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Let T;(x),T(x),...,T(x) be a sequence of normalized Legendre polyno-
mials orthogonal with respect to the interval (-1,1). The asymptotic
estimate of the expected number of real zeros of the random polynomial
goT(x) + glT(x) +... + gnT(x) where gj, j 0,1,...,n are independent
identically and normally distributed random variables with mean zero and
variance one is known. The present paper considers the case when the
means and variances of the coefficients are not all necessarily equal. It is
shown that in general this expected number of real zeros is only dependent
on variances and is independent of the means.
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1. Introduction

Let {gj(w)}= o be a sequence of independent normally distributed random variables
defined on a probability space (fl, J,Pr). Let Nn(a b) be the number of real zeros of

Pn(x) in the interval (a,b)where

in which
Pn(x) Pn(x’w) E gj(w)T(x)

.=0
(1.1)

T(x) v/j + 1/2)Tj(x),

and Tj(x) is a Legendre polynomial and therefore T(x)is a normalized Legendre
polynomial orthogonal with respect to the weight function unity. For the case of
identical normal standard distributed coefficients Das [3] shows that
ENn(- 1,1) n/V/- when n is sufficiently large. Recently in an interesting paper
using a delicate method, Wilkins [12] shows that ENn(-1,1)- n/v/+o(n5) for
any positive 5.

Here we consider the case when the means and variances of the coefficients of
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(1.1) are not all equal. We show that ENn(- 1, 1)is independent of E(gj) but depen-
dent on var(gj). This is in complete contrast to the result obtained by Farahmand
[5] for the random algebraic polynomial ,=ogj(w)xJ, who showed that
ENn(-c,oc) is independent of variances and dependent on the means. Neverthe-
less, as far as ENn is concerned there are similarities between polynomials of type
(1.1) and random trigonometric polynomials =ogj(w)cosjx, see for example [4],
in that both have O(n) number of real zeros and both are effected by the variance of
the coefficients and not by their means. A survey of the earlier works together with
comprehensive references on the subject can be found in Bharucha-Reid and Samband-
ham [1].

We prove the following theorems:
Theorem 1: If the coefficients of {gj}=0 of Pn(x) have means and variances

#1 and r > 0 for 0 <_ j <_ n’ and #2 and r> 0 for n’ < j <_ n, respectively, then for
all sufficiently large n, the mathematical expectation of the number of real zeros of
Pn(z) satisfies

{ }1/21 4-1) 4-
EN,(- 1, 1)

(n’+ 1)3(2n’ + 3)l/(r- r)/(2n’ 1/ n3r
,/5{(.’ + 1):(:.’ + + 1/1/ 

Although Theorem 1 is of interest in that it allows any integer values for
0 _< n’ <_ n, it is of interest to study ENn(- 1,1) for the special cases whether or not
n’/n tends to zero. The following theorems, which are in fact the corollaries of
Theorem 1, give these results.

Theorem 2: If the coefficients gj’s are distributed according to the assumptions
of Theorem 1, then for n’---oo as n---oc,

ENn( 1, 1) { n’3r12 + (n3 n’3)r22 }1/2-{n o. -l- n n o.22 }1/2

Theorem 3: Under the assumptions of Theorem 1, for n’/n--,O as n--oc,

nENn( 1, 1) V/.
The result in Theorem 3 does, indeed, correspond to that of Das [3], and therefore

it shows that Das’ result remains valid for polynomials with non-identical distributed
coefficients. These non-identical cases, of interest in their own right, are important as

they lead to the expected number of crossings of two polynomials with different de-
grees. Let

n n

Fn(x fj(w)T(x) and Qn(X)- qj(w)T(x).
j=0 3=0

Then, for n > n’, the expected number of real zeros of polynomial

Fn(x Qn,(X) {fj(w) qj(co)}T(x) + fj(w)T(x),
j=0 j=n

can serve as the expected number of crossings of Fn(x by Qn,(X). On the other

hand, Fn(x)-Qn,(x can be represented as n_._ogj(w)T(x where gj(w)=
fj(w)- qj(w) for 0 < j _< n’ and gj(co) qj(w) for nZ j _< n, which is, indeed, in the
form of Pn(x) studied in Theorem 1-3.
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2. A Formula for the Expected Number of Crossings

Let (I)(t) and (t) be the distribution and density functions of a normal standard ran-
dom variable, respectively. Then from Cram6r and Leadbetter [2, page 285] we have,

where
A2 var{Pn(x)} B2 var{P(x)},

0 cv{Pn(x)’ P(x)}
AB "l E{Pn(x)}’

A2 BOA1/AA2-E{P(x)} and - B(1 -02)1/2"
x

Let C- cov{Pn(x),P(x)}, A2- A2B2 -C2 and eft(x)- fexp(-t2)dt, then from
0

(2.1) we can write the extension of a formula for the expected number of real zeros

obtained by Kac [7] and Rice [8] as

where

and

ENn(a,b Ii(a,b + I2(a,b),

(11(a, b) / a-exp
a

A2" 2C1’2 + B2")2A2 dx

I2(a,b / Vl A22-C’1 exp
a

7rA3 2A2 X/rAA
dx.

