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1. Introduction

The purpose of this paper is to study the stability of stationary or periodic in law
solutions for the linear difference and differential equations in Banach space under
small perturbation of coefficient-operators. The problem of stability of solutions for
stochastic equations is studied intensively by different methods and for various
dynamical stochastic systems. See Khasminskii [9] about the pioneering results and
Khaminskii and Mandrekar [10], Arnold and Khasminskii [1], Baladi and Young [2],
Hinrichsen and Pritchard [8] and Wirth and Hinrichsen [14] for modern methods, new

results and more references. Our results are similar to Maslow [12], which are about
stability of the solution of a Cauchy problem for operator equation in Banach space.
We will also need some results of [3] concerning the existence and structure of
stationary and periodic solutions of operator equations in Banach space. We consider
stability of solutions in the mean on or on R and we deal only with bounded per-
turbation.

2. Assumptions

Let (B, I1" II) be complex separable Banach space, 0 be the zero element in B, and
L(B) be the Banach space of bounded linear operators on B with the operator norm,
also denoted by 11 II, For the function z’--,B, the continuity at a point to means
that

II (t)- (to)II o, t--to.
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Function x is differentiable at a point to E if there is an element y E .B such that

t-- to

The element y is called the derivative of function x at the point to and is denoted by
symbol x’(to). With the help of these definitions, the classes C(,B) and CI(,B)
are defined by the usual manner. Let r(A) be spectrum of operator A L(B).
Denote S: {z C z 1}.

In this paper we consider only B-valued random processes with discrete time
parameter {x(n):n 7/} or with continuous time parameter {x(t):t }, which is
continuous on . For random elements and various concepts of convergence of
random elements see [11]. The equality of random elements is always the equality
with probability 1. The solution of a differential equation is a B-valued random
process {x(t):t E } with continuous derivative {x’(t):t }. The uniqueness of the
solution is within stochastic equivalence.

The B-valued process {x(n):n 7/} or {x(t):t e} is called v-periodic with
period v N or r > 0 if all finite-dimensional distributions are periodic with period r
in time shift. For details see [3].

3. Difference Equations

Theorem 1: Let operators A L(B) and {Am(n),n 7/,m > 1} C L(B) satisfy the
conditions

(i) o(A) 3 S -0;
(ii) 6m: sup{ II Am(n)- A II n }0, m--,oo.

Then

x(n + 1) Ax(n) + y(n), n 77, (i)

and for every m greater than some mo N,

Xm(n + 1) Am(n)Xm(n + y(n), n 77, (2)

has a unique stationary solution {x(n):n G 7/} and unique solution {Xm(n):n G 7/}, res-

pectively, for which

and

E I] x(O)II < + oo, sup E ]] Xm(n II < + , n

sup E II Xm(n)- x(n) II -0, m--+oo (3)
n7/

for each stationary B-valued process {y(n): n e 7/} with E II y(0)II < / .
Remark: Theorem 1 in 3.1.1 in [3] states that condition (i) of Theorem 1 is

equivalent to the existence of a unique stationary solution {x(n):n } with
E[]x(O)] < + of equation (1) for every stationary process {y(n):ne} with
E II y(0)II < +

Prf of Threm 1: Let _(A): =(A){zGC zl <1}, +(A):
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r(A)\r_ (A)and let P_ and P+ be spectral projectors corresponding to spectral
sets r_ (A) and r+ (A), respectively. As proved in [3], for every n E ;, we have

x(n) F, Gjy(n j 1), where

)J (j), j e 7/.Gj: (AP_)JI(j >_ 0)(J) (AP + I(j <_ 1)

The above series expansion of x(n) is convergent with probability 1 in norm B
and EIIx(0) ll < 4-o0. Moreover, L: IIGjll < 4-0.

Let rn07/ such that L5m<l for
j eT/
rn>m0 and let rn>rn0. We prove the

existence of a solution for equation (2) by showing that the sequence

XJm+ l(rz 4- 1)" AxJm+ l(n)4- (Am(n) A)xJ(n) + y(n), n e 7/; j > O,
(4)

converges as j--oo to a solution of (2). First we have

AJrn
_

iSrn/kJrn-1, j > 1. (5)

for Aim: sup E II XJm+ 1(n) XJm(n)I1" From [11], for every n e :g, there is a random

element Xm(n such that Xm(n Xm(n), joo with probability 1. In addition, sup
m>l

sup E II Xm(n)II < +oo and taking the limit in j in both sides of equality (4) we

obtain equation (3). From (1) and (2)it follows that

sup E Ii x(n)- Xm(n II <- LSmE II Xm(n) [I

and

L5msup E II x(n) Xm(n II <- L5------Elhe7
Theorem 1 is proved. Vl

Remarks: 1. Theorem 1 may be generalized to encompass more general perturba-
tions. Let

{Am(n) n 7/,v >_ O,m >_ 1} C L(B)
and

5: sup II Am(n) A II + sup
nE’ v=l

Then the conclusion of Theorem 1 is valid for the solutions of the equations

+ 1) + -)+ e m > 1.

2. All processes, which occurred in Theorem 1, are stationary connected
processes.

Let {A(n):nE7/}CL(B) and, for a fixed rN, let A(n+r)=A(n), n77.
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Define B" A(w- 1)A(w-2)...A(1)A(0).
Theorem 2: Let operators {A(n)’n e -} and {Am(n),n e 7/< m >_ 1} C L(B)

satisfy the condilions
(i) (B)S-;
(ii) supn e ; I] Am(n)- A(n) II --,0, moo.

