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We consider the stochastic behavior of networks of single server queues
when successive service times of a given customer are highly correlated.
The study is conducted in two particular cases: 1) networks in heavy
traffic, and 2) networks in which all successive service times have the same
value (for a given customer), in order to avoid the possibility of brealcing
up the busy periods. We then show how the local queueing delay (for an

arbitrary customer) can be derived through an equivalent tandem queue on

the condition that one other local queueing delay is added" the jitter delay
due to the independence of partial traffic streams.

We consider a practical application of the results by investigating the
influence of long packets on the queueing delay of short packets in modern
packet switched telecommunication networks. We compare these results
with the results given by traffic simulation methods to conclude that there
is good agreement between results of calculation and of traffic simulation.
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1. Introduction

We consider a network of single server queues where (at each stage) the customers
only enter the downstream queue when they have fully completed service. The
service discipline at all queues is "first come-first served’. It has become rather usual
to characterize the stochastic behavior of such a network by means of the so-called
"product form" solution, whether the network be open or closed.

There is, however, a fundamental difference in the notion of traffic source. In
this paper, we evaluate the case where successive service times (at the various net-
work stages) of a given customer are highly correlated. The above mentioned theor-
ies no longer apply, although we will show how the local queueing delay (for an arbi-
trary customer) can be derived from an equivalent tandem queue, thereby eliminating
(and integrating) the impact of intermediate arrivals and "premature departures".

Printed in the U.S.A. (1997 by North Atlantic Science Publishing Company 363



364 PIERRE LE GALL

However, this equivalence is only possible in the following two important cases:

1) heavily loaded networks avoiding to break up the busy periods, and 2) where the
successive service times (for a given customer) are identical. It will then be necessary
to add (for an arbitrary traffic stream) another supplementary local queueing delay:
a jitter delay due to the mutual independence of the partial traffic streams constitut-
ing the local traffic stream.

This supplementary delay appears when we consider the new local arrival order of
customers, which is different to the arrival order at the network input. This type of
problem arises since we define traffic sources at the network input in opposition to
the usual concept of local traffic source. The frequently adopted principle of consider-
ing a departure from a previous stage as a traffic source offered to the following stage
leads to ignoring the jitter effect.

We conduct the study in three parts. After introducing assumptions, notation,
and some preliminary theory in Section 2, the study (to evaluate the overall queueing
delay) neglects the case of "premature departures" in Section 3. In other words, we

study the case of a "concentration tree". The distribution of the local queueing delay
for an arbitrary customer (including the jitter delay) appears as that of the difference
between two overall queueing delays in equivalent tandem queues. In Section 4, "pre-
mature departures" are taken into account, along with the jitter effect. Finally, in
Section 5, we apply our results to the case of two distinct populations of packets (of
different lengths) handled in. a modern packet switched telecommunication network.
We make a number of observations by traffic simulation to check our theoretical re-

sults, which appear to be in good agreement with traffic simulations. In Sections 3
and 4, the processes of non-simultaneous arrivals are governed by some general proba-
bility distribution in case of a stationary regime. Section 5 is restricted to the case of
Poisson arrivals.

2. Preliminary Theory, Assumptions and Notation

2.1 The Equivalent Tandem Queue

We assume that there are no "premature departures" and no local exogenous arrivals.
To understand the basic phenomenon, we consider the simple case of two traffic
streams each carried by a single server at the first stage before merging at a single
second stage server. (See Figure 1.)

In Le Gall [6], Section II.2 we have already considered this case assuming success-
ive service times are identical for a given customer. Consider the overall process
(carried by the two first stage servers) and two arrivals (at the network input) X.
and Xn2 which successively find the two first stage servers idle. We showed thatte
number, size, and length of the busy periods of the second stage server during the
interval (XI, X2 would be the same (subtracting the possibility of some jitter of

the busy periods) if the two first stage servers were replaced by one server. We deduc-
ed that the queueing delay distribution (subtracting any jitter delay) at the second
stage would be unchanged for an arbitrary customer (independently of the considered
partial traffic stream). The result was extended by successive extrapolations to the
case of a concentration tree. Therefore, to evaluate the local queueing delay at the
final stage of the concentration tree, we may replace the tree by an "equivalent tan-
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dem queue" carrying the same traffic streams with the same service times, provided
we add a jitter delay generated by the mutual independence of the various branches
of the concentration tree. This jitter delay takes into account the impact of the varia-
tions in the local arrival order, since the equivalent tandem queue corresponds to a

local arrival order identical to the overall arrival order at the network input. In the
case of branches with unequal lengths, we will define later the parameter no (see
equation (17)) to represent the number of stages of the equivalent tandem queue.

