
Journal of Applied Mathematics and Stochastic Analysis, 10:2 (1997), 191-196.

NEW GENERALIZATIONS OF THE POISSON
KERNEL

HIROSHI HARUKI
University of Waterloo, Department of Pure Mathematics

Waterloo, Ontario, Canada N2L 3G1

THEMISTOCLES M. RASSIAS
University of La Verne, Department of Mathematics
P.O. Box 51105, Kifissia, Athens 14510, Greece

(Received December, 1995; Revised April, 1996)

The purpose of this paper is to give new generalizations of the Poisson
Kernel in two dimensions and discuss integral formulas for them. This
paper concludes with an open problem.

Key words: Poisson Kernel, Integral Formula, Functional Equation,
Residue Theorem.

AMS subject classifications: 31A05, 31A10, 39B10.

1. Introduction

The Poisson Kernel in two dimensions is defined by

P(O, r)de__f 1 r2 1 r2

1 2r cos0 + r2 (1 reiO)(1 re ie)" (1)

Then, as is well-known, the integral formula

2r

1 / P(O,r)dO- 1 (2)2
0

holds. Here r is a real parameter satisfying rl < 1.
In [3] which is a motive of our present paper, a proof of (2) is given by using the

functional equation
F(r) F(),

where 2

F(r) defl=--/ P(O;r)dO
0

in Irl < 1.
In this paper we shall treat generalizations of (1) and (2):
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First, if we set
Q(O;a,b)de_f 1 -ab (3)

(1 aeiO)(1 be -io)’
where a,b are complex parameters satisfying a < 1 and bl < 1.

By taking a-r and b-r in (3) we find that (3) is a generalization of (1). In
Section 2 we shall prove the integral formula for Q(O; a, b)

27t"

2-- Q(0; a, b)de 1, (4)
0

where a,b are complex parameters satisfying a < 1 and bl < 1.
By taking a r and b r in (4) we find that (4)is a generalization of (2). The

method of proof of (4) in this paper is similar to the pooe given for (2) in [3], i.e.,
the method is by applying a functional equation.

Second, if we set

R(0; a, b, c, d) L(a, b, c, d) (5)
(1 aeie)(1 be -i0)(1 cei)(1 de

where a,b,c,d are complex parameters satisfying a < 1, bl < 1, c < 1 and

Idl < 1 and

d) d=ef(1 ab)(1 ad)(1 bc)(1 cd)L(a,b,c, 1 -abcd (6)
By taking c 0 and d 0 in (5) we find that (5)is a generalization of (3).

In Section 3 we shall prove the integral formula for R(O; a, b, c, d)
2r

1 / R(0; a b, c, d)dO 1, (7)27r
0

where a,b,c,d are complex parameters satisfying a < 1, b] < 1, c < 1 and

dl < 1. The method of proof of (7) is the calculus of residues (cf. [1, pp. 147-151]).
Remark 1: The purpose of this paper is to prove (4) and (7).

2. Proof of the Integral Formula (4)
Theorem 1:

2rr

1/ ,b)dO 1,2:r Q(O; a

0
where a, b are complex parameters satisfying a] < 1 and bl <1.
Proof: If we set

2- 2r

J J 1-ab .dO (by (3)),G(a,b)de=f2 Q(O;a,b)dO 2 (1-aei)(l-be -O)
0 0

then G(a,b) is a continuous function of a,b when a < 1 and bl < 1. Also, it is
clear that

G(0, 0) 1. (9)
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By (8) let us write

" 27r

/ 1-ab dO+2J 1-abG(a,b) 2 (1-aei)(1-beiO) (1- aei)(1 be i)
dO

0 r

for all complex a,b satisfying In < 1 and bl < 1.
Maki.ng the substitution 0- + r in the second integral and using the formulas

ein’- e- *" 1, one obtains

(1
0 0

2--- (1 aeiO)(1 be io) +
0

1 ab
(1 + aeiO)(1 + be io)

dO

for all complex values of a,b satisfying a < 1 and b] < 1.
From the identity

(1 + aeiO)(1 + be io) + (1 aei)(1 be io) 2(1 + ab),

we get
2(1 a2b2)

2io)G(a,b) 2 (1 -a2e2i)(1 -b2e
0

dO.

Making the substitution 0 1/2 in the above integral yields

2- 2-

1 a2b2 de 2 a2 iO)G(a,b) 2 (1 a2ei)(1-b2e -i) (1- eiO)(1-b2e
0 0

for all complex numbers a,b satisfying a < 1 and b < 1.
In view of (8), (10) we obtain

d0(10)

G(a, b) G(a2, b2) (11)

for all complex numbers a,b satisfying a < 1 and b] < 1.
By repeated applications of (11) we have

2 rt

G(a, b) + G(a b2n)(n 1, 2, 3,...)
for all complex values of a, b satisfying a < 1 and bl < 1.

lira a2n lira b2n 0 whichLetting n+ + oo in the above inequality, using

follow from the hypothesis that a] < 1 and b] < 1 and applying the continuity of
G(a, b) at (0, 1) yields

a(a,b) G(0, 0) (12)
for all a,b satisfying a < 1 and ]b < 1.

