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In this paper, we introduce and study a new class of variational in-
equalities, which are called multivalued variational inequalities. These
variational inequalities include as special cases, the previously known
classes of variational inequalities. Using projection techniques, we show
that multivalued variational inequalities are equivalent to fixed point pro-
blems and Wiener-Hopf equations. These alternate formulations are used
to suggest a number of iterative algorithms for solving multivalued varia-
tional inequalities. We also consider the auxiliary principle technique to
study the existence of a solution of multivalued variational inequalities
and suggest a novel iterative algorithm. In addition, we have shown that
the auxiliary principle technique can be used to find the equivalent differen-
tiable optimization problems for multivalued variational inequalities. Con-
vergence analysis is also discussed.
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1. Introduction

It is well known that the general theory of the calculus of variations was developed
by Euler and Lagrange. It essentially started soon after the introduction of calculus
by Newton and Leibniz, although some individual optimization problems had been in-
vestigated before that, notably the determination of the paths of light by Fermat.
Variational principles have played a significant and important role in the develop-
ment of: the general theory of relativity; gauge field theory in elementary particle
physics; soliton theory; and optimization theory. One of the most important develop-
ments in the calculus of variations over the last few decades has been the emergence
of the theory of variational inequalities. This theory provides us with a simple,
natural, general and unified framework for studying a wide class of unrelated linear
and nonlinear problems arising in: elasticity; fluid flow through porous media; econo-
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mics; transportation; oceanography; optimization; operations research; regional and
applied sciences [1-40]. In recent years, considerable interest has been shown in
developing various classes of variational inequalities, both for its own sake and for its
applications. There are significant recent developments of variational inequalities
related to multivalued operators, nonconvex optimization, iterative methods, Wiener-
Hopf equations, and structural analysis.

Inspired and motivated by the research work going on in this field, we introduce
and study a new class of variational inequalities, which are called the multivalued
variational inequalities. This class is the most general and includes as special cases

many classes of variational inequalities studied previously. In particular, this class in-
eludes a class of multivalued variational inequalities considered by Panagiotopoulos
and Stavroulakis [29]. They have shown that if the nonsmooth and nonconvex super-
potential of the structure is quasidifferentiable, then these problems can be studied in
the general frame of variational inequalities. In this formulation, ascending and des-
cending branches of non-monotone multivalued law and boundary conditions are con-
sidered separately. Solution of this system of multivalued variational inequalities
gives the position of the state equilibrium of the structure. Many researchers had
already studied the existence of a solution of multivalued variational inequalities
from an analytical point of view. For example, Parida and Sen [32] and Yao [39]
used the fixed point and minimax inequality technique to study the existence of a

solution of a problem (2.12).
One of the most difficult, interesting and important problems in variational in-

equality theory is development of an efficient and implementable algorithm. Projec-
tion method represents an important computational tool for finding approximate solu-
tion of variational inequalities, which was developed in 1970 and 1980. This method
has been extended and modified in various ways to other class of variational inequali-
ties, see, for example, Noor [18, 19], for an account of the iterative methods. Using
essentially the projection technique, Shi [34, 35] established the equivalence between
the variational inequality problems and system of equations, known as Wiener-Hopf
equations. This equivalence was used to suggest an iterative algorithm. This techni-
que was refined and developed by Noor [18, 19, 22, 27] to suggest some iterative algo-
rithms for different classes of variational inequalities. It is worth mentioning that the
scope of the projection type algorithms is quite limited due to the fact that it is very
difficult to find the projection of the space onto the convex set except in very simple
cases. Secondly, the projection technique and its variant forms cannot be applied for
some classes of variational inequalities involving nondifferentiable forms, see [22].
These facts motivated Glowinski, Lions, and Tremolieres [10] to suggest another
method which does not involve projection. This technique deals with an auxiliary
variational inequality problem and proving that the solution of the auxiliary problem
is the solution of the original problem. This technique was extended and developed
by Noor [18, 19, 22] to study the existence results for variational inequalities as well
as to suggest iterative algorithms. Zhu and Marcotte [40] used this approach to
suggest a general descent framework for solving variational inequalities, whereas Noor
[18, 19] have shown that this technique can be used to find the equivalent differentia-
ble optimization problems for variational inequalities. For further details, see [2, 4,
9, 11, 15, 18, 19, 24, 25, 40] and the references therein.