In general, this equivalence property is not true when successive service times (of
the same customer) are different and varying, or are mutually independent. How-
ever, in the case of heavily loaded networks, the property does remain true if it may
avoid breaking up the busy periods, since there is just one busy period of the second
stage server during the interval (Xn,, Xn2). The size and the length of this busy per-
iod is therefore unchanged due to %he extended delays at the second stage, which
tends to cause busy periods to accumulate. Finally, in the second case of heavily
loaded networks, it appears the local queueing delay at the final stage can be also eva-

luated by introducing the above concept of an "equivalent tandem queue". We formu-
late the following hypothesis:

ltypothesis 1 (Busy Periods not Broken Up): We make the following hypothesis
concerning the only two possibly different cases which we consider in this paper.

a) For arbitrary traffic intensity, we assume all successive service limes are
identical for a given customer, or

b) For heavy load (at successive stages), successive service times are arbi-
trary, provided it may avoid breaking up the busy periods (see condition

(a) b  ow).
In particular, the second condition is satisfied when successive service times are

nol decreasing, inlroducing a strong correlation between these service times.

A,(1 Stage Stage rn Stage (m+
A,(o)

n !n

A.(1)

A(n)

A,(1)+...+A,(1)

A,(n)+...+A (n)

Figure 1. The full network
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2.2 First Example of a Symmetrical Network

In Figure 1, we consider a first example of symmetrical network: n identical single
server (m / 1)-stage tandem queues, carrying statistically identical traffic streams
which are interconnected at the last queueing stage (m + 1). In other words, the last
stage consists of n queues, each of which is dedicated to a particular type of work.

Customers of a given tandem queue are forwarded to the last stage server
dedicated to the type of work required. Naturally, this server can be accessed by all
n tandem queues for the type of work in question, as illustrated in Figure 1.

From a theoretical point of view, this example is very interesting to evaluate the
local queueing delay at the final stage. When n is large enough so that each final
server receives only a small fraction of the traffic from each tandem queue, the local
arrival process at the considered last stage dedicated server becomes practically
Poisson. It is thus tempting to consider that this server constitutes a queueing
system of the M/G/1 type. In fact, the upstream part of the network generates
variations in the local arrival order. There exists a strong influence in the local
queueing process giving rise to two kinds of phenomenon: a G/G/1 (and not a

M/G/l) queue, and a jitter effect (globally for busy periods).

2.3 Terminology

In the following, we avoid using the term "waiting time", which has acquired a
number of different meanings in Operations Research. At each local server, we

identify the following three local times"
1) the local queueing delay due uniquely to the queueing phenomenon;
2) the service time Tn corresponding to the working time of the server IT

E(Tn)]; and
3) the local sojourn time S corresponding to the sum of the first two times,

since we assume the customer leaves the server at the end of its service to
join the queue at the next server.

In opposition to the term "local delay", we also use the term "overall delay"
meaning the sum of delays over a number of successive stages. We also use the usual
concepts of:

1) "arrival rate"
2) "loa’ (i.e., traffic intensity) p AT,

and consider the length L of the local queue at an arbitrary arrival instant at the con-
sidered server. To verify the validity of the method of evaluating local queueing
delays by traffic simulation, we will make use of Little’s formula for mean values in
the stationary regime:

L AS. (1)

This illustrates the need to clearly define terminology since the formula is usually
written:

L AW,

where W denotes the mean "waiting time". This results in confusion between the
mean queueing delay and the mean sojourn time S.
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2.4 Notation and Assumptions

Recall that the queueing discipline (in each queue) is "first come-first servec’. We
assume the system is in the stationary regime.

For each of the n identical and independent tandem queues, at stage
1,...,m) and for the jth customer at the considered queue, we set:

1) local queue delay: w;
2) service time: Tj;
3) sojourn time: sk k

j --wj-Tj;
k4) arrival epoch at stage k: Xj;

k k5) interarrival interval between customers (j- 1) and j: Yj_ 1 Xj-
k

6) j-1; oc

exp (-zV}_l) --)9(z) f e-ZtdF(t);
0

7) Eexp(-zTj)- (ill(Z)- fe-ztdgl(t); R(z) 0.
o

F(t) and Fl(t are therefore the distribution functions of the interarrival time

(at the tandem queue input) and the service time Tj, respectively. Recall that , is
the arrival rate at each (identical) tandem queue. This process of non-simultaneous
arrivals (at the entry to the network) is governed by some general probability
distribution in case of a stationary regime.

