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When the elements of a stationary ergodic time series have finite variance
the sample correlation function converges (with probability 1) to the theo-
retical correlation function. What happens in the case where the variance
is infinite? In certain cases, the sample correlation function converges in
probability to a constant, but not always. If within a class of heavy tailed
time series the sample correlation functions do not converge to a constant,
then more care must be taken in making inferences and in model selection
on the basis of sample autocorrelations. We experimented with simulating
various heavy tailed stationary sequences in an attempt to understand
what causes the sample correlation function to converge or not to converge
to a constant. In two new cases, namely the sum of two independent mov-
ing averages and a random permutation scheme, we are able to provide
theoretical explanations for a random limit of the sample autocorrelation
function as the sample grows.
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1. Introduction

For a stationary sequence {Xn, n =0,-1, +2,...} the classical definition of the
sample correlation function is
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where .- n-1 E--1Xi is the sample mean. When the variance of Xn is finite,
and the sequence is ergodic, (h)-,Correlation(Xo, Xh) with probability 1, for every
h. See Brockwell and Davis [1]. When heavy tails are present, and the variance of
Xn is infinite, it makes little sense to center at X and the following heavy tailed ver-
sion of the sample correlation function is often used:

)xx +
n 2

Many common models %r the infinite variance case are based on a-stable random
variables, 0 < a < 2, or, more generally, on random variables in the domain of attrac-
tion of a-stable random variables. Recall that a random variable Z is in the domain
of attraction of an a-stable law if it has appropriate regularly varying tails; that is, if

lim P[ Z >
t-,oP[]Z > t]

=x -a, x >0

and the tails balance
P[Z > t]lim p

oort z >t] 0_<p_<l

lim ..PJZ <_ -t]
*-’L Z > ]-q- l-p,

where 0 < a < 2. See e.g. Feller [8]. If {Zk} is an iid sequence of random variables
in the domain of attraction of an c-stable law, 0 < c < 2, then for an infinite order
moving average

Xn E CJZn- j’ (1.1)
j=0

Davis and Resnick [3, 4] have shown under appropriate summability conditions on
the coefficients {j} that

P

where

p()
E=0+ h

E7= 0}
(1.2)

Observe that p(h) in (1.2) is not the theoretical correlation which does not exist.
However, Davis and Resnick [5] have produced an example of a bilinear time series
where

(’H(1),..., "fiH(h )::v(L(1), ., L(h ),
in Nh for any h > 0 where "" denotes weak convergence and where L(h) is a non-de-
generate random variable.

For finite variance time series models, infinite order moving averages are dense in
the sense that any empirical sample correlation function can be mimicked for any
fixed number of lags by an appropriate autoregression. However, for infinite variance
time series this is no longer the case and in fact most heavy tailed stationary process-
es are nonlinear, and, in many senses, very far from linear processes. See for exam-

ple, Rosifiski [11]. However, the study of the sample correlation of more general non-
linear heavy tailed stationary processes is only beginning, the required point process
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and regular variation tools are still being polished, and researchers have only a limit-
ed intuition into the question of which classes of processes have the property that the
sample correlations converge to a non-random limit. It is precisely to develop this
kind of intuition that we undertook an experimental project. In Section 2 we describe
the models we have simulated. In Section 3 the simulation results are presented. Sec-
tion 4 deals theoretically with two of the models and shows why a random limit
occurs for the sample acf for the models under considerations.

The statistical significance of whether the sample autocorrelation is asymptotical-
ly random is profound. For example, model selection techniques for heavy tailed
autoregressions based on the AIC criterion as well as coefficient estimation techniques
based on Yule-Walker estimation all rely on the sample autocorrelation function con-

verging to a constant and when this is not the case, the mischief potential for misspe-
cifying a model is great. When the sample acf is asymptotically random, new statis-
tical tools and parametric models need to be developed. This difficulty, as discussed
in Feigin and Resnick [7], is not academic as all examples known to us of non-simula-
ted, real, heavy tailed data exhibits the disturbing characteristic that the sample acf
plot computed for a subset of the data set is not stable as the subset varies within the
full data set. For example, splitting the data into three disjoint subsets and plotting
the sample acf for all three produces plots which look quite different from each other.

