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The following paper, first written in 1974, was never published other than
as part of an internal research series. Its lack of publication is unrelated
to the merits of the paper and the paper is of current importance by virtue
of its relation to the relaxation time. A systematic discussion is provided
of the approach of a finite Markov chain to ergodicity by proving the
monotonicity of an important set of norms, each measures of egodicity,
whether or not time reversibility is present. The paper is of particular
interest because the discussion of the relaxation time of a finite Markov
chain [2] has only been clean for time reversible chains, a small subset of
the chains of interest. This restriction is not present here. Indeed, a new
relaxation time quoted quantifies the relaxation time for all finite ergodic
chains (cf. the discussion of Ql(t) below Equation (1.7)]. This relaxation
time was developed by Keilson with A. Roy in his thesis [6], yet to be
published.

Key words: Markov Chains, Ergodic, Relaxation Time.
AMS subject classifications: 60J 10, 60J99.

1. Introduction

Let N(t) be a finite homogeneous Markov chain in continuous time on the state space
N {1, 2,..., K} which is irreducible and hence ergodic.

Let p_T(t)--(pu(t)) be the state probability vector at time with Pn(t)-
P[N(t) hi. Let e_T (en) be the ergodic vector _eT limt__,oo_pT(t).

Consider the norm function with probability weights qn > 0,

1This paper is dedicated to R. Syski on the occasion of his special issue.
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1

[ Pn’aha(p ,q )- qn-n) -cx < c < cx (1.1)
1

ho(P,q)-exp E qnlog
1

defined for arbitrary probability vectors p,q supported on N. Of interest are the
related functions of time

1

n(t) h(t, k % (’)
1

Ro(t --exp enlog
1

and

Qa(t) Pn(t) ;Q0(t) exp Pn(t)log ]j. (1.3)

The functions ha(,) are vector norms on RK. R(t) then describes a time depen-
dent norm function. The function Qa(t) has related properties.

It will be shown (cf. Theorem 1) that Qa(t)is strictly decreasing in t for > -1,
and strictly increasing in t for a < -1 when 0, i.e., when the chain is not
stationary. When a- -1, Q_ (t)- 1 for all t. A similar monotonicity of Ra(t)
with t is demonstrated in Theorem 2. We note that limQa(t)- 1 forall a, t. In
particular,

Qo(t) exp{H( (t),)} (1.4)
and

Ro(t) exp{ H(, (t))} (1.a)
where [4, 5],

{H(p,q)}- Pnlog (1.6)

is the divergence of the distribution p from the distribution q, an entity closely
related to entropy and other concepts in information theorem. The monotonicity of
H(,(t)) and H((t),) for arbitrary chains has been known [5]. A value of a of
special interest corresponding to weighted quadratic distance is a- 1 for which

01(t) f(t)en (1.7)

and this is strictly decreasing in t if the chain is not stationary.
In the time reversible case, the monotonicity of (1.7) is well known [2, 3]. Indeed,

for this case, the quadratic distance to ergodicity

D(t)
n en Ql(t)- 1 (1.8)

is strictly decreasing by virtue of the symmetry of[(t)-!T 1/ and its

associated spectral representation [2]. That Ql(t) and D(t) are monotone decreasing
for all ergodic chains is striking. The function D(t) decreases strictly to zero for
every finite non-stationary homogeneous ergodic chain.
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The monotonicity of the distance to ergodicity (1.8) does not appear to extend
easily to the full family R(t) and Qc(t).

It is shown in [6] that [cf. Remark 3.2.2], for any ergodic chain and initial
distribution,

]01 ]t /E[Pn(0)-- en]2 101]t< D(O)e
V n n e (1.9)

where -01 is the smallest of the positive real singular values of e__/:Q__ 1/2 (cf. [1]).
When the chain is reversible in time, this agrees with the known rult [2]. Conse-

1 is a natural extension of the relaxation time for time reversiblequently, Tre O1
ergodic chains to all ergodic chains.

The distance D(t) and the relaxation time also play a role in the covariance
function RI(r)- cov[fj(t),fj( + r)] of any stationary ergodic chain J(t). Here (cf.

I](T) fTe_D[p__ (7")--l_.T]f_ f_.Tc__.D[p_. (7")--1_.__T 1/2__2f g_T(T)b

where
1 fT[p (v)- 1 bgT_r_( _.t.Te_

Since f may be made positive by adding a constant without altering RI(r), it follows
that T1 fTe__@D[p (7")--_leT]_ is of the form pT(t)- _eT needed for Equation (1.8) and

that Equation (1.9) is then relevant. One then has from the Schwartz inequality

IRI(r) T(r)(r) Z(0)(0) e- I1 It. (1.10)

Note that for the Frobenius norm of (t)-2[ (t)-!;r /,

II r(t) II 2FROB Trace[r (t)r(t)] E em enrn, n

and this is strictly decreasing in time. This allows from Equation (1.7) with

Pn(O) 6mn, weighting by era, and summation over m. Indeed

E em
[pmn(t) en]2 : (0)e 2101 It

: e
-2 101 tTrace [_D[/ l_e Te 1[/ --e IT]]

and

II  (t)II f <- I011tv/N- 1.

