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QUEUE WITH A PARETO-TYPE SERVICE
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For the GI/G/1 queueing model with traffic load a < 1, service time
distribution B(t) and interarrival time distribution A(t), whenever for

1 B(t) (t,c--,)u/p - O(e- 6t), c > 0, 1 < u < 2, 5 > 0,

and

f tUdA(t) < oe # > u,for

0

1

(1- a)u- lw converges in distribution for aT1. Here w is distributed as the
stationary waiting time distribution. The L.-S. transform of the limiting
distribution is derived and an asymptotic series for its tail probabilities is
obtained. The theorem actually proved in the text concerns a slightly
more general asymptotic behavior of 1-B(t), toe, than mentioned
above.
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1. Introduction

For the GI/G/1 queue, denote by A(t) and B(t) the interarrival time distribution
and service time distribution, respectively, and by a the traffic load, with a < 1.

The distribution B(t) is said to have a Pareto-type tail if: for tc,
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N
Cn 6t+ ),1- B(t) (tiff n=l

l<u<2, /3:-/ tdB(t)), c>0, 5>0,
0

(1.1)

cn>_O, un>u, Nafiniteinteger >_1.

w shall denote a stochastic variable with distribution W(t), the stationary distribu-
tion of the actual waiting time of the GI/G/1 model.

Write

A. [.l a F(U)sin(v -1)rJ u i

a cr (1.2)

here r(. is the gamma function and xa, a real, is defined by its principal value, i.e.,.
it is positive for x positive.

Theorem: When B(t) has a Pareto-type tail as specified in (1.1) and when

t"dA(t)< (x) for a # > u, (1.3)
0

1

then the stochastic variable (1-a)u- lw/fl converges for aT1 in distribution, and

lim E{e pA,/} 1 Re p > 0; (1.4)
aT1 1 -- pu 1’

the right-hand side of (1.4) is the Laplace-Stieltjes transform of a true probability dis-
tribution Ru l(t) with support (0, c); and for tc and every finite H E {1, 2,...},

H
)n 1F(n(g- 1))sins(v- 1)r -(H 1)(u 1)}. (1.5)1 R i(t) 1E 1

tu(t- 1) -k- O{t +
n--1

For a special class of Pareto-type tailed service time distributions, the theorem
has been derived for the M/G/1 model in [2]. The distribution Ru_ l(t)is called the
Kovalenko distribution, cf. [9]. For u- 11/2 we have, cf. [1],

with

2 etErfc(tl/2),R1/2(t) 1 t>0, (1.6)

Erfc(x) e- u du.
x

The proof of the theorem is given in the next section; it uses an idea of the proof
of Theorem 1, [7], vol. I, p. 467.

The theorem stated above is a heavy traffic result. The classical heavy traffic
theorem for the GI/G/1 model, cf. [3], Section III.7.2, requires the finiteness of the
second moment of A(t) and that of B(t). In a forthcoming paper by O.J. Boxma and
the present author, generalizations of the theorem above will be discussed.
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2. Proof of the Theorem

We consider first the case with all cn -O, n- 1,...,N. Consequently, it is seen from
(1.1) that we may write: for t >

c
). + s(t),1-B(t)-(t/

with

With

we have: for Re p > O,

e-ptF(t)dtconvergentforRep> -5, 5>0.

(p)" j e- ptdB(t), Rep>0,
0-

p e (1 B(t))
0

and

(t /7
e

o t7 Z

1 {1-B(t)} + (t/)" l F(t)
o / /

(2.1)

(2.2)

(2.3)

(2.4)

It follows that: for Re p > 0,

1 -1 fl(p) __
91(Pfl) [ e- pt C dt

p J (t/) ’with

gl(p/7):- (1-e or) ,1. (t)dt+
(t/fl)u fl t- {1-e pt}F(t)

o / Z

(2.5)

(2.6)

By using (2.2) it is readily seen that gl(P) is a regular function of p for Re p > -5.
For the integral in (2.5) we have by partial integration: for Re p > 0,

with

c/ e "t() -"

d g2(p) + cr(1 .)(pZ)’- 1

c -oH + 1--u
e-Pt dt.

