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Moment estimators are proposed for the arrival and customer loss rates of
a many-server queueing system with a Poisson arrival process with custom-
er loss via balking or reneging. These estimators are based on the lengths
(Sjl } of the initial inter-departure intervals of the busy periods j-
1,...,M observed in a dataset consisting of service starting and finishing
times and encompassing both busy and idle periods of the process, and
whether those busy periods are of length 1 or > 1. The estimators are

compared with maximum likelihood and parametric model-based estima-
tors found previously.
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1. Motivation

Under all but the simplest modeling assumptions, quantifying customer service quali-
ty from transactional records of, for example, automatic teller machines (cf. Larson
[11]) or wireless communication systems (cf. Daley and Servi [4]) necessitates first in-
ferring the customer arrival rate and behavior in the face of congestion, and only then
estimating derivative information such as concerns the transient queue length process.

This paper discusses deductions from records of the epochs where services start
and end for each customer served in a c-server queueing system having Poisson arri-
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vals with unknown rate parameter A under one of the following two distinct assump-
tions for customer behavior.

Assumption B (Balking): An arriving customer who finds all servers busy, inde-
pendently of all other such customers, either balks with probability w, never to
return again, or else stays in the system and waits for service.

Assumption tt (Reneging): An arriving customer who finds all servers busy, inde-
pendently of all other such customers, stays in the system and then either reneges af-
ter an exponentially distributed time (and this random variable has mean l/r/), or en-
ters service after waiting some time, whichever of these two time periods is the short
er, i.e., each waiting customer has a constant hazard rate r/of reneging.

A queueing system with mean service time b and satisfying one of those assump-
tions can exist in a stationary state for A(1- w)b < c under the balking assumption,
for all r/> 0 under the reneging assumption, and for Ab < c if w 0 or 0.

In previous work (Daley & Servi [5, 7]), we have shown how to estimate A and
either w or . In the latter, we used an additional assumption of exponentially distri-
buted service times (the queueing model is then of MIMIc type). In the former, we

developed maximum likelihood (ML) procedures without this unnecessary additional
assumption.

This paper uses less information than the likelihood approach, but provides both
readier access to the parameter estimates and their properties. It also has computa-
tional advantages over the ML method, and its results can be used as a starting point
for exploring the likelihood surface. None of these approaches gives uniformly better
estimates.

Every statistical procedure is based on modeling assumptions. RelatiVe to stand-
ard model-building in queueing theory, our data do not provide observations of the
commonly used key quantities like queue size or waiting time, i.e., direct measures of
congestion. Nevertheless, we can make deductions about their behavior (for waiting
time, cf. Bertsimas & Servi [1], Hall [8], Jones & Larson [9], Daley & Servi [6]), be-
cause we assume that the arrival process is Poisson and that customers balk or renege
independently of each other; we then exploit the mathematical consequences of these
probabilistic assumptions.

2. The Data and Notation

Let -- {dn} and r {tn} n 1,2,..., represent respectively the times of starting
and finishing service on customer n, the label n being applied only to the customers
who enter service. At any epoch in time, either all servers are busy or at least one
server is idle, so the dataset (,) partitions the time interval ] from which the data
are drawn into busy periods and idle periods, characterized by t E :]\(U) being
either a busy epoch or idle epoch respectively. The dataset also suffices to determine
the counting function

Ns(t number of servers occupied at t; (2.1)

its points of increase, i.e., {t:Ns(t- < Ns(t +)}, are the service commencement
epochs that coincide with arrivals, and so this set is the set of observed arrival
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epochs; while we know that other arrivals occur, we do not know the epochs where
they occur.

Amongst the elements of the set t2 are the epochs where simultaneously one
service finishes and another starts, namely t’E V . During an idle period, Ns(t
increases on the set of epochs \(V) and decreases on the set of epochs
\(g r). A busy period starts at the end of an idle period where Ns(. increases
to c, and ends at an epoch where NS(. decreases from c. The integrals

b- b

NI / (dNs(u)) + and T1 / I{Ns(u)< c}du (2.2)
a-- a

represent respectively the number of observed arrival epochs on (a,b) and the total
length of intervals on (a,b) spent ’waiting for an observed arrival’ as known from the
dataset; mnemonically, NI is the Number of observed arrivals occurring in Time
intervals of total length TI when at least one server is Idle. Consequently,

1 _TI
I_NI (2.3)

is a moment estimator of the average time waiting for an arrival; under the Poisson
process assumption, I is also the MLE of based on these waiting time8 (see Daley
and Servi [5]).

Suppose there are M busy periods in all, with the ith consisting of N customers
and inter-departure time intervals {Sik: k 1,...,Ni} between successive departure
epochs. (There is a minor abuse of terminology here: the ’inter-departure’ intervals
{Sil: 1,...,M} start at epochs where busy periods start, and end with the first de-
parture epochs in the respective busy periods). In Daley and Servi [5] we constructed
likelihood functions using all of these data. Here we show how they can be used quite
differently, and different from Daley and Servi [7] as well, in constructing moment
estimates of the balking or reneging parameters. The approach described below arose
as an alternative one to the use of an ML estimator of q based on a likelihood
function that is quite fiat in the region of its maximum.

