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The class of harmonizable fields is a natural extension of the class of sta-
tionary fields. This paper considers a strong law of large numbers for the
spherical average of a harmonizable isotropic random field.

Key words: Weakly and Strongly Harmonizable Fields, Isotropic, Non-
stationary, MT Integrals, Laws of Large Numbers.

AMS subject classifications: 60G12, 60G35.

1. Introduction

Isotropic random fields play a key role in the statistical theory of turbulence. In addi-
tion to the assumption of isotropy, these fields have classically been considered sta-
tionary. However, there are applications under which the assumption of stationarity
is not physically realistic, e.g. detection of a phase modulated signal. Harmonizable
fields provide a natural extension to the stationary class by retaining the powerful
Fourier analytic techniques while relaxing the assumption of stationarity.

This paper recalls the necessary theory of harmonizable isotropic random fields
and obtains conditions for a strong law of large numbers to be valid for the spherical
average of a harmonizable isotropic random field. Yadrenko [14] obtained a similar
result for stationary isotropic random fields.

2. Preliminaries

To introduce the desired class of random functions, recall that if a random field
X’Rn--,L(P) is stationary then it can be expressed as

X(t) / eixtdZ(A), (1)

where Z(. is a r-additive stochastic measure on the Borel a-algebra % of n, with
orthogonal values in the complex Hilbert space, L(P), of centered random variables.
The covariance, r(., ), of the field is
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[ ei(s t))tdF()t)r(8, t)

where E(Z(A)Z(B))= F(AV1B), F a positive finite Borel measure on n. Here
E(. denotes the expectation.

A generalization of the concept of stationarity is given by fields X:Rn-L(P)
with covariance r(.,-) expressible as

where F(-,. is a complex bimeasure, called the spectral bimeasure of the field, of
bounded variation in the Vatiali’s sense or more inclusively in Frchet’s sense; in
which case the integrals are strict Morse-Transue (cf. Rao [5] and Chang and ado
[1]). The covariance as well as the field are termed strongly or weakly harmonizable
respectively. Every weakly or strongly harmonizable field X:nL2(p) has an

integral representation given by (1), where Z:L:(P) is a stochastic measure (not
necessarily with orthogonal values) and is called the spectral measure of the field.
Both of these concepts reduce to the stationary case if F concentrates on the diagonal

’ of R x .
A subclass of random fields satisfy an additional condition called isotropy.

Isotropic random fields X(.), have covariance r(.,.) which are invariant under
rotation and reflection. Isotropic fields play an important role in the statistical
theory of turbulence, where direction in space is unimportant (cf. Yaglom [15]).
Swift [10] obtained a representation of a weakly harmonizable isotropic covariance as

dF(A, )t’) (2)

where J(.)is the Bessel function (of the first kind)of order u (n-2)/2 and
F(.,. is a complex function of bounded Fr6chet variation, with II II denoting the
vector norm.

Isotropic covariances r(s,t) are functions of the lengths Ilsll, Iltll of the
vectors s, t and of the angle 0 between s and t. A representation in spherical-polar
form for the covariances of harmonizable isotropic random fields was obtained by
Swift as

2
h(m’n) /ocjoo (AT.1)Jm u(A

($vl)($,r2) dF($, ’)(3)
m--0 /’-1

0 0

s (rl, u), t (v2, v) are the spherical polar coordinates of s, t in Rn, here
r IIs]], v2= I]t]l andu=s/vi, v-t/v2 are unit Vectors.

(ii) SL(. ), 1 < <_ h(m, n) (2m + 2u)(m + 2u- 1)!m!, rn > 1, Slo(U) 1 are
the spherical harmonics on the unit n-sphere of order rn.

n
2 22v A- 1(iii) on > O, an F()r7, with F(.,. as a complex function of bound-

ed Frchet variation.
Using (3) and Karhunen’s Theorem, the spectral representation for a weakly har-

where
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monizable isotropic random field is given as

h(., )

m=0 /=1
0

where Z/m( satisfies

(,7-). dZm(")

E(ZIm(B1 Zlm,(B2)) 6mm,611,F(B1, B2)

(4)

with F(.,.) a function of bounded Frchet variation with the stochastic integral
being in the Dunford-Schwartz sense, ([2], IV.10) and with 6ram, the Kronecker delta.

The theory of harmonizable random fields applicable to the statistical theory of
turbulence is being developed by Rao, Swift, and others. The papers .of Rao [7, 8]
obtain representations for harmonizable isotropic random fields and their application
to some sampling and prediction problems. The local behavior of some classes of
harmonizable isotropic random fields has been considered by Swift [11-13].
Asymptotic properties of bispectral density estimators have recently been considered
by H. Soedjak [9]. The book by Kakihara [3] gives a general treatment of multi-
dimensional second order processes which include the harmonizable class.