In this paper, we show that the projection and auxiliary principle techniques can
be extended and modified for multivalued variational inequalities. Using projection
techniques, we establish the equivalence between multivalued variational inequalities
and multivalued Wiener-Hopf equations. This equivalence is used to developed some
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iterative algorithms for solving multivalued variational inequalities. We also consider
the auxiliary variational principle technique to study the existence of a solution of
multivalued variational inequalities and suggest a general iterative algorithm.
Furthermore, we also find an equivalent differentiable optimization problem for multi-
valued variational inequality. The equivalence is useful in developing a general des-
cent framework. We also study the convergence analysis of the iterative algorithm.
As special cases, these new results incorporate previous results of Chang and Huang
[3], Ding [7], Jou and Yao [13] and Noor [18, 19]. The results presented herein repre-
sent an improvement and a significant refinement of the known results in this field.

In Section 2, we formulate the problems and review some basic concepts. Main
results are derived in Section 3. In Section 4, we discuss possible extensions of our re-
sults.

2. Preliminaries

Let H be a real Hilbert space whose inner product and norm are denoted by (.,.
and II II respectively. Let It" be a nonempty closed convex set in H. Let 2tI be the
family of all nonempty subset of H and T, V:HH be multivalued operators.

Given an operator M: K x K--,2H, we consider the problem of finding u E K such
that w T(u), y V(u) and

(M(w, y), v u) >_ O, for allvGK. (2.1)
The inequality of the type (2.1) is called a multivalued variational inequality and has
many important and potential applications in various branches of mathematical and
engineering science, including mechanics, elasticity, optimization and differential
equations.

Example 2.1: To illustrate the applications and importance of multivalued
variational inequalities (2.1), we consider a elastoplasticity problem, which is mainly
due to Panagiotopoulos and Stavroulakis [29]. For simplicity, it is assumed that a

general hyperelastic material law holds for the elastic behavior of the elastoplastic
material under consideration. Moreover, a nonconvex yield function r---F(r) is
introduced for the plasticity. For the basic definitions and concepts, see [29]. Let us
assume the decomposition

E-E+Ep, (2.2)
where Ee and Ep denote the elastic plastic deformations of the three-dimensional
elasto-plastic body, respectively. We write the complementary virtual work
expression for the body in the form

(Ee,’r o) + (EP, 7 o) (f ,’r o’), for all @ Z.

We assumed that the body on a part FU of its boundary has given displacements

#i Ui on Pu, and that on the rest of its boundary FF F- FU; boundary tractions
are given as S F on FF, where

f
if, r) / UiSidr (2.5)

FU

(E,o-) / ijrijd (2.4)
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Z {7"7ij, j+ fi- 0 on f,i,j 1,2,3, Ti F on FF, 1,2,3},

is the set of statically admissible stresses and f is the structure of the body.
Let us assume that the material of the structure f is hyperelastic such that

(2.6)

(Ee, r r) _< (W(r), r r), for all 7 e %6, (2.7)

where Wm is the superpotential which produces the constitutive law of the
hyperelastic material and is assumed to be quasidifferentiable [29]; i.e., there exists
convex and compact subsets O_’Wm and O’Wm such that"

=_ w" (2.8)(W(r), r r) max (W r a) + rain 2, rOW e
m W2Owm

We also introduce the generally nonconvex yield function P C Z, which is defined by
means of the general quasidifferentiable function F(); i.e.,

P = {r e Z; F(r) _< 0}. (2.9)

Wm is a generally nonconvex and nonsmooth, but quasidifferentiable function for the
case of plasticity with convex yield surface and hyperelasticity. Combining equations
(2.2)-(2.9), Panagiotopoulos and Stavroulakis [29] obtained the following multivalued
variational inequality problem:

Find a e P such that W e 02Wm(cr),W e OtWm(o" and

(W + W, 7 or) >_ (f, r r), for all 7 G P, (2.10)

which is exactly the problem (2.1), with M(w,y)- W + W,

T(u)- 02Wrn(Cr), V(u) O’Wm(O’), and K- P.

Special cases
I. We note that if T I the identity operator, then problem (2.1) is equivalent

to finding u E K such that y V(u) and

(M(u, y), v u) >_ O, for allvGK, (2.11)

which was introduced by Parida and Sen [31, 32]. It is noted that the Kuhn-Tucker
stationary point problem for a number of nondifferentiable mathematical
programming problems can be studied in the framework of problem (2.11). Parida
and Sen [32] used the fixed point approach to study the existence of a solution of
problem (2.11), which is not a constructive one.