We assume traffic is distributed uniformly over the n single server queues of the

final (m + 1)th stage, so the arrival rate at each server is still . The overall delays
from stage to stage k 2,..., m + 1) for the jth customer may be written:

k k

Wj(i;k)- EwandSj(i;k)- EsJ"
h-i h=i

Lastly, for a given server of the final (m + 1)th stage, we consider the following inter-
arrival intervals between arrivals (j’-1) and j’"

1) interarrival interval at the input to all n tandem queues for the customers
offered to the considered final server: Yj,_ 1;

2) interarrival interval at the considered final server: Y.,_ 1; and

3) Eexp(- zYj,_ 1) o(z) f e- ZtdFo(t).
0

1 for a given tandem queue andNote the difference between the arrival process Yj_ 1
the process Yi,_ 1 relating to all tandem queues, but only for customers destined for
the considered final stage server. The same distinction applies between (z) and

may be assumed to be a renewal process, process Y’.,0(z). When process Yj,_ 1
is more general, due to the jitter effect (see Section 3.1), as well as the upstream
interference delay (see Sections 4.2 and 4.3). But we recall that, usually, Yj,_ 1

iS

governed by some general probability distribution.

2.5 Symmetry and Equivalence

Due to the hypothesis 1 leading to the possibility of an "equivalent tandem queue",
and if we neglect the jitter effect provisionally, the interarrival interval at the con-

sidered final server may be written:
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Yj’ 1 =T+13 +e, (2)

where e.m,, is the occasional idle period (at stage m of the equivalent tandem queue)
3

between arrivals (j’- 1) and j’. Since we assume that we avoid breaking up the busy
periods, we have to satisfy the condition

T,- 1 < sk., k 2, 3 m + 1,
3 3 -1

from Theorem (A.1) in Le Gall [6], leading to the equalities

(4)

This means that the customer initiating a busy period at stage 1 (of the equivalent
tandem queue) initiates an analogous busy period at each following stage. Conse-
quently, we may use the equation of the G/G/1 server at stage (m + 1):

w’m3 +1 Max[0,8_+ll -(T+e}’)]" (5)

During a busy period of the final server, we have e},- 0. Equation (5) becomes:

W, +1 Max[0, sy? -1+1 T]. (6)

The influence of the arrival process disappears during the busy period. This explains
the possibility of introducing the symmetrical network of Section 2.2, even if the
traffic streams are not identical. Moreover, condition (3) may be satisfied even in the
case of mutually independent, successive service times for heavily loaded networks,
when the extended delays at the final stage tend to cause busy periods to amalga-
mate. Finally, this property of equivalence may be satisfied in a general way, for the
same bit rate at each stage.

2.6 Preliminary Results for Identical Successive Service Times

We recall that to analyze the queue at a given final stage server in the stationary
regime, we need to define an equivalent tandem queue to which process Y.,_ 1

is
offered. We must also consider the queue at the first stage of this tandem queue
defined by the couple [Y, ,Tj] for which the characteristic function of the delay is

Il(Z), and the probabit lof no delay is Q1, the service time T5 characteristic
function being Tl(Z). In the case of identical successive service times, we give the
main results already presented in Le Gall [8].

It will be necessary to consider the queue [Yj,_ 1’ Ti; Tj < t] corresponding to the
service time characteristic function:

99(z;t) / e-ZUdFl(U), (7)
0

when the service time Tj is less than t.
be written Q(t), and we have:

The probability of no delay in this case will

Q(c)-Q1. (8)
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After this first stage, let Sin(t) denote the distribution function of the overall sojourn
time over the m other stages of this equivalent tandem queue. From Formula 4.21 in
Le Gall [8], we have, in the stationary regime and for a renewal arrival process"

with
Sln(t)- Fl(t/rrt)tm(t),

R’in(’) 1 S IQllr) 1 ( fg7 0(-) xp -+0

1- Fl(V/m uu,
Q(vlm)

)dv d

(9)

where the first integral is a (Cauchy) contour integral with a contour consisting of a

straight line just to the right of the imaginary axis in the complex plane (u), running
from bottom to top and being closed at infinity on the right-hand side.