When pn(t)
Qoo(t)- maxn en

(1.10)
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is a decreasing function of t; and

Q_ (t)- minnP)’’
is an increasing function of t.

(1.11)

2. Some Basic Lemmas

Lemmal" For y > O, let

1 ya -Jr 1 l_yaga(Y) a + 1 +

go(Y) Y- l lgy; g_ l(y) y

1
a(a+ 1)
-1-1+logy.

Then for all real c and for all y > 0

ga(y) >_ 0 with equality if and only if y- 1.

Proof:

y

ga(y)- / z"(1- z

1

a)dz, y > 1

1

gc(Y)- / Zc(z-
Y

1)dz, 0<y<l.

Consequently, ga(y) k O. Moreover, strict inequality holds for y = 1.
Lemma 2: Let R_ -(rmn be a doubly conservative matrix, i.e.,

(2.1)

(2.2)

Then, for all real 7 0 and all xn > O, n 1,2,...,K- XrnrmnXn
and rn n

E EXmrmn(1 + lgxn) <- O. (2.4)
m rt

Moreover, equality holds if and only if xm -xn whenever rmn > O, m,n 1,2,...,K.

Prf: Let c 0, 1. Then from simple algebra with mn

1E Ex - E E rmnX-t-1 (mn)" (’)" mrmnXn (

rn n m n =/= m

By taking c0, (2.5) yields

x-iE EXmrmn(1 + log xn) lima0E EXmrmn(1 + o
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limc--+oE EXmrmnX- E
m re m

Lemma 2 then follows from Lemma 1.
Remark 1" Note that for special value a- 1

E rmnXmgo(Ymn)"
nrn

E EXmrmnXn <_0 for all real _x_, because E EXmrmnXn
m n m n

2 2

m m m re
n

and the last two terms are zero.

3. The Main Result

Theorem 1: For a finite ergodic chain in continuous time, let

1

Q(t) E Pn(t) en
Qo(t) E Pn(t)l ere

1

If the chain is not stationary, Qa(t) is a strictly decreasing function of on [0, oo)
when c > 1 and a strictly increasing function of t on [0, o) when c < 1.

Proof: Since pn(t)is differentiable, Qa(t)is also differentiable. Then for c : 0

doa(t + 1 1-
a (Qa(t)) P(t) e / (3. 1)

Let _p (t)- [Pmn(t)] be the transition matrix for the chain N(t) so that _p (t)-

exp[S__ t] where _S_ -[Smn is the infinitesimal generator of the chain. Let rmn
emSmn. Then _r -[rmn is doubly conservative in the sense of Lemma 2.
Xm(t Pm(t)/em. Then

Let

(3.2)

I E m( mn ( )"x tr x
m

The expression Xm(t > 0 for t > 0, a property of ergodic chains in continuous time.
By Lemma 2, the expression (3.2) is always non-positive for > 0. From (3.1) it
follows that Qa(t)is non-positive for c+l> 0, a :/=0, and non-negative for
a +1< 0. It attains the value 0 iff Stun > 0 implies Xm(t --Pm(t)/em--Xn(t
Pn(t)/en. For chains with positive transition rates between all pairs of states, this is
possible only if pre(t)= en for all n, i.e., if the chain is stationary. The result then
follows for all ergodic chains. When c 0

Qo(t) -Qo(t)E EXm(t)rm(1 + 1ogxre(t)_< 0
m re

with equality iff the chain is stationary.
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Similar monotoncity properties hold for the family Ra(t).
we have

R,(t)-[Qa_l(t)](a-1)/a.

From (1.2) and (1.3)

(3.3)

When c > 1, or a < 0, Ra(t) and Qa_ l(t) have the same monotonicity properties
with t. When 0 < c < 1, Ra(t) increases when Qa_ l(t) decreases. When c 0, we

n
-’/t n which for non-stationary chains is strictly post-have Ro(t Ro(t) E Pnk )pn(t

rive for any t > 0 by virtue of (3.2) and Lemma 1. This yields the following theorem.
Theorem 2: Under the conditions of Theorem 1, Ra(t) is strictly decreasing in t

for a > l, and strictly increasing in for a < l. Rl(t)=1.

4. Ergodic Chains in Discrete Times

The results of the previous section apply also to discrete time finite Markov chains
with the strict monotonicity replaced by weak monotonicity. Since the state
probabilities pn(t) can be zero, we will restrict ourselves to the case c > 0 only. In
keeping with convention, p log p will be defined to be zero whenever p 0.

Theorem 3a: Let a > O. For a finite ergodic Markov chain, the sequence Qa(t),
t- 0,1,2,... is a non-increasing sequence.

Theorem 3b: If the elements of the one step transition matrix are positive and the
chain is not stationary, then Qa(t), is strictly monotone in t.
The details of the proofs are similar to that for the continuous time case and are

somewhat tedious. They will not be given here.
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