o

(2.z)

(2.s)

Obviously g2(p/3) is an entire function of p for all p; note that 0 < u- 1 < 1.
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From of. [8], p. 3,

and with

r not an integer,r()r(1 ) sin rA’ (2.9)

g(fl)" gl(fl) + g2(fl)’ (2.10)

we have from (2.5), ..., (2.10)" for Re p _> 0,

C )Tr(fl) 1 (2.11)1
1 (p) g(p) +p F()sin (u 1

From (2.6), (2.8) and (2.10), it is seen that g(p3)is also a regular function of p for
Re p > -5. From (2.11) it follows that g(0)- 0. Hence since g(p), Re p > -5 is a

regular function we have: for Re p

(Z) Z + o((Z)), (2.12)

with 7 a finite constant.
Write

c(- p): / eptdA(t), Rep 0, (2.13)
0

so that c(-p) is the characteristic function of the distribution A(t). From (1.1),
(1.3) and the series expansion of a characteristic function, cf. [10], p. 199, we have"
forRep-O, [p[---,O,

c(- p) 1 +cp+ o( a I"), (2.14)

tdA(t)- /a.
0

Let be the idle period, i.e., the difference of a busy cycle and the busy period
contained in this busy cycle. The relation between the distributions of w and is
given by, cf. [4], p. 21, or [3], p. 371" for Rep- 0,

E{e-p-}_l-E{epi} [1-(P)C(-P)]
-1

pE{i} (- a)p (2.15)

note that

E(i) (a -/3)E(n), (2.16)

with n the number of customers served in a busy cycle.
With

cr (2.17)A: r(u)sin (u- 1)r’
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we have from (2.11): for Re p- 0,

i (p)(- p)

f-(-p)-- + (1 g(pfl)}c( p)- A(p)u- is(- P)l" (2.18)

Set, cf. (1.3),
a: min(1,#- 1) > 0.

By using (2.12) and (2.14) it follows from (2.18) since # > ,, cf. (1.3), that"
e o, p I-o,

for

1 (p)a(- p) + 1 Au(p) 1

__
O(lfl a) (2.20)

a -I= 1 + 1 "{Au(p)u + o(Ipl )}.

Write for Re r >_ 0, cf. (1.2),
1

P--[1-aAlJU-lr/--Ar/ (2.21)

With Rep_<0, a<l,

1-E{e -pi}
w(p)" E{e- P}, X(P)" pE{i}

we have from (2.15), (2.20) and (2.21)" for 0 < 1-a<<1 and Rer- 0,

(i)

-1

w(rA/) X( rA/) 1 + ru + raO((1 a)) u 1 (2.23)

(ii)

(iii)

w(rAlfl) and x(rA/fl) are both regular for Re r > 0, continuous for
Rer >_0,
(rx/Z) < , (x/Z) < , a > o, (o) , (o) .

The conditions (2.23) formulate for w(rA/fl) and x(-rA//3) a boundary value
problem of a type discussed in [6]. It is not difficult to verify that the conditions
(26)i, ..., iv of [6] are fumUed for the present boundary value problem with
0 < 1 -a<<l. Hence from (31) of [6] its solution reads: for 0 < 1- a<<l,

w(rA/) eH(rA/z) Re r > 0

X(- rAI/) eH(rA/) Re r < 0
(2.24)

with
i [1 / log1H(rA/)" 2i

1-u+r I rd+/]u + r/rO((1 a) u- 1
(r] r)r]"
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This integral is a principal value, singular Cauchy integral, cf. [5], Section 1.1.5 and
[6]. The integral is absolutely convergent and it follows readily by contour integra-
tion in the right half-plane that

1 J" log{1 + r]u-l} rdr/ (2.25)limH(rA/) ----io

log{1 + ru- 1} for Rer >_ 0,

0 for Rer _< 0;

note that the logarithm of the integrand is regular for Re r] > 0, continuous for
Re r] >_ 0 and zero for r/-0, cf. further [5], Section 1.1.5. Hence from (2.24) and
(2.25): for Re r >_ 0,

lim w(rA//3) lim E{e rAw/H} 1
a]’l a]’l 1 + r- 1’ (2.26)

lim x(rA/fl) 1.
aT1

By using Feller’s continuity theorem for L.-S. transforms of probability distributions,
it follows that Aw/fl converges in distribution for aT1, with limiting distribution
Ru l(t) given by