If Yj,_ is a Poisson process, Formula 5.2 in Le Gall [8] gives {see also Boxma
[1] for m- 1}:

( ; )[tin(t)--
1-p 1-Fl(v/rn

Q(tl.)
xp

Q(vl.)
d (0)

with

1 p 1 ,T Q(); Q(t) - 1- I ISdrl(u)"
o

If t is large enough, and if Tj has a concentrated finite support, expression B.10 in Le
Gall [6] for m 1 allows us to approximate this expression by:

1-p
Rl(t) - 1 p(tlT)" (11)

If we now subtract the overall service time from the overall sojourn time, we deduce
from (9) the distribution function of the overall queueing delay relative to the in other
stages of the equivalent tandem queue:

U(t/in) / Rm(t + O)dFl(O/m). (12)
0

In particular, approximation (11) leads to the following approximation expression for
rn-l"

Ul(t)- i 1- p
odFl(Ol_pt+o T

(13)

2.7 Extension for Arbitrary Successive Service Times

In the case of arbitrary successive service times (for a given customer) satisfying
condition (3) of hypothesis 1, Theorem A.1 in Le Gall [6] leads to the following
recurrence relation for the (rn + 1)-stage equivalent tandem queue"

(T}, + + + +’)
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Max[T}, +... + T, Sj, 1(2; m + 1) el.,]

which may be rewritten:

(14)

1,],Max[T}, +... + Tr,Sj,_ 1(2; rrt + 1)- ej

Let us introduce a second hypothesis for this general case:
Hypothesis 2 (Arbitrary Successive Service Times): If c is an arbitrary small

positive number, we suppose that the following condition

TI.,- T + 1

LimmPrb T},+...+T+I < c)l, (15)

concerning the service times of the arrival process Y., is satisfied for any j’ > O.
In this case, the recurrence relation in equation 1) is equivalent (in probability

for m large enough) to the following relation:

with
Sj,(2; m + 1) Max[T},(rn), Sj,_l(2; rrt (16)

From a property presented in Le Gall [7], Formula 2, this tandem queue may be
assimilated "in distribution", and for m large enough, to a tandem queue with
(m0 + 1) successive identical single servers, where mo is defined by the relation"

Var(moT + 1) VarT,(m), (17)

if the local service time T.TM, +1 and T’.,(m)are not constant. In the case of mutual in-
dependence between successive service times (for the same customer), we have:

ly:

m VarT’’(m)/VarTm’3 -- 1. (l 8)

In the case of mutual dependence for service times highly varying, we have usual-

(ETm"3 + 1)2 < < E(Tr + 1)2 and [ET,(rn)]2 < < E(T’y(rn))2.

In that case, we have practically: Var T-- ET2, and consequently:

rn E(T’y(m))2/E(T’ + 1)2. (19)

Finally, the hypotheses 1 and 2 allow us to reduce the study, for m large enough, to
the case of (m0 + 1) successive identical single servers, without any intermediate
arrivals, that is to evaluate the local queueing delay for an arbitrary customer at the
final stage. Note an important property depending on these hypotheses: the busy
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periods of successive stages are corresponding since we avoid breaking them up.
During these periods, e},- 0, and (16) gives:

Sj,(2; m + 1)- Sj,_ 1(2;m + 1)- Sj;(2; m + 1), (20)

where j is the number of the customer initiating the busy period. Consequently, the
overall upstream sojourn time is stable during the busy period. If we except the
phenomenon of the jitter delay for the busy periods, the arrival process at the entry
to the network (in the symmetrical case) is translated and reproduced at the final
stage, explaining a local queueing phenomenon observation similar to a G/G/1 (and
not M/G/l) queue with some jitter.

3. The Overall Queueing Delay

Since we abandon the usual assumption of a local traffic source in favor of the real
traffic source at the network input, it is necessary to define the local queueing delay
at stage (m + 1) as the difference between two overall queueing delays: 1) the queue-
ing delay W .,(1;m-t- 1) from stage 1 to stage (m + 1), to be evaluated in this section;
and 2) another queueing delay from stage 1 to stage m, to be studied in the following
section. We note that these delays should include the influence of upstream delays
due to the mutual interference between partial traffic streams offered to the consider-
ed final stage server, only corresponding to the arrival process Yj,_I. The impact
of "premature departures" (not offered to the final stage) appears an the upstream
busy period lengths which cannot be split.

For instance, in Le Gall [4], Sections 6 and 7 for identical traffic streams, the
interference (upon the mean downstream delay) of an upstream M/D/1 server is

T(p/n)/(1- p) and not T(p/n)/[1-(p/n)]. It is a phenomenon quite different of
the lost call model. Consequently, the upstream load of the equivalent tandem queue
should be the same as with "premature departures" in the original network. This is
the case for the symmetrical network in Figure 1, which may be considered as a refer-
ence network for the equivalent tandem queue even if the original network is not sym-
metrical [due to the fact we consider an arbitrary customer at stage (m + 1), only].
This has already been seen in Section 2.5.