(2.3)

(2.4)

Now let Ti)(x), k- O, 1,...,n; i- 1,2,3 represent the ith derivative of Tk(x with
respect to x and set

RJ(.) Ti)+I(.)TJ)(x) Ti)+I(.)TJ)(.), O, 1,2, 3; j O, 1.

Then from the Darboux-Christoffel formula [6,
(k + 1)(2k + 3)1/2/2(2k + 1)1/2 we can write

n n

j=0 j=n’+l

page 1024] putting dk

Similarly we obtain

_2, nl0 2 10 dn,nlng(Xalan,rtn,(X + o’2{dntn (x) )}.

dn 30 dn’ l::,21B: +

+0- {dn 30 dn/?21 (2.6)
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and
(2.7)

At this stage we abandoned the calculations of A1 and A2 as only an upper limit for
these are required. We proceed to evaluate these upper limits as well as the domin-
ant terms for A2, B2 and C in the following section.

3. Approximations

In order to find the asymptotic value of ENn(- 1,1) we let e- n-1/4 and we first
evaluate ENn(- 1+ e, 1-e). To this end, we use the Kac-Rice formula (2.2)-(2.4),
and therefore, we need only to estimate the terms involved in (2.5)-(2.7) outside the
e-neighborhoods of 1 and 1. For the intervals (- 1,- 1 / e) and (1, 1-) we need
to modify Dunnage’s [4] approach which is based on Jensen’s theorem [9, page 332] or

[11, page 125].
For Legendre polynomials we have the following recurrence formula, see for

example [6, page 1026],

k+lTk + l(X)
1 x

2{Tk(x) xTk + l(X)}" (3.1)

Rewriting (3.1) for k and using the following recurrence formula also valid for any
Legendre polynomial

kTk l(X) (2k + 1)xTk(x Tk + l(X).
we obtain

Tk(x) k + 1 {xTk(x Tk l(x)}. (3.2)
1 x2 +

Therefore from (3.1) and (3.2) we can write

R(x) T + l(x)Tt:(x)- T +
k + 1 [ T2k(x) 2xTk (x)}. (3.3)
1 x2LT + l(x) q- (X)Tk + 1

Now in order to estimate Rln(x) and Ring(x)in (3.3) we assume x E(-1+ e, 1-e).
Then from [10, page 195, Theorem 8.21.5] (see also [12]), letting x- cos7 we have

Px-,lk!(F(, + 1/2)}2cos ((k + , + 1/2)7-(z, + 1/2)r/2}Tk(cos 7
0 r!(2 sin 7)F(k + + 3/2)

+ O(k sin 7) p 1/2.
For our purpose of estimating Rl(x) we need only to put p 1 which gives

2 cos {(k + 1/2) r/4} + O(k sin 7) 3/2T/c(cos 7)
r(1 X2)1/2

Therefore the following term of Rlk(x) which appeared in (3.3) can be written as

T(x) + T2k + i(x)- 2xTk(x)Tk + l(X)
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2 [cos2{(k + 1/2)7
krV/1 x

r/4} + cos2{(k + 3/2)7 r/4}

2 cos 7cos {(k + 1/2)7 r/4} cos {(k + 3/2)7 r/4}] + O k2(1 z2
2V/1-x2

(kr + O k2(1 x

Hence from (2.5), (3.3)and (3.4)letting

2(/: + 1)dk (k + 1)2(2k + 3)1/2
Ck ]c k(2]c -F 1)1/2we get

(3.4)

A2= 1 fc,(r-r22 + a2c} + O((1-x2) 2(lg + n1--7) ). (3.5)
(1 )/[

It is a well known property of any Legendre polynomial that it stisfies the following
differential equation

T(x) 2xT’k(x)- k(k + 1)T(x)
1 x2

This formula and its equivalent written for k + 1 gives

RI(x) --( + 1){}RI(x)+ 2Tk + I(x)T(x)}
1 x2

(3.6)

and
20 2xR(x)- 2(k + 1)Tk(x)Tk +Rk (x)

1 x2
(3.7)

Now since from the first theorem of Stielzer [10, page 197] Tk(x)=
O{k-1/2(1-x2)-1/4}, and therefore by (3.1), T’k(x)-o{kl/2(1-x2) -5/4} from
(3.6) and (3.7)we obtain