2. Models

There are several classes of heavy tailed processes used in literature. One is based on
various modifications of linear time series. We present two such examples here, in
subsections 2.1 and 2.5; note that the former example is much more "standard" than
the latter. In subsection 2.2 we consider the standard ARCH(l) process. Finally, our

remaining examples are those of stationary symmetric a-stable (SaS) processes, 0 <
a < 2. The structure of these processes is fairly well understood, which makes them
an attractive source of examples. See Samorodnitsky and Taqqu [13]. A SaS process
can be represented in the form

f
Xn / fn(X)M(dx), n 0, 4- 1, 4- 2,..., (2.1)

E

where M is a SaS random measure on E with a e-finite control measure m, and fn E
LC(rn) for all n. Only very special choices of the kernel fn will produce a stationary
SaS process (Rosiflski [11]), and even more special kernels are needed to produce
ergodic stationary SaS processes (Rosiflski and Samorodnitsky [12]). Two examples
of stationary ergodic SaS processes are presented in subsections 2.3 and 2.4; once

again the former example is much more "standard" than the latter.

2.1 Sum of Two Moving Averages

The simplest possible departure from the linear moving average process is, of course,
just a sum of two such independent processes. We simulate

10 10
1 )2Z(n1) Z(n2) n- 2 (2.2)Xn- (j + l -J+ (j + l): -J’

j--1 j=l
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where {Z?),j- O,-t-1,...}, i- 1,2 are independent sequences of iid Pareto (a) ran-

dom variables. That is, P(Z(i)- >A)-A -a, A_>l. We have chosen a-1.5. Of
course, we could have used a-stable random variables in place of Pareto ones but this
will not change the nature of the results, and so the ease with which Pareto random
variables can be generated determined our choice.

Note that the choice of the coefficients in (2.2) is, basically, arbitrary. One only
has to make sure that the two sequences are not proportional to each other since in
that case the process reduces to the usual moving average. Any other choice of the
coefficients does not change the nature of the results. Theoretical discussion of this
example appears in Section 4.1.

2.2 ARCH(l)

The ARCH(l) process is defined by
1

Xn- n(a+bX2n_l), n 1,2,..., (2.3)

where {n,n- 1,2,...} are iid standard normal random variables, independent of X0,
a > 0 and 0 < b < 1. Of course, only a particular choice of the initial distribution
(that of X0) will make this random recursion stationary. Instead, in simulation we

start the process at 0, and discard the first 1000 observations to eliminate the initial
transient in the system.

For this simulation, we used a- 1 and b- 0.99 which gives P(Xn
CA- 1.014 as Aoe. See de Haan et al. [6]. One of the major differences between this
process and those based on linear models is that, in an ARCH process, heavy tails
appear not because of an innovation with heavy tails, but due to the combined effect
of infinitely many light tailed innovations.

2.3 Mixed Moving Average

A mixed moving average process represents yet another step away from a linear
moving average process. We present it in the context of SaS processes. A mixed
moving average SaS process can be written in the form

n- 0,-t-1, + 2,..., and M is now a SaS random measure on N x E with a r-finite
control measure Leb x m, m being a r-finite measure on E. The function f is in
La(Leb x M). This process is ergodic (even mixing), see Surgailis et al. [14].

We have simulated a mixed moving average process with E (0, 1), m- Leb and
1

f(x,s)-e-112, 0_<s_<l, xEN.