3.1 The Local Jitter Delay

As we already mentioned in Section 2.1, the equivalent tandem queue corresponds to
a local arrival order [at stage (m + 1)] identical to the order at the network input:
process Y.,

1"
To take account of some variations in the local order (process

Y’., .)na-ttributable to "premature departures", we noted the need to evaluate
3

some "’tter effect globally for the local busy period. This jitter effect has already
been considered in Keilson [3], p. 150, 8.6. This effect is only significant in the case

of heavy traffic when the server busy period is long, due to our hypotheses. This
effect only depends on the service time T.m, + 1 initiating the busy period, and not on

30
the following service times (see equation (6)). As this quantity is considered only at
the successive starting epochs of these busy periods, it can be considered to be
constant during the busy periods and equal to the mean value T- E(T., + 1).

3
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This additional jitter delay J comes from the mutual independence of the partial
traffic streams offered to the considered final stage server, and is generated by the
load p" of the considered server, excluding the load related to the incoming tandem
queue corresponding to the customer which initiates the busy period. In the
symmetrical case of Figure 1, we have:

with
p- AT.

Furthermore, following Fisher and Stanford [2], the service times generated by the
load p" create an apparent service time T’!, for the considered customer equal to the

busy period generated by p". As for T + 1, we have to consider only the mean value
30

T", since T’!, may be considered to be constant during the busy periods. Finally, the

jitter delay J can be considered as the local queueing delay of a tandem queue offered
load p" with successive service times practically equal to:

with

p"--(1- lg)p. (21)

This is due to the Poisson approximation for the local arrival process, when n is large
enough (traffic simulation gives n > 5 approximately). The fact that service times
may be considered as practically constant and equal to T" means that the value of m
has no impact. Consequently, we have: Sm(t _= Ol(t).

For large n, the mutual independence of the n original tandem queues tends to
produce a Poisson local arrival process. We can therefore consider that the previous
tandem queue is offered Poisson traffic at stage 1. Equation (11) then becomes:

Rl(t
1- p" (22)

1 t"
-P 7"

By applying (13), it should be noted that F1 corresponds to the real service time T.
This expression allows us to derive the following expression for the distribution
function of the local jitter delay jr in the case of large n > 5)"

J(t)
1 p"

,,t + T" (23)
1 p T"

We have already used this simple expression in Le Gall [9].

3.2 The Overall Queueing Delay Without Premature Departures

Following our comments in Section 2.1, we derive the following theorem for general
input in case of a stationary regime:

Theorem 3 (Overall Queueing Delay in the Concentration Tree): For large n and
using hypotheses 1 and 2 (if necessary), the overall queueing delay [from stage 1 to
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stage (mo + 1)], denoted W.,(1;mo+ 1) for the jth arbitrary customer with the arri-
3

val process Yj’-I offered to the concentration tree, is the sum of two independent de-
lays:

1) the overall queueing delay V,(1;mo+l) relative to an (m0+ 1)-stage
equivalent tandem queue (with

J
identical successive service times) offered

arrival process Y., the rno supplementary stages being defined by equa-
tion (1) i oJ-’to integrate the intermediate arrivals; the distribution

function of the additional queueing delay due to these rno stages is given by
equation (12), with equation (9) if Y., is a renewal process, and with
equation (10) if Y.,_I is Poisson; an -1

2) a local jitter dela J, the distribution function of which is given by equa-
tion (23). In other words:

Wy(1;mo+ 1) Vj,(1;mo + 1) + J. (24)

1)

2)

Notes:
The network is no longer necessarily symmetrical, provided equation (21) of p" is
changed.
Without any "premature departure" and with no local exogenous arrivals, the
local queueing delay at the final stage, in the stationary regime, and by deleting
the suffix j’, is

w W(1;m0 + 1)- V(2;m0 + 1). (25)

8)
This quantity may be observed directly.
The observation (by simulation) and the calculation of the overall queueing delay
W(1;mo+ 1) may be extended to the case with "premature departures", just
before the final stage, by offering them to this stage with zero service times. The
access time at the considered final stage server is not changed, and for its
evaluation, we nay avoid distinguishing the normal traffic (offered at the final
stage) and "premature departures". But, in this way, we evaluate W(1;rno+ 1)
as perceived from the entry to the network and not from the considered local
stage.

