose for each $w \in \Omega$, $I - T(w, \cdot)$ is demiclosed at zero. Then T has a random fixed point.

Theorem 3.3: Let C be a nonempty closed bounded convex separable subset of a reflexive Banach space X and has a nonempty interior. Let $T: \Omega \times C \rightarrow X$ be a nonexpansive random operator that satisfies the Leray-Schauder condition. Suppose for each $w \in \Omega$, $I - T(w, \cdot)$ is demiclosed at zero. Then T has a random fixed point.

Proof: Let $z = z(w) \in int(C)$ satisfy inequality (1). Take a sequence $\{k_n\}$ of real numbers such that $0 < k_n < 1$ and $k_n \rightarrow 0$ as $n \rightarrow \infty$. For each n, define a mapping f_n : $\Omega \times C \rightarrow X$ by $f_n(w, x) = k_n z + (1 - k_n)T(w, x)$. Then f_n is a random $(1 - k_n)$ -set-contraction operator that satisfies the Leray-Schauder condition. Then, by Theorem 2.1 (*ii*) and Remark 2.2, f_n has a random fixed point ξ_n . Define a sequence of mappings $F_n: \Omega \rightarrow WK(C)$ and a mapping $F: \Omega \rightarrow WK(C)$ as in the proof of Theorem 3.1. Then F is measurable and has a measurable selector ξ . This ξ is the desired random fixed point of T.

The following is a special case of Theorem 3.2, which extends the results of Lin [6, Theorem 3] and Lin [7, Corollary 3.2].

Theorem 3.4: Let C be a nonempty closed bounded convex separable subset of a Hilbert space X and let $T: \Omega \times C \rightarrow X$ be a nonexpansive random operator. Then there exists a measurable map $\xi: \Omega \rightarrow C$ such that

$$\| \xi(w) - T(w, \xi(w)) \| = d(T(w, \xi(w)), C),$$

for each $w \in \Omega$.

Proof: Let P be the proximity map on C, that is, P is a continuous map from X into C such that for each $y \in X$ we have

$$|| P(y) - y || = d(y, C).$$

Since both P and T are nonexpansive, the random operator $P \circ T: \Omega \times C \rightarrow C$ is also nonexpansive. By Theorem 3.2 there exists a random fixed point of $P \circ T$, that is, there exists a measurable map $\xi: \Omega \rightarrow C$ such that $P \circ T(w, \xi(w)) = \xi(w)$, for each $w \in \Omega$. Therefore,

$$\| \xi(w) - T(w, \xi(w)) \| = \| P \circ T(w, \xi(w)) - T(w, \xi(w)) \|$$
$$= d(T(w, \xi(w)), C),$$

for each $w \in \Omega$.

Remark 3.5:

- (i) Immediate corollaries to Theorems 3.1 are Lin [6, Theorem 6'(ii)] and Lin [7, Corollary 4.2 (iii)].
- (*ii*) Theorem 3.2 generalizes Lin [6, Lemma 1] and Xu [12, Theorem 1].
- (iii) The fixed point property of C and strict convexity of X in Xu [12, Theorem 1] are not needed.

(iv) Theorem 3.3 extends Xu [12, Theorem 4].

References

- [1] Beg, I. and Shahzad, N., Random fixed points of random multivalued operators on Polish spaces, *Nonlinear Analysis* **20** (1993), 835-847.
- [2] Beg, I. and Shahzad, N., Random fixed points of weakly inward operators in conical shells, J. Appl. Math. Stoch. Anal. 8 (1995), 261-264.
- [3] Fan, Ky, Extensions of two fixed point theorems of F.E. Browder, Math. Z. 112 (1969), 234-240.
- [4] Himmelbeg, C.J., Measurable relations, Fund. Math. 87 (1975), 53-72.
- [5] Itoh, S., Random fixed point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl. 67 (1979), 261-273.
- [6] Lin, T.C., Random approximations and random fixed point theorems for nonself maps, *Proc. Amer. Math. Soc.* 103 (1988), 1129-1135.
- [7] Lin, T.C., Random approximations and random fixed point theorems for continuous 1-set contractive random maps, Proc. Amer. Math. Soc. 123 (1995), 1167-1176.
- [8] Papageorgiou, N.S., Random fixed point theorems for multifunctions, Math. Japonica 29 (1984), 93-106.
- [9] Sehgal, V.M. and Waters, C., Some random fixed point theorems, *Contempor-ary Math.* 21 (1983), 215-218.
- [10] Tan, K.K. and Yuan, X.Z., Some random fixed point theorems, Fixed Point Theory and Applications (ed. by K.K. Tan), World Scientific, Singapore (1992), 334-345.
- [11] Wagner, D.H., Survey of measurable selection theorems, SIAM J. Contr. Optim. 15 (1977), 859-903.
- [12] Xu, H.K., Some random fixed point theorems for condensing and nonexpansive operators, *Proc. Amer. Math. Soc.* 110 (1990), 395-400.
- [13] Yuan, X.Z. and Roy, J.M., Some deterministic and random variational inequalities and their applications, J. Appl. Math. and Stoch. Anal. 8 (1995), 381-395.