Then
x(n -t- 1) A(n)x(n) + y(n), n E 7] (6)

and for every m greater some mo IN lhe equation

Xm(n + 1) Am(n)xm(n + (n), n e 7/ (7)

has a unique w-periodic solution {x(n)’n ;} and unique solution {Xm(n): n 7]), res-
pectively, for which

E [I x(k)[[ < -t-c, k 1,2,..., w; 8up E II ()II < +

and
8up E II m(n)- ()II-+0, m-+; n

for each w-periodic process {y(n):n 7/} with E II y()II < / o, - 1,2,...,
Proof: The proof of Theorem 2 is similar to that of Theorem 1 and we give only

new arguments. First, notice that for each process {y(n):ne7]} with
sup E [[ y(n)[] < +oe, equation (1) under condition (i) of Theorem 1 and condition
hE7/

(ii) of Theorem 2 has a unique solution {x(n):n } with sup E
hE7/

The proof of this statement follows along the lines of proof of Theorem 1.
It is easily seen that the solution {x(n):n ’} for equation (6) satisfies the

equation
x((u + 1)r) Bx(r)+ z(), u 7/ (8)

with

z(u): Z A(w- 1)A(w- 2)...A(w- t)y((u + 1)w- t- 1)+ y(( + 1)w- 1), e ;.
t--1

Then, using the previous statement, we define {x(w)’ E 7/} as a solution for
equation (8) and with

x(uw + 1): A(O)x(w)+ y(w),

x(w + 2)" A(1)x(w + 1)+ y(uw + 1),

x(uw + w 1)- A(w- 2)x(uw + w 2)+ y(uw + w- 2),

we have the solutions {x(n): n e 7/} of equation (6).
Now, using the approximating method of Theorem 1, it is easy to prove the exist-

ence of solution to equation (7) for every m greater than some m0 G N. Theorem 2 is
proved.
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4. Differential Equations with Random Forces

Theorem 3: If operators {A; Am(t) m >_ 1, t e R} C L(B) satisfy the following condi-
tion8

()
(it)
(iii)

then

r(A) V i O;
Vm >_ 1: Am C(R,L(B));
f II Am(t)- A II 2dt--*O, rnoc,

x’(t) Ax(t) + (t), t e (9)

and for every rn greater than some rn0 E N, the equation

Xm(t) Am(t)Xm(t + (t), t (10)

has a unique stationary solution {x(t)’t ,} and unique solution {Xm(t):t }, res-
pectively, with

E II (0)II < / ; sup E I[m(t)II < /

and
sup E II (t)- mft) II 0, m
tE

for each stationary process {(t)" t } with E [[ (0)[[
Proof: In [3], 7.1.1 it was shown that condition (i) of Theorem 3 is equivalent to

the existence of a unique stationary solution {x(t):t e } to equation (9) with
E [[ x(0)I] < +c for each stationary process {(t):t E } with E [[ (0)]1 < +c.
Moreover, with probability 1 for every t ,

x(t) / G(t- s)(s)ds, (11)

where G(t)" eAtp + I(t < o)(t) + eAtp -I(t > o)(t), t , with spectral projectors

P_ and P+ corresponding to spectral sets
{z Rez > 0), respectively. The integral in (11) is a Bochner integral .[15], with res-
pect to Lebesgue measure on R. It is known that II G(t)II <-Le-a It t G with
some L >_ 0, a > 0. In similar way, we can prove the existence of a unique solution
{Xm(t)" t ) of equation (10) for rn sufficiently large. Moreover, for each t

Xm(t / G(t- s)(Am(t A)xm(s)ds + x(t), rn >_ mo (12)

and
sup sup E II m(t)II < + "m>_l teR

Then the conclusion of Theorem 3 follows from (11), (12), and condition (iii).
The following theorem is a consequence of Theorem 2.

that of Theorem 3 and is omitted. Let
The proof is similar so

A e C(N,L(B)); A(t + r) A(t), t e
and let U:N--L(B) be an invertible valued solution to the problem
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U’(t)- A(t)U(t), t E R;

U(O)- ,
where I is the identity operator, see [13].

Theorem 4: Let operators {A, Am} C C(R,L(B)), m >_ 1 satisfy the following
conditions

(i) A(t + v) A(t), t ;
(ii) a(U(v)) f’l S
(iii) f 11 A(t)- Am(t II 2dt-*O, m-c.

Then, x’(t) --A(t)x(t) + (t), t , and for every sufficiently large m the equation

x(t) (A(t) + Am(t))Xm(t -t- (t), t

has a unique v-periodic solution {x(t):t } and {Xm(t):t }, respectively, with

sup E II (t)II < + , sup E II m(t) II < + ,
0<t<- t

and
sup E II (t)- gm(t II-0,

for each v-periodic process {(t)’t E } with

7"

E II () II </-ds

0
Consider also the following generalization of the last theorem.
Condition A: Let the functionA C(,L(B) have exponential dichotomy on

with exponent index a > 0 and coefficient L as in [7].
Theorem 5: Let operators {A, Am) C C(R,L(B)), m >_ 1 satisfy the following

conditions
(i) Condition A for the function A;
(ii) f II A(t)- Am(t II 2dtO, mx.

Then, x’(t) A(t)x(t) + (t), t and for every sufficiently large m,

X’m(t (A(t) + Am(t))xm(t + (t), t e

has unique solutions {x(t)’x } and Xm(t): t e } with

and

sup E II (t)II < -4-, sup E II Xm(t)II < +
tE[ t

sup g II (t)- m(t)II 0, m
te

for each process {(t)" t G } with sup E II (t)II < + .
te

Pmarks: 1. Theorems 1-5 may be generalized to nonlinear equations, which are
nearly linear as in [3]. The nonlinear equation of Riccati type [4] shall be considered
in the next paper.

2. See [5, 6] for analogous results under some other conditions.
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