4. The Local Queueing Delay with Premature Departures

Now, we take "premature departures" into account in the stationary regime. In
equation (25) we cannot isolate the term Y(2;mo+ 1), which now corresponds to a

part of the traffic handled in the considered incoming tandem queue. When we

consider (at the final stage) an arbitrary customer, he comes from a given incoming
mi-stage tandem queue i (i 1,...,n), corresponding to an overall queueing delay
V’(1;rni) from stage 1 to stage mi. If the traffic streams of this tandem queue i are

identical, we only have a probability (l/n) that this customer is offered to the
considered final stage server in Figure 1. When the traffic streams are not identical,
we set for the incoming tandem queue i:

1) a,ni" total load at this stage rni;

arni.
part of the total load ami corresponding to the customers offered to
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the considered final stage server; and

ami. part of the total load arn corresponding to "premature departures";

Based on the following argument, the preceding probability (l/n) has to be
replaced by (a’m./am.). Among the mean number of customers arriving (at stage rni)
during a mean service time (- am.), the mean number of customers offered to the
considered final stage server is a,,.. ’The proportion (a’m./am.) gives the proportion of
customers concerned inside an up’stream busy period. I’his’argument is valid for a

general input. This rule has been presented and checked by traffic simulation
successively in"

1) Le Gall [4], Formula 16 and Section 10 for Poisson arrivals;
2) Le Gall [5], Formula 5.14 and Section 7 for renewal arrivals; and
3) Le Gall [9], Section 2.3 for identical successive service times with Poisson

arrivals.
See also the simple case of constant and identical service times at each stage, as
considered in the first paragraph of Section 3 above. If we except the influence of the
jitter, the use of a probability equal to 1, instead of (a’mi/ami), would lead to a local

queueing delay equal to zero! This nonsense proves the existence of the reduction
factor (a’rni/ami).

Let h be the random variable -1 with probability (a’mi/ami), and -0 with

probability [1- (a’rni/ami)]. For a non-symmetrical network, we deduce in the sta-
tionary regime:

w W(1;m0 + 1)- hiV’(1;rni)

hi[W(1;rno + 1)- V’(1;mi) + (1-hi)W(1;mo + 1),

E exp(zw)
arni)

Eexp{z[W(1;mo + 1)- V’(1;mi)]}

(26)

+\-d-/ Eexp(zW(1;rno + 1)).

As a consequence, equation (24) has to be revised in case of "premature depar-
tures". The equivalent tandem queue is not changed, where:

W(1;m0 + 1) V(1; 2) + [J + V(2;m0 + 1)],

V’(1;mi) V’(1; 2)+ V’(2;mi) (27)

are independent of premature departures. It is a theoretical tandem queue giving a
certain overall queueing delay which has to be considered as a whole, without distin-
guishing the components. But the "additional queueing delay" [V(2;mo+ 1) + jr],
related to the mo supplementary stages, is perceived from the considered local stage
as affected by the probabilities (ami/ami) for each branch i. It is not perceived as an
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observer at the entry to the network (see Note 3 of Theorem 3).
To evaluate this overall queueing delay for an arbitrary customer we do not have

to distinguish these branches. Also, from equation (6), we already noted that the
equivalent tandem queue may correspond to a symmetrical network, as illustrated in
Figure 1. We set:

a’ a"- ai (28)

The parameters of this hypothetical and symmetrical network, defining the
equivalent tandem queue, become:

rn’= integer part of m0 [as defined by equation (17)],

n integer part of (a/a’).
(29)

Note that the loads in the equivalent tandem queue (premature departures exclud-
ed), and in the n branches of the symmetrical network of Figure 1 (premature depar-
tures included), are identical. In the stationary regime, the delay V(2; m0 + 1) in ex-

pression (24) becomes V(2;m’+ 1), but

Wo V(1;2)= V’(1;2) (30)

is not changed, as perceived locally (and globally for the arrival process Y., .) with-
out any impact of the upstream stage. Finally, relations (26) and preceding consider-
ations lead to the following theorem:

Theorem 4 (Overall Queueing Delay with Premature Departures): In the
conditions of Theorem 3, but with premature departures in the stationary regime, the
characteristic function of the overall queueing delay in the concentration tree for an

arbitrary customer, as perceived at the considered local stage with the impact of
premature departures at the upstream stage, is:

Eexp[zW(1;m’ + 1]

(a) (a’)Eexp(zWo) + -d- Eexp[z(Wo + ’/+ V(2;rn’+ 1)], (31)

where a,a’,a",m’, and Wo are defined by equations (28), (29) and (30), successively,
with Wo corresponding to a G/G/1 queue of an isolated server offered arrival process
Y

I --1
Notes:

1) In other words, when the considered customer is delayed by a premature depar-
ture [probability: (a"/a)], the overall upstream queueing delay (and the jitter)are
not perceived from the local stage. It is considered as a "fresh" arrival not
depending on the network. Finally, our concept of traffic source at the entry to
the network leads again to the classical concept of local traffic source!