It is not straightforward to simulate a general SaS process; we use the series repre-
sentation. If G is an arbitrary real random variable with an everywhere positive den-
sity h, and U is an [-valued random variable whose law A is equivalent to the mea-

d.X then the mixed moving average process (2.4) can be (in distribu-sure m, with g
tion) represented as
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x) 1 1

Xn- aaE jF--f(n-Gj’Uj)(h(G)g(Uj)) - (2.5)
3--1

where as is a positive constant that depends only on c, and

{ej} are lid Rademacher, i.e., P(ej 1)- P(ej 1) 1/2,
{Fj} are the arrival times of a unit rate Poisson process; i.e. Fj Fj_ 1 -+- ej
where

{ej} are iid Exp(1),
{U/} are iid S-distributed

{Gj} are iid with density ’h.
All 4 sequences of random variables above are independent.

Even though the representation (2.5) is valid for every choice of h and as

above, he practical necessity of truncating the sum in (2.5) a a finite number of
erms makes the choice of h and $ an im__portant one. In our case, for instance, the
choice of the normal density h(z)= ()-lexp(-z2/2)initially looks atractive,
but i has a major drawback: it takes an eztremel large number of erms in the
series to make sure that we observe a Gj close to even a moderately large n, and so
the simulation program is likely to return values of Xn for such n’s as almost zero.
To rectify the situation we choose heavy tailed Gj’s. For the purpose of this simula-
tion we have chosen a Cauchy density

1 xE.h(x)
(1 / x2

Moreover, we have chosen Uj’s to be uniformly distributed in (0, 1). Then our simu-
lation program uses the approximation

M 1 G 1

z_,jFj-We J ’ (I+G})Xn
3--1

for a large M. We have dropped multiplicative constants that do not affect sample
correlations.

2.4 Random Walk

There is only one class of mixing stationary SaS processes different from the mixed
moving average processes considered in the previous subsection, that has been discuss-
ed in the literature. A representative of this class is simulated in this subsection. We
refer the reader to Rosi’ski and Samorodnitsky [12] for more information.

Let m be the -finite measure on %% induced by mixing with respect to the

counting measure on m E % probability measures induced on %% by a simple sym-
metric random walk passing through m at time 0. Let M be a SaS random measure

on %% with control measure m. For any set A C 2; with m{w
the ScS process

Xn- /l(wneA)M(dw), n-O, +1,+2,...

%Z
is well defined mixing stationary process.

For the purpose of this simulation we have chosen A {0}. Since the process
has to be, once again, simulated through its series representation, therc is an issue of
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selecting a probability measure on 2525 equivalent to rn. In the present context this
has an intuitive interpretation of selecting a probability law on 25 with all positive
probabilities, according to which the initial position of the random walk is chosen. Un-
like the previous example, in this case it is not so obvious why one choice of such a
distribution will perform, when the series representing the process is truncated, better
than another such distribution. Nevertheless, it still seems that choosing the initial
state according to a heavy tailed distribution will "mix" the random walks better
than a light tailed initial distribution will, and so the approximate process will be
closer to true stationarity in the former case than in the latter. To get a feeling of
whether this is, in fact, so, we have simulated this process twice, once with the initial
state chosen according to

pm_2-Iml, rn-0, +1, 4-2,..., (2.6)

leading to simulating the series

M jl"?
1 y ( )2 1 Y-0 n-0,1,2,...,Xn

where, as before,
{ej} are iid Rademacher,
{Fj} are the arrival times of a unit rate Poisson processes,
{Yn, n E Ar} are iid simple symmetric random walks with initial distribution
given by (2.6).

The number of terms M is large. The second choice of the initial distribution is that
of a heavy tailed one, with

c
Pm- (I rn + 1)2,

rn 0, 4- 1, + 2,..., (2.7)

with c 3/(r2- 3). This leads to having to simulate the series

M

E + 0),
3=1

where, this time, the initial state Y of a simple symmetric random walk has distribu-
tion (2.7). Once again, the number of terms M in the series is large.

2.5 Coefficient Permutation

Our final example represents yet another modification of the linear time series. Let
{j} be a doubly infinite sequence of coefficients and {Zj} a random noise sequence
such that the series j _jZ_j:: converges. The linear process (1.1) can be
viewed as follows. Start with a sequence {j} such that j- 0, for j < 0 and define

Xo CjZ_ j.