II. If T,V:H--,II are single-valued operators and M(w,y)= T(u)+ V(u), then
problem (2.1) is equivalent to finding u G K such that:

(T(u) + V(u),v-u)>_ O, for all v G K, (2.12)

which is known as a strongly nonlinear variational inequality problem. Problem
(2.12) is mainly due to Noor [17, 20], where it has been shown that a wide class of
obstacle, unilateral, contact, fee and moving boundary value problems can be studied
via the strongly nonlinear variational inequalities (2.12). For recent applications as
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well as use of numerical methods, sensitivity analysis, generalizations and extensions,
see [3, 7, 13, 21-23, 28] and the references therein.

III. If M(w,y) w+ Ay, where A:H--H is a single-valued operator, then
problem (2.1) reduces to finding u E It" such that w E T(u),y V(u) and

(w + Ay, v-u) >_ O, for all v K,

which is called the multivalued strongly nonlinear variational inequality problem
studied by Noor [23].

IV. If It’*= {u II:(u,v)>_ O, for all v K} is a polar cone of the convex cone

in II, then problem (2.1) is equivalent to finding u E It" such that w T(u), y V(u)
and

M(w, y) K*, (M(w, y), u) O,

which is called the multivalued complementary problem and appears to be a new pro-
blem class.

For appropriate and suitable choices of the operators M(.,.),T,V and the
convex set K, one can obtain as special cases from problem (2.1) the various classes
of variational inequalities and complementarity problems studied by many authors,
including Stampacchia [38], Parida and Sen [31, 32], Yao [39] and Noor [17-23, 27,
28]. Problem (2.1) is the most general and unifying problem and has significant and
important applications in pure and applied sciences.

Related to problem (2.1), we now consider the problein of solving multivalued
Wiener-ttopf equations. Let PK be the projection of H onto K and Qk- I-PK,
where I is the identity operator. We consider the problem of finding z H, u E K
such that w T(u), y e V(u) and

M(w, 1) -nt- fl- l(’Kz O, (2.13)

where p > 0 is a constant.
The equation (2.13) are known as the multivalued Wiener-Itopf equation. Eor

general treatment, formulation and applications of Wiener-Ilopf equations, see Speck
[37], Shi [34, 3a], Noor-Noor and Rassias [4, a], and Noor [18, 19].

We also need the following concepts and results:
Lemma 2.1: For a given z H, u K satisfies the inequality

<u- z,v- u) >_ O, for ally

if and only if u PKz, where PK is the projection of H onto K. Furthermore, PK
is nonezpansive.

Definition 2.1: For all ul,’u2 H, the operator M(.,. ): II x H--H is said to bc
strongly monotone Lipschitz continuous with respect to the t?rst argument, if there
exist constants a > 0, /3 > 0 such that:

(u u2, M(Wl,. M(w:t )) >_ a 11 u u2 [[ 2 for all w T(ul),w2 T(u:t

and
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II M(Ul," )- M(u2," )11 _</3 II Ul u2 II.
In a similar way, we can define strong monotonicity and Lipschitz continuity of

the operator M(., .) with respect to the second argument. Note that if
M(u,. )= Tu, Definition 2.1 reduces to the usual definition of strongly monotonicity
of a nonlinear operator T: H-.H.

Definition 2.2: The multivalued operator V:HC(H) is said to be D-Lipschitz
continuous if there exists a constant r/> 0 such that"

D(V(), V()) _< n II - v II, fo n , v H,

where C(H) is the family of all nonempty compact subsets of H, and D(.,
Hausdorff metric on C(H).

is the

3. Main Results

In this section, we prove that the multivalued variational inequalities in problem
(2.1) are equivalent to fixed point problems and multivalued Wiener-Hopf equations.
For this purpose we need the following result, which can be proved by invoking
Lemma 2.1.

Lemma 3.1: Let K be a closed convex set in H. Then (u,w,y) is a solution of
problem (2.1) if and only if (u, w,y) satisfies the relation

u PK[U pM(w, y)],

where p > 0 is a constant and PK is the projection of H onto K.
Lemma 3.1 implies that the multivalued variational inequality problem (2.1) is

equivalent to the fixed point problem, which enables use to suggest the following
general and unified iterative algorithm.