By (9), (12)we obtain
G(a,b)-i
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for all complex numbers a, b satisfying
(4).

and Ibl < 1. Hence, by (8) we get
Q.E.D.

Remark: Another proof of Theorem 1 is given as Corollary 1 to Theorem 2.

3. Proof of the Integral Formula (7)
Theorem 2:

2rl / R(O; a, b, c, d)dO 1,
0

where a,b,c,d are complex parameters satisfying [a < 1, bl < 1,

Proof: We have
27r

if dO
2rr (1 aeiO)(1 be -i)(1 cei)(1 de -io)

0

and

(13)

27I"

1 if" eiO ieiOdo.
2i (1 aeiO)(eiO b)(1 ceiO)(eiO d)

0

If we set z eiO then we obtain

Furthermore, we set
ieidO- dz. (14)

f(z) de__f z
--(1-az)(z-b)(1-cz)(z-d)" (15)

Hence, by (13), (14) and (15) we obtain

27r

2r (1 aeiO)(1 be i)(1 cei)(1 de io) 27ri
o I1 -1

where the right-hand side means the complex integral of the function f(z) along the
unit circle zl = 1 on the z-plane in the positive direction.

By (15) we note that f(z)is an analytic function in z < 1 except at z b and
z d each of which is a simple pole of f.

We consider two cases.

Case 1: Let b - d.

Suppose that R1 and R2 denote the residues of f(z) at z-b and z-d,
respectively. By the Residue Theorem (cf. [1, pp. 147-151]) we get

f1 / f(z)dz-RI+R2.2ri

Next, by a standard method (cf. [2, p. 242]), we shall calculate R1 and R2.
we have

(17)

By (15)

/1 --lim ((z- b)f(z))- lim, z b
z--+b z-+b[l az)(1 cz)(z d) (1 ab)(1 bc)(b d) (18)
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and

z dR2--1im((z-d)f(z))-lzmd(lz--.d az)(z b)(1 cz)-(1 ad)(d b)(1 cd) "(19)

By (17), (18)and (19)we can write

1 [ b d
2ri j

f(z)dz (1 ab)(1 bc)(b d) + (1 ad)(d b)(1 cd)
I1 =1

1 abcd
(1 ab)(1 ad)(1 bc)(1 cd) (20)

By (16), (20)we obtain

2r

2r
0

and therefore
2r

2r
0

1
L(a, b, c, d) (by (6)).

(1 aeiO)(1 be -io)(1 cei)(1 de

L(a,b,c,d)

L(a,b,c,d)

dO- 1 (21)
(1 aei)(1 be )(1 cei)(1 de io)

for all complex values of a,b,c,d satisfying a < 1, bl < 1, c < 1 and dl < 1.
By (5), (21)we get (7).
Case 2: Letb-d.

In this case, by (15) we have

z ()f(z)
(1 az)(1 -cz)(z-b)2"

By (22) we see that f(z) is an analytic function in z _< 1 except at z b which is a
double pole of the function.

In this case, let R denote the residue of f(z) at z b.
By the Residue Theorem we get

1/27ri f(z)dz- R.

Izl =1

In the following, we shall calculate R.
By Cauchy’s Integral Formula for the derivative (cf. [2, pp. 178-179]) we obtain

1] 1J z b)2dzI(z)dz - (1 az)(1 cz) / (z

))(1-az)(1-cz)
z=b

1 ab2c
(1 -ab)2(1 -bc)2

(23)

(24)
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1
L(a, b, c, b) (by (6)).

By (16), (24) we obtain (note that b- d)

and thus

27v

1 J dO
2 (1 aei)(1 be i)(1 cei)(1 be

0
L(a,b,c,b)

27v

2--1 ] L(a, b, c, b

(1 aeie)(1 be io)(1 cei)(1 be i)
dO 1

0

for all complex values ofa, b, csatisfying al <1, b <land cl <1.
By (5), (25) we get

R(O; a, b, c, b) 1

for all complex numbersa, b, csatisfying al <1, bl <1 and el <1.
From Case 1 and Case 2 we get the desired result (7). Q.E.D.

Corollary 1: (to Theorem 2) If we set c 0 and d 0 in Theorem 2, we obtain
Theorem 1. Therefore, Theorem 2 gives another proof of Theorem 1.

Corollary2: (to Theorem 2) If we set c a and d b in Theorem2 we obtain

l_j_ / Q(0; a, b)2dO 1 + ab

where
2 1 -ab’

0 1- ab (se (3))Q(0; a, b)
(1 aeie)(1 be ie)

e

where a,b are complex parameters satisfying ]a < 1 and b[ < 1.

4. Open Problem

Let
2r 2r

defl / b) + 2-%/ ( l-ab )n+lIn Q(O;a, n l dO dO (n O, 1,...),
o o (1 -aeiO)(1 -be -0

where a,b are complex parameters satisfying a < 1 and bl < 1.
By Theorems 1 and 2 we obtain

Io- 1 and 11 1 +ab
1-ab"

Open Problem: Compute In for n 2, 3, 4,

(26)
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