Rl(x)- k(k+l)Rk(x){ k}1x2
+ O

(l_x2)5/2 (3.8)

and 2xRIO(x)20 { 1 } (3.9)Rk (x)-
1-x2 +O

(1-x2)3/2

Similarly differentiating (3.7) and using (3.6) yields

{8x2/(1 x2) n(n + 1)}R(x)R3kO(x)
1 x2

Now (3.8)-(3.10) are sufficient to evaluate (2.6)and (2.7)as
+ { nB2 1

3(1-:)/
+o [(1_)/:

and

where

+0(2)5/2)(1-
(3.10)

(1 x2)3/2

h 2(k + 1 )2dk (k ’F 1)3(2k -F 3)1

(2k + 1)1 [2

(3.11)

(3.12)



262 K. FARAHMAND

For A1 and A2, as we will see, it would be sufficient to obtain only their order. To
this end, let m-[n2/3] be the integer part of n2/3 since ITn(x) <
4n- 1/2(1 x2) 1/4 and

k Tk(X)- Tk 4" 1 (x) (3.13)E (2j + 1)Tj(x) (k + 1). 1 x
3--0

we can write

E * j+l
Tj(x) 0 (j + 1/2)Tj(x) +

j 0 j m + l(m - 1/2)1/2Tj(x)

O(m + 1)
Tm(x)- Tm + l(x)[

+ (n + 1)1-z Tn(x)r(l-x)-T, + l(X) }
rt2/31Tn-t- 1(x)

O
x2)1/2

=O 1-x (1- x)(1-

Using (3.13), similarly we can obtain

E T’(x) O
J(J + 1/2)1/2(J + 1)T/(x)

j o j o (2j + 1)(1- x2)

(3.14)

0 n1/2
(2j+ .(x)

O
j=o 1 (1 x2)(1 x)

= O
(1 x)(1 x2)5/4

(3.15)

4. Proofs of Theorems

We first use the Kac-Rice formula (2.4) for ENn(-l+ ,1-). We will see that
this interval yields the main contribution to the expected number of real zeros. The
expected number of real zeros outside this interval, which, it so happens, are negligi-
ble, is estimated by using an application of :ensen’s theorem.

From (2.3), (3.5), (3.11)-(3.15) we can easily write,

11( 1 + e, 1 )
{(r12 r)h,, + 2.2h,}/2 f dx

7rfi{(O’l2 O’)Cn, -- O’Cn}1/2 (1 X2)1/2
-1+

{(o’ o’)hn, -- o’hn}1/2V/{(or2 o’)c --[-- O’Cn}1/2"1 n

(4.1)

Also from (2.4), (3.5), (3.11)-(3.15) we can easily show
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I( 1 + , 1 e) O(n/2). (4.2)
Now we show that the expected number of real zeros outside the interval
(-1 + e, 1- e) is small compared to (4.1). To this end, let N(r) denote the number
of zeros of Pn(x) in the circle Ix-1 _< r. Since an upper bound for N(e) could
serve as an upper bound for the number of zeros in the interval (1- e, 1), we confine
ourselves to N(e). The interval (- 1, 1 + ) can be treated exactly the same way to
give the same result. It follows from Jensen’s theorem [11, page 332] or [9, page 125]
that

N() (21og2)-1 log en(1,w
dx. (4.3)

0
Now we use the identity

T(z) / {z + i(1 z2 l /2cos O)n dO
0

for all sufficiently large n, to obtain

T(1 +) < (1 +) < xp(n).

Therefore, since by Schwards inequality

( + // ( + ( + 1/ < /,
=0 j=0

for sufficiently large n we can write

P(1 + eei) < na/exp(an)maxo 19 (4.4)
Now since 9j, J- O, 1,2,...,n has a normal distribution,

2 1/2 (1 1P(mxo . Il > n) <. Cxp

0

2n’1 (n 1 exp

<4exp{ -(n-")2}2a2 (4.5)

where p = max{l, p2} and a2- min{a,a}. Hence from (4.4) and (4.5) outside
sample functions in an w-set of measure not exceeding 4exp{ -(n )2/2a2},

p.( + x)< ./.xp(an). (4.)
Moreover, since Tj(1) 1, j- 0, 1, 2,..., n, it follows that the distribution of Pn(1)is
normal with mean

n

m 1 (J + 1/2)1/2 + P2 (J + 1/2)1/2
9=0 j=n +1

and variance
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Therefore,
s2 (r2 2,n’(n’ + 2)

-)
2n(n + 2)

+a2

1

Pr{ Pn(1) < l} sx/l / exp/- (-m)2/dr< . 2
2s2 G2. (4.7)

-1

However from (4.4), (4.6), (4.7) and except for sample functions in an w-set of

measure not exceeding V/2/rs + 4exp{-(n-p)/22} < (4/n)max{e, e},

N() < (5/2)1og n + 3n
log 2

which gives O(n + log n) as the upper bound for EN(e). This upper limit is smaller
than the error term involved in (4.1) and (4.2). Therefore the proof of Theorem 1
follows.
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