Algorithm 3.1: Assume K is a closed convex set in H. Let T,V be multivalued
operators. For a given u0 ( K such that wo E T(uo), Yo V(uo) and

u PK[uo- pM(wo, Yo) ].

Since Yo V(uo), Wo G T(uo), there exist Yl G V(ttl) and W T(Ul) such that

II w0 w II _< D(T(uo), T(Ul)),

II yo- yl II
_

o(v(to),V(tl)),

where D(.,. is a Hausdorff metric on C(H). Let

u2 PK[Ul pM(wl,Yl) ].

By induction, we can obtain the sequences {un} {wn) and {Yn} such that:

Wn T(ttn): II Wn- Wn -k II -- D(T(un), T(un + 1))

yn v(n): II yn yn + II < D(V(), V(n + 1))
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Un+ 1 PK[Un-flm(wn, Yn)], n-0,1,2,

We now establish equivalence between the multivalued variational inequality
problem (2.1) and Wiener-IIopf equations (2.13) using Lemmas 2.1 and 3.1.

Theorem 3.1: The multivalued variational inequality problem (2.1) has a solution
u e It" such that w e T(u), 9 e V(u) if and only if the multivalued Wiener-Hopf
equations (2.13) have a solution z G H, u G It" such that w G T(u), y G V(u), where

u- PKz, (3.1)

z u pM(w, y), (3.2)

and p > 0 is a constant.
Proof: Let u 6 K such that w E T(u), y V(u) be a solution of the multivalued

variational inequality problem (2.1). Then by Lemmas 2.1 and 3.1, we have

u PK[u- pM(w,y)].

Using the relation QK- I- PK and equation (3.3), we obtain

QK[U- pM(w, y)] u- pM(w, y)- PK[U- pM(w, y)] pM(w, y),

from which using equation (3.2), it follows that

M(w,y)+p-IQKz--O.

Conversely, let ueIf, zeH such that weT(u), yeV(u) be a solution of
equation (2.13); then

pM(w,y)- --QKZ--PKZ--Z. (3.4)

From Lemma 2.1 and equation (3.4), for all v E K, we have

0 <_ <PKz- z,v- PKZ> p<M(w,y),v- PKZ>.
Thus (u, w,y), where u PKz is a solution of problem (2.1).

Theorem 3.1 establishes equivalence between the multivalued variational
inequality problem (2.1) and multivalued Wiener-Hopf equations (2.13). This
alternative formulation is very important from the numerical and approximation
point of views, and plays a significant part in suggesting new iterative algorithms for
solving variational inequalities and complementarity problems. These iterative
methods are very convenient and are reasonably easy to use for computations when
compared to Algorithms 3.1 and 3.2 [33]. For a suitable rearrangement of
multivalued Wiener-Hopf equations (2.13), we can suggest a number of iterative
methods:

I. Equation (2.13) can be written as

QKz -pM(w,y),

from which it follows using equation (3.1) that,
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z PKz pM(w, y) u pM(w, y),

This fixed point formulation enables us to suggest the following iterative scheme.
Algorithm 3.3: For given z0 E H, u0 E K such that wo T(uo) Yo V(uo), the

sequences {Zn} {Un} {Wn} and {Yn} can be computed by the iterative schemes

Wn e T(tn): II Wn + Wn II -- D(T(un + ),T(u,))

Yn V(ttn): I] Yn + Yn 11 -- D(V(un + 1), V(ttn)) (3.8)

Zn + Un pM(wn, Yn), n O, 1, 2,..., (3.9)

II. Equations (2.13) may be written as

QKz M(w,y) + (1 p- 1)QKZ

which implies that using equation 3.1,

z PKz- M(w,y) + (1 p- 1)QKz

u- M(w,y) + (1 p- 1)QKZ.

Using this fixed point formulation, we can suggest the following iterative scheme.
Algorithm 3.4: For given z0 E H, u0 G K such that w0 G T(u0) Y0 G V(u0),

{z,}, {un} {w,} and {y,} can be computed by the iterative schemes

un PKZn
Wn e T(tn): II Wn + Wn II

_
D(T(un + 1),T(un))

Yn e V(ttn): 11 Yn + Yn 11 -- D(V(un + 1)’ V(ttn))

Zn+l--un-M(wn, Yn)+(1-p-1)QKZn, n-- 0,1,2,

For an appropriate and suitable choice of operators T, M(., ), V and convex set
K, one can obtain a number of iterative algorithms for solving various classes of
variational inequalities and complementary problems.