1 Re > 0.e rtdRu_ (t)
1 + r- 1’ r

0

It remains to prove (1.5). From (2.27) we obtain: for Re r )_ 0,

-rt{1 nu_ l(t))dt rl_{1 1 r-2 (2.28)
1 +ru-l) 1 +ru-l"

Because 1 < u < 2, the right-hand side can be continued analytically out from
Rer_>0, into {r: arg rl _< , 1/2r < < r}. With D the contour defined by: for a
r0 > 0,

D: {r’r r0ei, =t= } U {r: r Re +/- iV,/ )_ r0}, (2.29)

it is readily shown by starting from the inversion integral for the Laplace transform
that

1 /ert ru- 2
1 Ru l(t) - 1 + ru- 1dr’ (2.30)

D

with the direction on D such that on r- r0ei it is counterclockwise with respect to
the origin. Fort- r01 <1 we have

r’- 1 )n- lrn(u- 1) (2.31)
1 +ru-1

=g (--1
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We now apply a theorem of Doetsch [7], vol. II, p. 159 to derive an asymptotic
series for 1- Ru_ l(t), tc. It is not difficult to show that this theorem may be
applied here. It uses the relation

2il Jf ertr,d F(-1 ,k- 1 1 2t 0, ,...,
D

and it states that" for t--<x and every finite H E {1,2,...),
U -n(-l)

1 R l(t) hE= 1)n r(lt n(- 1)) + O(t- (H + 1)(, 1)). (2.32)

By using the relation (2.9), the relation (1.5) follows, and the theorem has been
proved for the case cn 0, n 1,..., N.

To complete the proof for cn > 0, it suffices to take c > O, c2 -..- cN -0,
since it is readily seen that the general case proceeds along the same lines. However,
we have to distinguish the case that ( > ) is not an integer and that of//1 is an

integer _> 2.
First, we consider the case c > 0, t1 noninteger. Instead of (2.1) we write: for

t_>Z,

c c__11 B(t) (t/3), -t (t/r), + F(t), (2.33)

with r(t) again satisfying (2.2). By repeated partial integration, it is readily shown,
cf. [7], vol. II, p. 468, and (2.7), that: for Re p _> 0,

c1 f e ptl__j__ dt g2(p3) + ClF( 1 _/21)(fl/)1 1 (2.34)(t/Z) -with g2(p/) an entire function of p.
The relation (2.11) is now replaced by: for Re p _> 0,

cTr -11 (p) g(p)+ (p)p r(u) sin (u 1)r

c17r 1

F(Ul) sin (/21 1)r(Pfl)ul+
(2.35)

with g(p/3) again a regular function for Re p >-5 which satisfies g(0)= 0 and
(2.12). Proceeding with the analysis above with (2.11) replaced by (2.35) leads again
to (2.20) since u1 > u, el. (1.1). The remaining part of the proof with c1 > 0 does not
differ from that with cl 0, and so the theorem has been proved for cn > 0 and un
not an integer.

Finally we have to consider the case u k _> 2, with k an integer. We have, el.
[7], vol. I, p. 468,

c / e -st 1 dt g2(fl) -t- Cl
1)

(t/) ( )!
(p)- og(p),
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again with g2(Pfl) a regular function, and the relation (2.11) is now replaced by: for
Rep _>0,

c,.ir(p)t,-- 1 1)k 1

1
1 (p_.___) g(p) + 1)r + cl (p)k llog(p)

pfl r()sin(u F(k- 1)
where g(p)is again an entire function for Re p > -5, which satisfies g(0)- 0 and
(2.12). The last term is o((pfl)- 1) since k > u. With this it is readily verified that
the second equality sign in (2.20) also applies for the present case, and so the remain-
ing part of the proof is similar to that with cI -0. Hence the theorem has been
proved.
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