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We study in this paper-single channel queueing systems with renovation.
Such models are often encountered in computer science applications. Ex-
plicit solutions are discussed for the queues with Poisson input flow and
for queues with general input and exponential service times.
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1. Introduction

Consider a single-channel queueing system with FIFO discipline and the following
modification. After each customer is serviced, all the others leave the queue with pro-
bability q. Only a customer who has been serviced leaves the system with probability
p 1- q. The probability q, which we call renovation probability, is essential to our
analysis. This probability defines many important features of our model.

This model is a generalization of the classical single-server system. Below we pre-
sent a short review of previous results concerning only the queues with general distri-
bution of the input flow. The results related to such cases as Markovian input or
deterministic input are well known and are described in many books and papers (see,
e.g., monographs by Asmussen [1], Takagi [12], Klimov [9, 10] and Jaiswal [6]). The
case of general input flow and exponentially distributed service times was considered
in [6]. It is shown that if N < ec, the Laplace transform of the stationary queue
length distribution can be expressed through the roots of certain equations. A similar
expression can be written down in the case N oc, but there is only one root to be
found. More general results, such as ergodicity and heavy traffic limit theorems, were

considered by Borovkov [2, 3].
Our aim is to generalize the results concerning the "classical" model to the case

of the queueing systems M/MR/1/N and GI/MR/1/N with renovation.1

1We preserve the Kendall notation for a queueing system with renovation,
equipping the second letter with superscript R.
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These queueing systems are of significant interest for our applications. The first
publications to study such models were papers by Kreinin [11] and by Towsley and
Tripathi [13]. The motivation of these models is given below.

Kreinin [11] deals with a model of a so-called "prefetch instruction buffer". The
prefetch buffer provides a pipeline mechanism in the most recent processors and
microprocessors for systems with a single instruction flow. This architectural element
improves the performance when the linear part of a program is running by allowing
the simultaneous processing of independent parts of different instructions. If the
recent instruction is "branch" (or "go to’;), then the processor loses the content of the
prefetch instruction buffer and renovates it.

Another example of a renovation mechanism is considered by Towsley and Tri-
pathi in [13]. They studied the probabilistic models of buddy protocols for fault-toler-
ant systems. This model [13] leads to priority queues with renovation (in [13] the
term "flushing" was used) which does not depend on the service process.

This paper is organized as follows. In Section 2 we discuss the ergodicity condi-
tions for general queueing systems with renovation. In Section 3 we consider a sys-
tem with renovation under the simplest assumptions on the interarrival and service
times. Both cases, N < cx3 and N , are considered. Section 4 contains the results
for the case of generally distributed interarrival times and Markovian service. Final
remarks and some directions for further studies are discussed in Section 5.

2. Ergodicity Conditions

Consider a queueing system with renovation and general interarrival and service time
distributions. Assume that the customers arrive from the outside at moments
tl, t2,... and form a recurrent flow with interarrival times In-tn+l-tn,
n- 0,1, Thus, the sequence {In} forms a family of independent, identically
distributed, random variables (r.v.’s) with a common distribution function F(x).
Assume

< EI- / xdF(x) <0

0

Let Sn be the service time of the nth customer. Assume that {Sn} are independent
and identically distributed r.v.’s with ES1 <

Denote by (t, the queue length at time t, (t >_ 0). Assume that the initial queue
length is finite with probability 1.

Proposition 1: If 0 < p < 1, then for each initial state o of the queue satisfying
the condition Pr{o < oo} 1, the queueing system with renovation has a unique
stationary distribution

7rj -tlimPr{t j}, j O, 1,...,

which does not depend on the initial state of the queue length process.
Proof: Denote by A {inf0 < s < ts 0} the event that the queue once became

empty during [0, t]. The process-t-has a renovating event {t 0} (see norovkov
[3]). For all finite values of 0, the probability of the complementary event
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tends to zero

inf ts > O}t At { o < <

Pt- Pr{t}-*O,

as t---,c. Indeed, let N(t, t + T) be the number of customers served without renova-

tion of the queue. Then for each e > 0 and for each integer M, there exists T suffi-
ciently large, such that for every t > 0, Pr{N(t, t + T) > M} < e. Thus, the probabili-
ty of the event .A tends to 1 as t--cx. The existence of the renovating event pro-
vides the ergodicity of the queueing system.

This results shows that the renovation probability is a critical parameter for the
stability domain. Indeed, if q > 0, EI1 < cx, and ES1 < cx, the system is stable. In
the case q 0, the system is stable if and only if the inequality EI1 > ESI is satis-
fied.