We now study the convergence criteria of Algorithm 3.3. In a similar way, one

may study the convergence of the approximate solution obtained from Algorithms
3.1, 3.2 and 3.4.

Theorctn 3.2: Let the operator M(.,.) be strongly monotone with constant
ct>O and Lipschitz continuous with constant fl>O with respect to the first
argument. Let the operator M(., be Lipschitz continuous with constant 7>0 with
respect to the second argument. Let V:H--,C(H) be a D-Lipschitz continuous with
constant 1 > 0 and T:H---,C(H) be a D-Lipschitz continuous with constant > O. If
0<p<22_.22, 7r <c and pTr< 1, then there exist z H, u K such that

w e T(u), y e V(u) satisfy the multivalued Wicner-Hopf equations (2.13), and the
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sequences {zn} {un} {wn} and {Yn} generated by Algorithm 3.3 converge to z,u,w
and y strongly in H, respectively.

Proof: From Algorithm 3.1, we have

II Zn -t- 1 Zn [[ [[ ’ttn- n- P{M(wn’Yn) M(wn- ,Yn- 1)} [[

II P{M(wn, Yu)- M(wn- ,
-}- M(wn 1’ Yn) M(Wn 1’ Yn 1)) ]]

II tn tn- fl{M(wn’Yn)- M(wn- l’Yn)} I]

+ fl ]l m(wn- l,Yn) m(wn- l,Yn-1) I]

Since the operator M(., )" H x H---H is strongly monotone, Lipschitz continuous
with respect to the first argument, and T is D-Lipschitz continuous"

I] u, u_ p{M(w,, Yn) M(w_ 1’ Yn)} ]]2 I] t/n ?/n- 1 [[2

2fl(M (wn’ Yn) M(wn l’ Yn)’ tn "an--

+ p2 II M(wn, Yn)- M(wn- 1, Yn)II 2

-- II tn n- II 2 2flOz [I tin Un- II 2 -t- p2/2{D(T(un),T(un + 1))}

_< (1 2po + p2/322)1] u, u,_ 1 [[ 2. (3.11)

Using the Lipschitz continuity of the operator M(.,.) with respect to the second
argument and D-Lipschitz continuity of the operator V: H---,C(H), we have

]1 M(wn- 1, Yn)- M(wn- 1’ Yn- 1)]l ")’ II II

<- 7D(V(un), V(un 1))

(3.12)

Combining equation (3.10), (3.11)and (3.12), we have

II Zn + Zn II { V/1 2pc + p2292 + pTr} II u- u,_ II. (3.13)

From equation (3.6), we have

(3.14)

Thus, from equation (3.13) and (3.14), we obtain
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0 I[ zn- Zn- ]1, (3.15)

where 0 pTr/+ X/1 2pc + p2f122 < 1 for 0 < p < 2.fl27-_ v72 2, 7r/<c and

pT] < 1.
Hence, from equation (3.15), we see that {z,,} is a Cauchy sequence in H; i.e.,

Zn + l"-Z G H as n---c.
From equation (3.8) and using equation (3.14), we have

II + 1 Yn II D(V(un + 1), V(n)) - r] II + 1 n II__
r] [I Zn + l Zn ll

from which it follows that {Yn} is a Cauchy sequence in H; i.e., Yn + I-*Y as n--,cx.

Similarly, from equation (3.14), it follows that {un) is also a Cauchy sequence in H;
i.e, tn + 1--ot as

Using the continuity of the operators M,T,V, PK, and Theorem 3.1, we have

u PKz,

z u- pM(w, y) PKz pM(w, y) e H.

Now we show that y E V(u). In fact,

d(y, V(u)) <_ II Y Yn II + d(Yn, V(u)) <_ II y Yn II + D(V(un), V(u))

where d(y,V(u)) inf{ II y-v ]l:v e V(u)}. As the sequences {Yn} and {un} are

Cauchy sequences, it follows from the above inequality that d(y,Y(u))--0. This
implies that y Y(u), since Y(u) C(H). Using Theorem 3.1, we see that z G H,
u e g such that w e T(u), y e Y(u)is a solution of equation (2.13). Consequently,

Zn + 1-"*z un + l"-*U’ wn + 1-"W and Yn + 1---*Y strongly in H. This completes the
proof. [:]

We also consider another technique to study the existence of a solution of the
multivalued variational inequality problem (2.1), which does not depend on the
projection technique and its variant forms. This technique is known as the auxiliary
principle technique, which is mainly due to Glowinski, Lions, and Tremolieres [10].
Noor [18, 19, 22] has modified and extended this technique to study the existence of a

solution of various classes of variational inequalities, including using it to formulate
the equivalent differentiable optimization problems for variational inequalities. This
technique has been used by Zhu and Marcotte [40] to develop a general descent
framework for solving variational inequalities.