To find X1 we apply a shift to the sequence of coefficients

(0) {...,_1,0,1,...}(1) {...,0,1,2,...}
so that
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and compute

 I-Z
To compute then X2, apply the shift to (1), etc. Our idea was to use an operation
on the sequence of coefficients different from the pure shift.

The operation on the sequences we have chosen for this example is a combination
of a shift with a randomly chosen rearrangement of the coefficients. Since, in theory,
we are dealing with an infinite sequence of coefficients, which makes it difficult to
deal with permutations, we rearrange the coefficients by moving the first (non-zero)
coefficient into a random position. Specifically, let {Kj} and {Mj} be two indepen-
dent sequences of iid positive integer valued random variables. Given a sequence
(0)_ {0,1,’"}, we define recursively

for j 1,..., M1 1, and b(M1) b(0). So for j M1, (J) is obtained from (J 1)

by taking the initial entry of the sequence (j-l) and moving it to the Kith spot
after displacing that entry one step to the right to clear room. We then continue the

recursion (2.8) for j M1 4- 1,...,M 4- M2 1, set (M1 + M2) (0), etc. The rea-
sons for "resetting" the coefficients back to their initial state (0) from time to time
is that without such an action, the vector of coefficients tends to zero and the result-
ing process would be very difficult to simulate.

Having constructed the sequences (J), j >_ 0, we define the permutation process
by o

Xn- !n)zn-i, n-0,1,2, (2.9)
i=0

The random noise in (2.9) is independent of the randomness involved in constructing
(J), j >_ 0.

For the purpose of this simulation we have chosen
!0) 1 0 1 2

( +)2, ,’",

P(Kj k) k(k
1 k 1 2,- I) ...

P(Mj-k)-2-k,k-l,2,...,
(Zj} are iid symmetrized Pareto random variables with c- 1.5 (i.e., a product
of a Pareto random variable and an independent Rademacher random variable).
Of course, the series in (2.9) has to be truncated as well, so we actually simulate

M

Xn Z !n)Zn j’ n-0,1,2,...
i=0

for some large M. In particular, only the first M coefficients get permuted. If a par-
ticular Kj takes a value exceeding M, we discard this value and generate Kj anew.

3. Results

For all the examples we present time series plots of several runs and the correspond-
ing sample correlations computed from these runs.
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3.1 Sum of Two Moving Averages

The 9 sample autocorrelations shown in Figure 1 show enough variation that one
must suspect that for the sum of two independent moving average processes, the
sample correlations do not converge to a constant limit. The 9 time series plots are
also given in Figure 2 and look rather different. This result may be somewhat coun-
terintuitive for some since the sum of two independent linear processes behaves, in
many respects, similarly to a linear process. A theoretical analysis of this case is pre-
sented in the next section where we verify that the sample correlation function con-
verges in law to a nondegenerate limit.

We have generated 10000 observations in each run.

Lg Lag Lag

2
Lag Lag Lag

Lag Lag Lag

Figure 1. Sum of Two Moving Averages Auto-Correlation Function
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Sum MA: Length- 1000 Alpha- 1.5

2OO

200

Figure 2. Sum of Two Moving Averages Time Series

3. ARCh(l)

For the process (2.3) we generated 100000 observations for each run, while dropping
the first 1000 observations to reduce the effect of the possible initialization bias. The
sample correlations in Figure 3 seem to indicate, in this case, that the convergence, if
present, is to a non-degenerate (random) limit. This fact has recently been investigat-
ed by Davis and Mikosch [2].
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Arch’ Length = 100000 A = 1.00 B = 0.99 Extra 1000

qllql.., iiii.1,,,,,.o

Lag Lag Lag

,11,

tg Lag Lag

.,,11o...,,I ,.:,,

Lag Lag Lag

Figure 3. Arch Auto-Correlation Function
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Arch" Length 1000 A 1.00 B 0.99 Extra 1000