3. System with Poisson Input Flow

Consider a queueing system with renovation. We assume that the system has only
one queue with FIFO discipline and one input flow of customers. The input flow is
assumed to be Poisson. Denote by ,k the input flow intensity. Service times are

mutually independent and exponentially distributed random variables with parameter
#.

After a customer is serviced, all others can leave the queue with probability q.
Only a customer who receives service leaves the system with probability p 1- q.
Below we consider two classes of queues with renovation, Poisson input flow, and ex-

ponential service time distribution.

3.1 M/Mlt/N Queueing System

Denote by N the size of the waiting room.
system at moment t. Then t -< N. Denote

Let t be the number of customers in the

rj(t)- Pr{t-j}, j-O,I,...,N.

The stationary distribution of the queue length is given by the following assertion.
Proposition 2: If 0 < p < 1 and # > O, then for each initial state of the queue

satisfying the condition

wj-limPr{t-j} (j-O,1 N).
t--oo

The generating function of this distribution satisfies the equation

r(z)
#p(1 z)r0 -q#z- ArN(1 z)zN +

Q(z)
where Q(z)- .z2- ( + #)z + p#, and the probabilities o and rN are given by the
formulas

Z
*N zN,

0=1 z,N + 1
Z
N + 1’
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Z* Z,
PN ,,N + 1 N + 1’z --z,

with z* and z, being the roots of the equation Q(z)- O.
Proof: The process t is a Markov chain. It is easy to verify that for 0 < p < 1

and # > 0 this Markov chain is ergodic. The stationary distribution {Trj}jc=0 of t
satisfies the equations

(A -- It)Trk APk 1 -- ItPTrk + 1, k 1,2,...,N- 1,

A7rN- 1 ItTN,

N

ATr0- ItTrl + ItqE rj,
3--2

and the normalization condition
N

E rj-- 1.
3--0

Then, from (1) after standard calculations we obtain

(1)

r(z)Q(z) Itp(1 z)r0 -qitz- ArN(1 z)zN + 1.

The equation Q(z)- 0 has two roots, z, and z*. Both roots are real and positive.2

The generating function r(z) is a polynomial. The stationary probabilities r0 and
rN must satisfy the equations

ItPr0(1 z,)- ArNzN, + 1(1 z,) Itqz,, (2)

Itpr0(1 z*)- ATrNz*N + 1(1 z*) Itqz*. (3)

From (2) and (3), we obtain the relations for r0 and rN. Proposition 2 is proved. [:]

Corollary 1: If the renovation probability q- O, then the stationary distribution
of the queue length is given by

7rk 7ropk 1, k 1,..., N,

1-p
1 pN’

where p A/it. If the renovation probability q 1, then the stationary distribution of
the queue length is given by

# ( A )k, k-0, l...N-l,-A+it A+#

Proof: The nt part of the corollary is well known (see e.g., [1, 8]). The second

It is not difficult to see that for p > 0 these roots satisfy the inequalities z* > 1,
0<z,<l.
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part follows directly from the equations (1) for the equilibrium distribution of the
queue length process.

3.2 MX/MR/I/oo Queueing System

Let us study now the case N cx. We consider a more general situation of bulk
input. Assume that the customers arrive in groups of random size, and interarrival
times are mutually independent, exponentially distributed r.v.’s with parameter A.
This arrival flow is usually called a compound Poisson process. Denote

Pk-- Pr{1-- k}, k--l,2,...,

where is the size of an arrival group of customers. We denote by p(z) the
generating function of this distribution. Thus,

()- z,
k=0

where zl _< 1. The average size of the arriving groups is assumed to be finite.
Then the function p(z) is regular in the unit disc D- {z: z < 1} and the average
size of the arrival group is equal to El- p’(1).

Proposition 3" If 0 < p < 1, El < cxz, and # > O, then for each initial state, the
queueing system has a unique stationary queue length distribution. The generating
function of this distribution is given by the formula

#p(1 z)Tro q#z
(z) Q,(z)

where

Q(z) zp(z)- ( + ,)z + p,,
qZ,

r p(1 z,)’
and z, is a unique root of the equation Qp(z)-0, that satisfies the inequality
0<z,<l.