3. Laws of Large Numbers

Let X:Rn--L(P) be a strongly harmonizable isotropic random field and let 7R be
the average over B- {t: Iltll <_ R}, the ball of radius R centered at the origin.
Thus

X(t)dt

"nRn 7-n-1
(7-)’ dZ(,)dT-,

0 0

where (5) follows from (4) and the orthonormality of the spherical harmonics on B
(cf. Lebedev [4]). To obtain a law of large numbers for 7R, one must show the
variance Of 7R is uniformly bounded, (cf. Rao [6]). Since X(t) has zero mean, the
variance of 7R is given as

R R

E(72R) n -1 n -1

wnR2n 7"1 7"2
0 0 0

j,(7"1)S,()jT"2)dF(),),)dT"ldT"2
0

/2J"
’:7"1)J" "’ 7"2 ),’4

7" dT"
(.,)’ 1 2 ’)" (6)

The relation (cf. Lebedev [4])

xl/2’ (7)
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which is valid for all x with C, being a constant which only depends upon u, implies

R R

_< / -"/2lJ(=)l .d

0

R

_< f ./ C
0

’k’()7")l/2d7"
n+l

2CuR 2

(n + 1)A 2

Using this expression together with (6) gives

n2 2

WnR2n 0 0

R R

f / V/27"/21Ju(vl)[ [Ju(’v2)
(,)

0 0

dF(A,A’)

2 2 o

WnRn- l(n - 1)2 n- 1

o o (;L’) 2

(s)

where C and D are constants given by (7). Thus 7R-0 in L2(P) as R--,oo if and
only if

n-1 <00.

o o (,,’)

The preceding is summarized in the following proposition.
Proposition 3.1: The spherical average

1 / X(t)dtyot(B)

of a strongly harmonizable isotropic random field X(. over B {t: il ll
_

R}, the
ball of radius R centered at the origin, satisfies the weak law of large numbers if and
only if

o o (,,’)

There are many harmonizable isotropic random fields which satisfy condition (9),
for instance, the field constructed by Swift [10]. In particular, Swift shows that if the
spectral bimeasure F(.,.) is absolutely continuous, with density f, having the
specific form
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f(A, A’) wnvAm + 2v + l(A,)m + 2v + 1

e ()’2 + ()’’))) (10)

which is positive definite and where as before wn is the surface area of the unit sphere
and v (n- 2)/2, then

2 2r(’l, T2,0 [1--2VlT2COS0 -- T12] e(-(r12 -l-r))

is the covariance of a strongly harmonizable isotropic random field. Using (10) with
m- 1 and simplifying (9) one obtains

i i IdF(A’A’)l -(F(nt-!)2____n-14
o o (’) 2

The condition (9) is also enough to guarantee that 7R--,oc almost everywhere as

R--cx), so that a strong law of large numbers prevails for the spherical average of a

strongly harmonizable isotropic random field. In particular, the following theorem
will now be shown.

Theorem 3.1: If a strongly harmonizable isotropic random field x:n--L(P)
has a spectral bimeasure F(.,-) which satisfies the inequality (9), then the spherical
average 7R satisfies the strong law of large numbers.

Proof: The strong law of large numbers will first be shown to hold for a sequence
of a radii Rk k6, where 0 < 5 < 1/(3n- 1). Equation (8) implies that

oo 2 2 oo
14nCvDvn)2 k__l- E(7k) < <oc, (11)

k=l wn(n+l
hence 7Rk----O almost everywhere as

and

Now letting

f +Ym(V) a. j
0

dk sup ")’R- ")’R
kRk <_ R <_ Rk + 1

one obtains

dk < n 1
Rn 1)i

Rk R

rr<-ll Yi(’r) dr +--i rr<-llYi(r) Idr
Rk

Rk Rk + 1

r-ll Yl(r) dT +-f2’,_
o Rk

Applying the elementary inequality (a + b)2 _< 2(a2 + b2) gives

2rt2 (/i+l--R)2

Wn 0 0

n-lvT-1 Y(T2 ldT27"1 Y(rl) )1 d
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Rk

n-lv-I y(v1T1 Y(r2) dvldr2
0

Now an application of the Cauchy-Buniakowski-Schwartz inequality yields

E IY(71) Ylo(r:)J < c. / / J(T1)J’("V7.1)dg(’(2
o o

but the inequality (7) implies

0 0 7"12 -- 1/47" -- 1/4 0 0
()),)v -t- 1/2"

(12)

so that

E Y(rl) lYe(v2)] < 21/2D/2
T -b 1/47" -b 1/4 (AA,) q- 1/2"

0 0

Taking the expectation of (12) gives

2n2 (R+I-R)2
n-1 n-1E Y(7"1 d7"2E(d2k) -< ’--Y R" r r2 )] Ylo(v2) Idvln 0 0

Rk Rk

--2kn / / n-I n-lE Y10(7"2-’b 7"1 7"2 Y10(7.1) )1 dT"idT"2
0 0

n n 2 (Rk Rk)3/2t< M
(Rk + 1 Rk)

,.R /2 -t- 1

where M is the finite constant given by

2o: C:. /: r) /:

0 0

dF(A,

Replacing Rk with k5 and simplifying one obtains

< k(n- 1) + k(3n- 1)’

where A and B5 are finite constants which do not depend upon k. Hence
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80 that dk--,O almost everywhere a8 k--,cx3. But this implies 7R--0 almost every-
where, as R---oc, proving the assertion. F!
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