2) In the example of Note 3 (after Theorem 3), in which "premature departures"
become "normag’ customers (but with a zero service time at the final stage), the
overall access time did not change for a number of "norma’ customers n

(= a/a’) times higher. In Le Gall [9], substitution (9), we recognized the need of
a reduction factor leading to expression (26) above, but we did not apply it in a
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term of expression (10) of this reference, evaluating the mean overall queueing
delay.
Now, we do not distinguish the partial traffic streams, and we recall our hypothe-

sis of general input in case of a stationary regime. Considerations from equations
(26) and (31) lead to the following theorem, taking into account the same load in the
equivalent tandem queue and in the branches of the hypothetical and symmetrical
concentration tree:

Theorem 5 (Local Queueing Delay for an Arbitrary Customer): In the condi-
tions of Theorem 3, but with premature departures at the upstream stage, the char-
acteristic function of the local queueing delay for an arbitrary customer is:

with

D J + [V(2;m’+ 1)-V(2;m’)]. (32)

Wo and V(2;m’+ 1) are defined by Theorem 4, with V(2;m’) corresponding to the
additional queueing delay of the m’-stage equivalent tandem queue [instead of (m’ + 1)
stage]. D is the local queueing delay (jitter included) at the last stage (rn’+ 1) of the
equivalent tandem queue; a,a’ and a" are defined by equations (28); and rn’ is defined
by equations (29).

Notes:
1) Another proof of Theorems 4 and 5 may be given by the example of Note 3 (after

Theorem 3). In that case, we have to add the delay (1 hi)[J + Y(2; m’+ 1)] to
W(1;m’+l) [see expression (31)]; and to Y(2;m’), simultaneously, without
changing w (Theorem 5) to be in the condition of this particular example.

2) Equation (32) is the key formula of this paper. The local queueing delay for an

arbitrary customer may be deduced by interpolating the two extreme cases: 1) D
(equivalent tandem queue) when there are no "premature departures"; and 2) W0

(isolated G/G/1 server) when there are plenty of "premature departures". In this
latter case, we may find again the product form theory for highly meshed
networks.

5. Case of Single Link Packet Switched Networks

We apply the preceding considerations to the case of single link packet switched
networks with Poisson arrivals, as usually considered for modern telecommunication
networks.

5.1 The Traffic Model

We consider the symmetrical network with n branches, as illustrated in Figure 1. We
define a traffic stream by deleting any suffix i, provisionally. The arrival rate (in
each branch) is A, and the bit rate is the same on each link, (i.e., the successive
packet lengths (-service times)are identical" T- T2-...--T’- Tn). The dis-
tribution function is: F(t)= Prob(Tn < t).

The global traffic stream is the mixture of two partial traffic streams of category
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j (j- 1,2), corresponding to packets of constanl length Ti (T < T2) with distribu-
tion function Fj(t), ,/being the arrival rate. We let:

dFj(t) (j/) if t Tj, 0 if =/= Tj. (33)

From equation (10) we deduce (at the final stage) for T < t _< T2:
1 p Exp[- c(T2- t)],q() p, 1()

with

From M/G/1 queue, we have"

with

(34)C--l_Pl"

1 P E(T)W= 2 1- p E(T)

with

1 P E(T)VarWo=3 1- p E(T) +(Wo),
E(T)3- pl(12)-t fl2(-22). (35)

From equations (21) and (23), we deduce the approximate expression for the
moments of the jitter delay distribution (c 1, 2):

with

T

E(,I oz ;t T a 1 1 --2-;7-t 1 dt
1-p---jT

p,,-(l_lg)pT,,--_,,. ()

From equation (12) we deduce the moments of the additional queueing delay of
the (m+ 1)-stage (m’-m) equivalent tandem queue for an arbitrary customer
(a 1, 2):

E[V(2; m + 1)]c [m(T2 T)] 1 a
1 Pl

with

K mc(T2 T1). (37)
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Note, for long packets, that the additional queueing delay is equal to zero. Let
wL and wA be the local queueing delay (at the final stage) of long and arbitrary
packets, respectively. Expressions (32), (35), (36), and (37) give for the mean values:

WL (1 lg)wT0 + (lg),

WA WL +(lg)IV(2; m + 1)- V(2; m)]. (3s)

5.2 Traffic Simulations

Some simulations were carried out (see Romoeuf [10]) for the complete and
symmetrical 2 and 4-stage network of Figure 1 (m- 1,3), with n- 10, T1 -1, and
T2 10. Usually, it may be sufficient to simulate the truncated network shown in
Figure 2. The number of packets ran per final stage server was approximately 107,
giving an excellent accuracy.