Theorem 3.3: Let the operator M(.,.) be strongly monotone with constant
c >0 and Lipschitz continuous with constant /3>0 with respect to the first
argument. Let the operator M(.,.) be Lipschilz continuous with 7>0 with respect
to the second argument. Let V:H---C(H) be a D-Lipschitz continuous with constant
r > 0 and T: H---C(H) be a D-Lipschitz continuous with constant > O. If

0<p<2 and P’Y7 < 1,
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then there exists u G K such that w E T(u), y V(u) satisfying the multivalued
variational inequality problem (2.1).

Proof: We use the auxiliary principle technique, as developed by Noor [18, 19,
22] to prove the existence f a solution of problem (2.1). For a given u G K, we
consider the problem of finding q G Ix" such that w T(u), y G V(u) satisfying the
auxiliary variational inequality

(q, v q) >_ (u, v q) p(M(w, y), v q), for all v G K, (3.16)

where p > 0 is a constant.
Relation (3.16) defines a mapping u--,q. In order to prove the existence of a

solution u K satisfying problem (2.1), it is enough to show that the mapping u--q
defined by the relation (3.16) has a fixed point belonging to K satisfying the
multivalued variational inequality problem (2.1). Let ql,q2 K be two solutions of
(3.16) related to Ul,U2 K, respectively. Taking v--q2 (respectively ql) in (3.16)
related to ql (respectively q2), and adding the resultant inequalities, we have

(ql q2’ ql q2) <-- (’al t2, ql q2) P(M(Wl, Yl) M(w2, Y2), ql q2)

<-- (It1 tt2’ ql q2) fl(M(Wl, Yl) M(w2, Yl )’ ql q2)

+ P(M(w2, Yl) M(w2, Y2), ql q2)

(1 t2 P(M(Wl, Yl) M(w2, Yl))’ ql

+ P(M(w2, Yl) M(w2, Y2), ql q2)’

from which it follows that

Il ql--q2 [12
__

II I-2- fl(M(Wl,Yl)-M(w2, Yl) II Il ql -q2 11

+ P II M(w2, Yl)-- M(w2, Y2 ]l 11 ql --q2 [I

__< {V/1 2pa + p2/322 + pTr/} II 1 II II ql q2 II,

(by using equations (3.11) and (3.12)). Thus

II ql q2 II { v/1 2pa A- p2f122 + pTr/) II Un Un II

where 0 pTr/+ V/1 2pc + p2/22 < 1 for 0 < p < 2/322 -?’22, 7r/< a, and

pTr/< 1.
Since 0 < 1, the mapping u-q defined by equation (3.16) has a fixed point,

which is the solution of the multivalued inequality problem (2.1).
Remark 3.1: We note that the auxiliary variational inequality problem (3.16) is

equivalent to finding the minimum of the functional F[q] on K in H, where

F[q] 1/2(q u, q u) + p(M(w, y), q u), (3.17)
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which is called the auxiliary differentiable functional associated with the problem
(3.16). Using the technique of Fukushima [11], one can prove that the multivalued
variational inequality problem (2.1) is equivalent to finding the minimum .of the
functional N[u] on K in H, where

N[u] 1/2<u q(u), q(u) u> + p<M(w, y), u q(u)), (3.18)

where q q(u) E K such that w e T(q(u)), y A(q(u)) is the solution of the auxiliary
variational inequality (3.16). The functional N[u] defined by equation (3.18)is
known as the gap (merit) function associated with the multivalued variational
inequality problem (2.1). These gap functions can be used to develop general
framework for descent and Newton methods with line search for solving the
multivalued variational inequality problem (2.1) using the ideas and techniques of
Fukushima [11], Larsson and Patriksson [15] and Zhu and Marcotte [40]. Itowever,
we follow the ideas and techniques of Noor [18, 19] and Cohen [4] to propose and
analyze a general iterative algorithm.