Figure 4. Arch Time Series

3.3 Mixed Moving Average

To simulate this process we have chosen the number of terms M- 105, and each of
the 9 simulation runs was of length 1000. The results, presented in Figures 5 and 6,
seem to clearly indicate that the sample acf does not converge to a constant. To
check this unexpected conclusion we have generated also 4 additional simulation runs
with M- 106, each run having length 105. The resulting ACF, presented in Figure
7, seems to support the above conclusion. We have used a- 1.5 throughout.
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Mixed MA: Length = 1000 Sum-Len 100000 Alpha 1.5

Lag Lag Lag

Lag Lag

Lag Lag Lag

Figure 5. Mixed Moving Average Auto-Correlation Function
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Mixed MA: Length = 1000 Sum-Len = 100000 Alpha 1.5

Figure 6. Moving Average Time Series
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Mixed MA: Length = 10000 Sum-Len = 1000000 Alpha = 1.5

IIi1

0 10 20 30 40 50

Lag

0 10 20 30 40 50

Lag

0 10 20 30 40 50 0 10 20 30 40 50

Lag Lag

Figure 7. Mixed Moving Average Auto-Correlation Function

3.4 Random Walk

For this model we generated two batches of runs; the first one used the light tailed
initial distribution (2.6), while the second one used the heavy tailed initial distribu-
tion (2.7). Once again we have used M 105 terms in the series representation of
the process, simulated each run of length 104, and used c = 1.5 throughout. One of
the conclusions is that, as the inspection of the time series plots seems to indicate, we
see less "action" going on towards the end of the plot than at its beginning when
using the light tailed initial distribution (2.6). This phenomenon is not seen in the
case of the heavy tailed initial distribution (2.7). Secondly, the sample correlations
appear, once again, to converge to a non-degenerate limit, even though this
phenomenon is not as obvious here, as it is in the previous example. See Figures 8-
11.
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3.5 Coefficient Permutation We have chosen here M- 105, and each simulation run

was of length 2000. The sample correlations look "very random" in Figure 12,
implying that, for this new class of stochastic processes, certain phenomena occur
which require explanation. As we will show in Section 4.2, the randomness in the
limit is due to the random coefficients.

RW 1" Length = 10000 Sum-Len 100000 Alpha- 1.5

Lag Lag Lag

I ]

Lag Lag Lag

Figure 8. Random Walk Auto-Correlation Function
Light Tailed Initial Distribution
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RW 1" Length = 1000 Sum-Len 10000 Alpha 1.5

Figure 9. Random Walk Time Series
Light Tailed Initial Distribution
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RW 2: Length = 10000 Sum-Len = 100000 Alpha = 1.5

Lag Lag Lag

J
20

I.g Lag Lag

30

Figure 10. Random Walk Auto-Correlation Function
Heavy Tailed Initial Distribution
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RW 2" Length = 1000 Sum-Len 10000 Alpha 1.5

400

Figure 11. Random Walk Time Series
Heavy Tailed Initial Distribution
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Reset" Length 2000 Sum-Len 100000 Alpha 1.5

Lag Lag Lag

Lag Lag Lag

hill,,,,,

40

Lag Lag Lag

Figure 12. Coefficient Permutation with Reset Auto-Correlation Function
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Reset: Length = 1000 Sum-Len = 100000 Alpha = 1.5

400 6(X) 1000 200

Figure 13. Coefficient Permutation with Reset Time Series

4. Analytical Results

This section is devoted to outlining explanations of why the sample correlation con-
verges to a random limit for the cases discussed in Sections 2.1 and 2.5, namely for
the sum of two moving averages and for the coefficient permutation with reset exam-
ple.

The methods of proof are standard and use the connection between point process-
es and regular variation as outlined in Resnick [9], Section 4.5. The method for time
series was developed by Davis and Resnick [3, 4].

We denote a Radon point measure on a nice space E by
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Egx
where x E - and the collection of all such point measures is called Mp(_). The topo-
logy is generated by the vague metric, vague convergence is denoted by ,,v,, and the
Borel r-algebra is denoted ttp(). Let CK+ (-) be the non-negative continuous func-
tions with compact support on =.