81

Stage Stage m

j Stage (m+l)

S
A

Figure 2. The truncated network

Table 1 gives (for n- 10) comparative results for WL and WA and the difference
A- W (simulated value)-W (calculated value). Here, fll and P2 are the loads
(traffic intensities) in each server due to short and long packets, respectively. A
appears equal to zero in the case P2- 0"3Pl (low "long" load), and equal to 0.7
(p- 0.9) and 0.08 (p- 0.6) in the case P2- Pl (high "long" load). It means some

discrepancy for the mean jitter delay only, in case of p: Pl" "] 11.4 instead of 4.4
for p 0.9, and J 1.3 instead of 0.5 for p 0.6. In that case, the slight number of
short packets per busy period (at the final stage) is not appropriate to the assumption
of stable short service times during the busy period (see Section 3.1) generated by a

long service time. But the discrepancy is not significant for WA:24.2 instead of 23.5
(p- 0.9), and 4.5 instead of 4.4 (p- 0.6). For P2- 0"3Pl (low "long" load) there is
no discrepancy for the evaluation of the jitter delay, and in every case, the mean
additional queueing delay (due to the tandem queue model) is correctly evaluated.



Theory of Networks of Single Server Queues 379

m-1

P2- Pl
P2 0"3pl
rn--3

P2- Pl
P2 0.3Pl

W0

24.7
14.0

24.7
14.0

p 0.9

WL WA
C S A C S
22.7 23.4 0.7 23.4 24.1
12.9 12.9 0 13.5 13.5

22.7 23.4 0.7
12.9 12.9 0

23.5
13.7

24.2
13.7

Table la

A
0.7
0

0.7
0

1)

P2 Pl
P2 0"3pl
m--3

4.12
2.33

p-0.6
WL WA

C S A C S A
3.76 3.84 0.08 4.19 4.24 0.05
2.13 2.13 0 2.42 2.42 0

4.12 3.76 3.84 0.08 4.40 4.47 0.07
2.33 2.13 2.13 0 2.64 2.60 -0.04

Table lb

10 identical tandem queues of m successive queues converging
on one final stage server (among 10) [see Figure 1 or 2]

In each upstream tandem queue:
traffic mix: 2 populations of packet lengths -service times).

2)

packet length
arrival rate
load*

short packets long packets Total

TI-1 T2 10

P2 A2T2

*( traffic intensity)

In the final stage queue
a) Mean local queueing delay:

M/G/1 server for total load p:
long packet:

arbitrary packet:

Wo;
WL;
WA.

b) Columns:
1) C: calculated value W (formulae (38));
2) S: simulated value W’;
a)

(Symmetrical case) n 10
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For m 3 and p 0.6, Table 2 gives comparative results for WA when n varies.
The number n of tandem queues converging vary from n 1 to n 10. We may see

again a good agreement between the results given by calculation and by traffic simula-
tion.

C

P2 Pl
Wet

S

P2 0"25Pl
WA

1 6.4 6.4 4.8 4.8
2 5.3 5.6 3.4 3.3
3 4.9 5.2 3.0 2.8
5 4.6 4.7 2.7 2.6
7 4.5 4.6 2.5 2.4
10 4.4 4.5 2.4 2.2
W0 2.104.12

Table 2: n identical tandem queues of (m 3 successive queues
converging on one final stage server (among n).

[See Figure 1 or 2, and notation and data in Table 1]

1) total load traffic intensity) in each server: p Pl + P2 0.6.
2) mean local queueing delay (at the final queue):

for an arbitrary packet: WA;
case of an M/G/1 server: WO.

3) columns: C: calculated value (formulae (38));
S: simulated value.

(Symmetrical case) Influence of n.

6. Conclusion

We have shown that the existence of an (approximately evaluated) jitter effect allows
us to connect the theory of queueing networks to the tandem queue model in that
case of single servers avoiding the break up of busy periods, which may be of some
general application for heavily loaded networks. It appears there is a strong influence
of "premature departures" at the upstream stage (in meshed networks) leading to a
local queue, approximately identical to that of an isolated G/G/1 server in case of
many "premature departures", even if we put aside the concept of local traffic source!
In the other cases, the local queue may be deduced by interpolating the preceding case
with the case of no "premature departures" equivalent tandem queue).
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