For a given q G H, we introduce the following general auxiliary problem of
finding the minimum of the functional I[q] on K in H, where

I[q] E(q) E(u) (E’(u), q u) + p(M(w, y), q u). (3.19)

Here E(q) is a differentiable convex function.
(2.1), the equivalent optimization problem

Thus we can associate to problem

max{I[q], q It’},

which is called the variational principle in the terminology of Blum and Oettli [2].
One can easily show that the minimum of I[q], defined by equation (3.19) on I; can
be characterized by a variational inequality of the type

(E’(q), v q) >_ (E’(u), v q) p(M(w, y), v q), for all v G K.

It is clear that the auxiliary variational inequality (3.16) is a special case of equation
(3.20). If q u, then q is a solution of the multivalued variational inequality
problem (2.1). In many applications, auxiliary problems (3.16) and (3.20) occur,
which do not arise as a result of extremum problems. This motivates us to suggest a

general auxiliary, generalized multivalued variational inequality problem, which
includes (3.16) and (3.26) as special cases.

For given u E K, we consider the problem of finding q G K such that w T(u),
y A(u) and

(B(q), v q) >_ (B(u), v q) p(M(w, y), v q), for all v It’. (3.21)

ttere B: H--,H is a single-valued nonlinear operator and p > 0 is a constant.
If q= u, then q is a solution of the problem (2.1). On the basis of this

observation, we can now suggest and analyze an iterative algorithm for problem
(2.1). This is a novel way to compute the approximate solution of problem (2.1) as

long as, problem (3.21)is easier to compute than (2.1).
Algorithm 3.5:
(a) At n 0, start with an initial %.
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(b) At step n, solve the auxiliary problem (3.21) with u- qn+ 1" Let qn
denote the solution of problem (3.21).

(c) For a given e > 0, if II qn / II --< s op. O ho wis 
Using the technique of Noor [18, 19], one can study the convergence analysis of

Algorithm 3.5.
Remark 3.2: It is worth mentioning that many methods including projection,

linear approximation, relaxation, decomposition, descent and Newton’s method for
solving variational inequalities can be derived from the auxiliary principle technique
by a suitable and appropriate rearrangements of the operators T,A,M and the
convex set K. For recent developments in this direction, see Larsson and Patriksson

[15], Zhu and Marcotte [40] and Noor [18, 19]. In brief, the auxiliary principle
technique can be used to study the existence of a solution of variational inequalities
as well as to find a number of equivalent optimization problems. These facts show
that the auxiliary principle technique is quite general and flexible, and provides a
unified framework for developing various efficient numerical techniques. An
extension of the auxiliary principle technique for quasi-variational inequalities is still
an open problem and provides another direction for further research.

4. Extensions

We would like to mention that our results can be extended to the multivalued mixed
variational inequalities (4.1). The main change is that the projection operator PK
must be replaced by the resolvent operator Jo related with the maximal monotone
operator 0y), where 09 is the subdifferential of a proper, convex and lower semicontin-
uous function : H----R tO { + ec}. More precisely, we consider the problem of finding
u H, w G T(u), y G V(u) such that

(M(w, y), v u) + (v) (u) > 0, for all v G H. (4.1)

The inequality of the type (4.1) is called a multivalued mixed variational inequality
which has many applications in pure and applied sciences, see [1, 9, 18, 19, 29]. It
can be shown [18] that problem (4.1) is equivalent to the fixed point problems of the
form

u-J[u-pM(w,y)], (4.2)

where p > 0 is a constant and J, (1 + pop)- is the resolvent operator.
In analogy with (2.13), we consider the problem of finding z,u E tI, w T(u),

y V(u) such that

M(w, y) -t- p Iz O, (4.3)

where /i- I-J and I is the identity operator. Equations (4.1) are called the
multivalued rcsolvcnt equations. For general treatment and applications of the rcsol-
vent equations, see Noor [18-19]. Using the technique of Noor [18], one can establish
the equivalence between problems (4.1) and (4.3).

We remark that if 9)- 6K, the indicator function of a nonempty closed convex
subset of tt, then problems (4.1) and (4.a) collapse to the problems (2.1)and (2.13)
respectively. Furthermore, the resolvent operator J is equal to the projection opera-
tor PK and J is nonexpansive. Consequently our main results remain unchanged if
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we replace PK by Jo" It is worth mentioning that no numerical technique is known
for computing the resolvent operator d, for arbitrary convex functions. The develop-
ment and implementable of an efficient algorithm for solving multivalued mixed
variational inequalities need further efforts and this is another direction for research.
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