4.1 Sum of Moving Average Processes

We examine in more detail, the example of the sum of two moving averages. The
fact that the lag 1 correlation differs substantially from simulation run to simulation
run raises doubts that the sample correlation function converges to a constant in this
case. We will prove the following.

Theorem 1" Suppose

{{Z(), -cx < n < c},i l,2}
are two independent sequences of iid random variables with the same common distri-
bution F satisfying

xliml F(x) + F(- x) = p’ 0 < p _< 1, (4.1)

1 F(x)+ F(- x) x- r(x), 0 < c < 2, xcx, (4.2)

where L is slowly varying. Let the moving average coefficients

satisfy the condition for i- .1,2

E c(ni) 16 < oo, for some 0 < 6 < cA 1.

Define the sum of moving average process {Xn} by

xo Z 1)- + Z )-
J - i -Then, for any integer , the heavy tailed sample correlation function {H(h), 1

h } converges in distribution in N o a nondegenerate limit random vector

(4.3)

(1) x) cx)ctl)ctl)+h _}_ (2) x) cc}2)ct2) )(1)Ex) (x)(C}l))2 + (2) Ex)__ _oo(C}2))2
1 _< h <_ k

where (i), i- 1,2 are two independent, identically distributed, positive, strictly a/2-
stable random variables.

Proof: We proceed in a series of steps.
Step 1: Define the quantile function
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(4.4)

so that for x > 0

nP[ Zi) > b,x]x-, n

and in terms of measures

nP[b lzi) e v---t] (4.5)
where the vague convergence is in the space of Radon measures on [-c, cx]\{0} and
for x>0

v(x,] p-, (-, x] q lx (4.6)
and q- 1-p.

Step2: Observe that fori, j-l,2andx>0, y>0

k%nP[bZ azi) > , b 1ZJ) > y]- O. (4.7)
Fix an integer m. For any n, define the vector of length 2m + 1

zm, i) (Z( j, J[ )’.
Because (4.7) says two components cannot be simultaneously large, we get the
following vague convergence in [-

P[bZl(Zm’l),zm’2)) ]v(m)x go + CoX V(m). (4.8)

Here 0 is the probability measure concentrating all mass on the zero vector in
2m + 1 dimensional space and u(m) concentrates all mass on the axes through 0 so

that
m

v(m)(dxj, Jl m)  (dxj) x o(dx_ m,’", dxm)

where the hat denotes the deleted variable.
Step 3: The regular variation and balance conditions (4.2) and (4.1) imply

(Resnick [9], page 226) for i-1,2 as ncx, the weak convergence in the space

Mp([- cx, cx]\{0})" n

"-1 t n k ji)
where for i- 1,2, the limits are independent Poisson processes on [-oc, oc]\{0} with
mean measures equal to v. This has an extension using Step 2 as follows:

E e +E E e (4.9)
1 b-l(Ztm’ 1),z}m, 2)) " Ek [llE_<mg(jl)el0) k [11 _<m (0’ J2)el

where e is a vector of length 2m + 1 with 1 in the /th spot and O’s elsewhere. This
follows because no two components can be large simultaneously.

Step 4: Define for i- 1, 2
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Consider the map R2m / 1x [2m / 1__[ x [ defined by

(.(1), .(2))_, ( E C(1)Z(1) E C’2)Z"2) )J J

Apply this to the convergence in (4.9) which yields after a continuous mapping argu-
ments that

n

l=l bl(Xtm’l)’xtm’2 Ill <_m k

and after an argument which allows m---oe we get

+E

E tl) )):=El= 1 bl(X ’Xt2
Igl < oo

+E
k (Jl)ctl)’o) Ill <oc k

Add the components and we get our intermediate goal, that
n

l= blXl [l oo k gJ2)ct2))" (4.10)