Proof: Denote by qm (m- 1,2,...) the number of customers in the system at
the arrival epoch 7-m of the ruth customer. Using the standard technique it is not
difficult to verify that {qm} is a positive supermartingale. On the other hand, the
queue length t at the moment t, 7"m < t 7m _1_ 1 satisfies the inequality 0 <_ t <- qm
for m >_ 0. The last inequality implies that the process t has a stationary
distribution 7rn limtPr{ n} that satisfies the equations

/ + # Trk "E 7rk nPn + #PTrk + 1’ k l, 2,..., (4)
n--1

N

0 + m j. (5)
3--2

Then from (4) and (5) we have

7r(z)
p(1 z)Tr0 qz

#.zp(z) -( + #)z + p#" (6)

The generating function 7r(z) is regular in the unit disc D. By Rouche’s theorem, the
equation
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+ .)z + 0

has only one root, z, E D. Therefore, the numerator of the fraction in (6) should be
equal to 0 at z- z,. Hence,

qz,
p(1- z,)"

Therefore, the generating function of the stationary distribution satisfies the relation

z-z, 1r(z) #qz,- 1Qp(z)"
Corollary 2: If the input flow of customers is ordinary Poisson (p(z) z), then

r(z) l-z*
Z Z*’

where z* is the root of the equation .z2- ( + #)z + p#- O, satisfying the inequality
z*>l.

4. General Arrival Process

In this section we consider a queueing system with renovation, general distribution of
the interarrival times In, and exponential service time distribution. To describe the
behavior of the system we will use an intensity function ,(x), and parameter # of the
service time distribution. The intensity function satisfies the relations

F(x)-exp A(t)dt .(x) >_ O,
0

where 1-F(x)- F(x). The behavior of the queue length process is described by
3semi-Markov process.

4.1 GI/MR/1/N Queue with Renovation and Lost Customers

Consider a queueing system with finite waiting room and renovation. Let the process

t- (kt, xt, t > 0), k 7/+, x N +, where k is the number of customers in the
system (k _< N), and x is the elapsed time since the last arrival at moment t. The
process (kt, xt) is a Markov process.

Denote
Pn(t,x) Pr{k n,x _< x}, n=0,1,...,N.

It is known (see, e.g., [6]) that there exist the densities of the probability distribution

pn(t,x OPn(t’x)
cox

3Examples of the general theory of semi-Markov processes and their application
in queueing theory may be found in the books by Gnedenko and Kovalenko [5] and
by Jaiswal [6]; see also the book by inlar [4].
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and their stationary limits

pn(x) lim
OPn(t’x)

t--,oo Ox n- O,1,...,N, z >_ O. (7)

The densities Pn(X) do not depend on the initial state of the process t" If the
stationary densities Pn(X) are known, the stationary probabilities can be easily found
in the form:

rk / pk(x)dx, k O, 1,...,N. (8)
0

There are two different ways to control the system when the queue buffer is saturated
(k N). The first is to lose the arriving customer, while the second is to block the
input flow. We consider the case of the system with lost customers. To formulate
the desired assertion we need the following notations:

and

Let

Fn e- "xxnF(x)dx, 7n e- t’XxndF(x), n O, 1,...,
0 0

Proposition 4:

m j

R, --. j

The stationary densities of the queue length process in the system
with lost customers are given by

N-k

1,...,N,
i=0

where the coefficients Ci, k satisfy the relations

#P C n O,...,N- k-1,Cn + 1,k n -i- 1 n,k + 1

(9)

N-k+l

Co, k E 7jCj, k 1
] 2,...,N- 1, (10)

3=0

and

70 CO, N 1 nt- 71 C1,N_ 1,Co, N 1 70 1 70

N-1

pO(X) (X)E Crn#-m- lm!
m-O

where the coefficients Cm satisfy the relations
N-k

Ck #61, k nt- #qE Ct, k,
/=2

1 ezp(- #x)E (#x)k
/ =0

k!

k 1,...,N- 2,

(11)

Cn-1 #C1,N- I (12)
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and the normalization condition
N N-k N-1

k-1 m=0 m=0

Relations (8)-(13) define the ergodic distribution of system GI/MR/1/N.
Proof: Denote by

(3)

iok(x -xPk(X), k O, 1,..., N,

the derivatives of the stationary density functions.
stationary densities can be written in the form

Then the equations for the

igk(x) --()(X) + ])pk(x) -- #PPk + l(X)’ ] 1,..., N 1,

pu() (() + )vu(),

0(1 ()v0() + .(1 + .q p().
3--2

The boundary conditions for the functions pk(x) are

(14)

vo(O)- 0,

p (o) j" l(x)A(x)dx, k 1,..., N 1,
0

VN(O) / (PN- 1(x) -k- PN(X))A(x)dx.
0

(15)