Step 5: we now modify the procedure in Step 4. For a nonnegative integer h, we

define a map from [2m + 1 x 2rn + 1,__4 defined by

(’(1)’ Z(2))->( ]il
E
<mc!l)z!l)’lilE< mc!l)+ hz!l)’] E< mC!2)Z!2)’lilE< mc!2)+ hZ!2))"

Apply this map to (4.9) and after letting rn-<x we obtain
n

l= bgi(xtl) xtl)+h

which yields after adding the first and third and then the second and fourth compon-
ents that

E g -1 :=l>/,k g q- /,k (4.11)
I=1 bn (Xl’Xl + h) (Jl)ctl)’jl)ctl)+ h) (J2)ct2)’j2)ct2)+ h)

in Mp([- oct, c]2\{0}.
The convergence in (4.11) holds for h 1,...,k for any k and in fact, examining

the outline of the proof, we see that the convergence holds jointly. Apply the func-
tional which takes the product of the components and then sums the points of the
point measure to (4.11) when h =0 and when h is arbitrary. We get after a

truncation and continuity argument that in Nk / 1

b 2 XX + h,O < h < k
/=1
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Divide the hth component by the zero-th component in (4.12) and we achieve

E= 1XlXl + h

EP-

where (1) E/(oil))2 -t- (2)E/(Ct2))2

(4.12)

This is the desired result since for i- 1, 2,(i) is a positive strictly stable random vari-
able with index a/2.

4.2 Coefficient Permutation with tet

In this subsection we outline a justification for the empirical results of Section 3.5
and show why the sample correlation function converges to a random limit.

Recall that we start with a sequence - {j, j >_ 0}. We assume this sequence
satisfies the analogue of (4.3), namely

0n < c, for some 0 < 5 < c A 1. (4.13)
n--0

We also have an iid innovation sequence {Zn} whose common distribution F satisfies

(4.1) and (4.2). Remember we get (1) from by shifting the initial entry of the
sequence of the Kl-th spot, displacing the entries with index greater or equal to K1
one slot to the right. This is repeated until the reset time M1 and so on.

Lemma 1: Let {(J),j_> 0} be the random elements of Nc created by the
random shift and reset scheme of Section 2.5 where .(0)= and satisfies (4.13).
If E(M1) < c then there exists a random element ( of N such that n--<x

(n)() (4.14)

in where () is specified as follows: Let {(J)} be the sequence of random
elements of oo constructed with shifts and no resets. Then for B E %(o0) we have

( )P[() e B]- E PIe(J) e B] P[M1 > j]

j =0 E(M1)
Proof: The sequence of random elements {(/)} is a regenerative sequence with

expected cycle length E(M1) and the limit distribution follows from Smith’s
Theorem. See Resnick [10], Section 3.12.2. El

Before we explain why the sample correlation has a random limit for the shift
and reset process, we need the following lemma. For this result, we set

Lemma 2: Suppose
x!n) -1, n >_ 1, 1 <_ <_ n,
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and
Suppose

()

(ii)

There exist {x!c),i
_

1} such that

i=1 x
in Mp(E );()For some G E2

im() ();

(4.15)

(4.16)

(iii) For any compact K C E2 and any fixed integer L we have
L

lim - (n)(K) O,
r-"-ci"-’1 x

so that for any i, x! n) G Kc for all n large enough.

n

1 (x! n), )(i))
in Mp(E1 X

Proof: Let f C CK+ (El x E2). Then there exists a large number k such that

(4.18)

f(x, y) 0 if either II Y II > k or II II < - 1

and if we set K:- {x: II II < -} we require additionally that k be chosen to
satisfy . g (oc)(0/’l)-- 0.

x
The desired conclusion (4.18) will follow if we show

n

f(x!n), (i))__, f(x!), ()). (4.19)
i=1 i=1

Write

n), S(x!
i=1 i=1

n
_

f(x! n), (i))_ f(x!,),
i=1 i=1

+ f(x!n), (o))_ E f(x!)’ ()) I + II.
i=1 =1

However, for fixed (),
f(., (cx)))e CK+ (IF’l)

and so from (4.15) we get 1140 as nc.
It remains to show I0. Recall K- {x: I] x II >-k-l} is compact.

(4.15) there exists no such that all n _> no
From
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rrt:- i=IEx!n)(/t’l)- i--lX!c)(/t’l)" (4.20)

Suppose s > 0 is given. Since f is continuous with compact support, it is uniformly
continuous and so there exists 5 > 0 such that

sup{ f(Xl’ Yl)-- f(x2’ Y2) I" II (Xl, yl) (x2, y2)II . (4.21)

Choose L so big that for all _> L we have

We have

I _< E n), (’))- f(x!n),

L
_< IS(x! f(x!n),
i=1

n

+ If(x!), (’))- f(x!n), ())1 Ia + Ib.
i=L+I

Suppose f is bounded above by II S I1" Then
L

Ia <_ II f II ilex,(n)(K1)--O
as n---cx from (4.17). For Ib we get from (4.21) and(4.20) that

Ib <_ sup{ f(xl,Yl)- f(x2, Y2) II (Xl’Yl)--(x2’Y2) II 5}’m

We thus get limsupI _< ,
which finishes the verification of (4.19). V1

We are now in a position to show why the sample acf converges, in general, to a
random limit.

Theorem 2: Suppose {Xn} is the shift-reset process described in Seclion 2.5.
For any k, as n---,oo

-ol "l+h l < h < k(’fig(h), 1 < h < k)= -"-in k where {t) l> 0} is the process described in Lemma 1
Note all the randomness in the limit is caused by the random coefficients and not

by the innovation sequence. We will see that in the limit, the randomness caused by
the Z’s cancels out.

Proof: As in the proof of Theorem 1, we proceed in a series of steps.
Step 1" For an integer m, define a vector of length m + 1 by

z.m) (Zj, Zj_ l,...,Zj_m)’.
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Define bn as in (4.4) so that

Then
( 1bn: p[ Zl > .] (n).

n m

j Z’)/b, =o
(4.22)

where {Jk} are the points of a Poisson process on [-c, oe]\{0) with mean measure u

given in (4.6) and e is a basis vector of length m + 1 all of whose entries are zero

except for a 1 in the/-th spot. (See Resnick [9], page 232 or Davis and Resnick [3]).
Step 2: Define

<

j- 0, 1,..., oe. Apply Lemma 2 to the convergences (4.22) and (4.14) and we get
n m

1 (Z )/bn, (m, j)) 0 k (Jkel )"
Step 3: Define

(4.23)

m

i=0

so that X!.m) is an inner product. Apply the inner product to the components of the
points in (4.2a) and by a continuous mapping argument we get

n m

j 1 n 0 k jk
m,

and after an argument which justifies replacing m by oe, we get

E e bnE Eej (o)" (4.24)./=1Xj/ /=0 k k

Step 4: We now redo Step 2. We again apply Lemma 2 to the convergences
(4.22) and (4.14) to get for any integer h

wh m

E e (4.25)
j 1 (z’m+)h/bn,(rn’j+ h) (m j)::E E

o k (Jk"t, (’ ),(’))

Now define a map

by
[-- Cx3, OO]TM + 1\{0} rn -t- 1 m -t- lt___[_ OO,

(Z, , ’)’--+((Z, ) ZoO)h -t- Z h + -t- nt- Zm h m)"

Note the second component on the right is obtained by ignoring the first h compon-
ents of ’ and then taking the inner product with the correspondingly truncated ver-
sion of z.

Apply this mapping to the components of (4.25). After a continuous mapping
argument and a justification of the replacement of m by oe we get
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gbj I(Xj + h, Xj)’
0

_
h

_
]

Note that any with a negative subscript can be interpreted as 0.
Taking products of components and summing points and then taking ratios yield

the result:

(’fill(h), 1 < h < k)= 2 o= O’l ’l + h

0(,))2
,l_<h_<k El
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