Substituting (9) into (14) we obtain that, for all x > 0,
N-k N-k-1

E iCi, kx’ ttPE Ci, k+l
i=0 i=0

Hence, the relation

(i + 1)C + 1,k ItPCi, k + 1

should be satisfied for 0,...,N k- 1, that proves te first equality in (10).
To prove the second equality, we consider the values of pk(x) for x 0. Then

the second equality in (10) follows from the first equality in (15) and (9). From (14)
it follows that PN(x) has the form

PN(X) CO, NF(x)exp(- #x),C0, N > 0. (16)

Then, from (15) and (16) we deduce that

70 CO, N_1 + 71 ,,C1,N_ I,Co, N 1 7o 1 70

as was to be proved.
From (9) and (11), we find
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N N-1

.()+() x(-)() cm’, ()
3:2 m:0

where the coefficients Cm satisfy (12). Then, substituting (17) into the differential
equation for po(X) we obtain (11). Using the normalization condition for the
stationary probabilities rk, k 0, 1,..., N we derive (13). El

4.2 GI/MR/1/oo queueing System

The final form of the stationary distribution is simpler in the case of infinite queueing
length. To formulate the assertion we will use the notation A 1/(EI) for the inten-
sity of the input flow.

Proposition 5: Let the average service time and the probability of renovation
satisfy the inequalities # < c, q > O. Then, the stationary densities pk(x) are given
by

p() cp() ,(1 )x, 0,1,...,

po(X)- c I (x)(1-e-x),
where

c_Al-c
c / #(1-ap), (18)

and a is a unique root of the equation

t,(1 -p)XdF(x), a E (0, 1). (19)

Proof." The stationary densities satisfy the equations

dpo(x
dx A(x)p(x) + #p(x) + #qE pj(x),

3-----2

dx --(,,(X) -- ]l)pk(X + ttppk + l(X), ] 1,2,...,

(20)

(21)

with the boundary conditions

Pk(O) / A(x)Pk- l(X)dx,
o

po(0)- 0.

k 1,2,..., (22)

(23)

We will seek the solution of (20) and (21) in the form

pk(x) cozk (x)e ax, x O, ] 1, 2, (24)

Substituting (24) into (21) after simple transformations, we obtain that
which is equivalent to a-/3. Then we obtain

()- c,,1 . F()-k=2
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Using this formula we can rewrite (20) as follows:

do()
dx A(x)p(x) +A(x)e- ,

where
1 apA c#a 1-c

Solving this ordinary differential equation we find

Po(X)--(1-e-z)(x).
It can easily be seen that boundary condition (23) is met.

Using expression (24) we can rewrite boundary condition (22) as

(25)

cok- ]" cozk-

0

1A(x)(x)e-Xdx.

Therefore, a should satisfy the equation

-XdF(x),

which is equivalent to (19). Standard arguments concerning the convexity of the
Laplace transform lead to the conclusion that equation (19) has only one root in the
interval (0,1).

To find c, we express the stationary probabilities rk through this unknown
constant and then, use the normalization condition j 0r/ 1. Namely, for k _> 1
we have

rk / pk(x)dx cat j e-X(x)dx.
o 0

Integrating by parts the latter integral, we obtain

e-X(x)dx cak(1-
/

0
Therefore,

7rk cok

On the other hand, (25) leads to

r- 1-c

1,2,

)Z
From this formula and the normalization condition, we obtain the constant c. Thus,
the relation (18) is proved. I-!
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5. Final Remarks

The purpose of this paper is to present the results for queueing system with renova-
tion in Markov case, and in the case of the general recurrent arrival flow. Using the
same technique, one can study the case of Poisson arrival and generally distributed
service times. The calculations should be performed in this case using the method of
embedded Markov chains. In Section 4.1 we studied the GI/MR/1/N queueing
system with renovation and lost customers. In the same rnanner one can study the
queueing system with blocking input when the queue is saturated.

More complicated problems arise when the interarrival and service times have
general distributions. Almost nothing is known for such systems. The problem of
calculating stationary characteristics has remained open. In this case, the approach
based on heavy traffic limit theorems should be fruitful. The approximation for the
waiting time for the customers in heavy traffic has the form of a diffusion process in
the line modified to include jumps to origin at random moments. Such processes
appeared in the paper by Kella and Whitt [7], devoted to the diffusion approxima-
tions for queues with server vacations.

Another direction for generalizing the model discussed in this paper is a multi-
phase queueing system with Poisson arrival flows and exponentially distributed ser-
vice times. This queue leads to non-homogeneous random walks that can be studied
in several important cases. This problem will be considered in future publications.
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