3. Balking and Reneging:-Moment Estimates

As in Daley and Servi [5, 7], we estimate I by I defined in (2.3).
We propose moment estimators for the parameters w and q corresponding to the

two modes of loss behavior described in Section 1. These estimators are based on the
number riB1P of busy periods of length 1 in an observation interval (0, T), from which
the transactional dataset of this paper is assumed drawn. On (0, T), we suppose, con-
sistent with our earlier notation, that the M busy periods have ’initial inter-departure
intervals’ {Sil: i’- 1,...,M} (see note below (2.3)).

Suppose the initial inter-departure interval of some busy period has length $1.
There is just one customer in this busy period when there is balking if there is no
arrival during S that stays or when there is reneging if any arrival during S1 has left
by the end of that period. Simple computation (cf. (b) and (d) of Example 2 of
Daley and Servi [4])gives
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Pr(busy period has length l lSl}-

pf(W Sl e
A(1- v)S1

[ ,(1 e-rSl).1pf(rlS1) exp

(balking model),

(reneging model),
(3.1)

and these two probabilities agree over a range of values of S1 if and only if (w, q)
(0,0) or (1,oe). Then, given the dt {Sil’i- 1,...,M}, moment estimators of w or

r as appropriate follow by equating nBP to the respective expectations that come
from (3.1), namely

E(nB1 P)
E/M lPlB(z:y Sil gB(,cy

E/M lpf(r] Sil gR(r]

(balking),

(reneging),
(3.2)

subject to 0 < w < 1, 0 < r/< oc. Such equations, conditional on A, yield unique
solutions ff and say. First we note that the extreme cases below yield extreme
values of ff or "

nfP M

rtB1 P -- gB(O) gR(0)- 9(O) E V e

implies

implies ff--0or --0.

We discuss these extreme cases and their complement in Section 4 below.
An attractive feature of these estimators ff and is that approximate estimates

of var(ff) and var() are available as follows. For given A and {Sil}, the function
gB(w) at (3.2) has

dgB =
M A(1

dw E ASile w)Sil. (3.4)
=1

Then, considering ff- ffznB1P) as a function of the random variable nl
BP whose

variance equals /M lpf,(w Sil)[ 1 plB(w ISil)] an elementary Taylor series
argument (see e.g., Kendall and Stuart [10] 1958, 10.6-7) yields

1 ( 1 _/)(riM lOil/M)
2 E(nfP)

with equality at (3.6) if Sil S (all i), so that then

, 1 ( 1 l)_eS(l-’)-var’cu
(,)2 E(nB1 P) M M(AS)2

(3.6)

(3.7)

Replacing gB in this argument by gR(rl) and supposing, as before, that A and



Moment Estimation of Customer Loss Rates from Transactional Data 305

{S/I } are known, we have
M r])[1--e-rSil(1 + r]Sil)] (3.8)

dgR Eexp(--A(1--e "Sil)/ r]2dr]

and hence
M

_rSil,.( dr] 2Eexp(_A(l_ e )/r])[1--exp((1-- e

( 2 V 1A[ 1 e- rSil(1 -t- Sil)]/Mr) E(nBP)

with equality at (3.10) if Sil S (all i), in which case (cf. (3.7))

(var( S)
AS[1 -e ’s(1 + r]S)] E(n

(3.9)

(3.10)

1)M (3.11)

Table 1 gives values of the approximations to v/vare and v/bar(S), together

with the exact values of the former and the exact value of V/var( S < for
range of values of w and AS, when S S (all i) and M 25. The model value for
r]S is determined as at (5.2) below. For the middle (third) line of each set, see

around (6.3) below.

3.1 Remarks Concerning Moment Estimators

It should be evident from (2.3), (3.6), (3.10) and Table 1, that the moment estima-
tors described around (3.2) are potentially useful provided both NI is large enough
(to ensure a good estimator of A), and that M is large enough. What is ’large
enough’ here depends on the balance between all three of the arrival rate A, the mean
service time b and the customer loss rate w or r] as applicable. This dependence is
illustrated in Table 2 of the next section.

4. When Can Uncertain Call Loss be Detected?

The extreme case n nfP- M occurs with probability one when
-AS

see (3.3). Otherwise, whenever M _> 2 and V 1e g(0) < M- 1, each of the
possibilities below,
(a) that {g(0) < rt1

_
M- 1} and the estimate of w or r] is positive;

(b) that {n1 _< g(0)} and or is zero; and
(c) that {n1-M}ande-lorg-
has positive probability, so any may occur. To simplify discussion, we consider the
balking case for the rest of this section; the reneging case can be treated similarly at
the cost of greater algebraic (and computational) complexity.

Recall that the random variable n has a generalized binomial distribution when
the S are different. If S -S (all i), then n is binomially distributed with para-
meters (M, e-)’s(1 w)) (M,P) say, and again, for the sake of simplicity, we treat
only this case below. We discuss the two cases w- 0 and 0 < w < 1 in turn.



306 D.J. DALEY and L.D. SERVI

Table 1
Approximate and exact standard deviations of the moment estimators (top two
lines) and S (bottom two lines), and of the MLE (middle line), for M 25.

Model values AS 0.10 0.20 0.30 0.50 0.75 1.00 1.25 1.50

0.464 0.20 0.577 0.417 0.347 0.281 0.242 0.221
0.378 0.343 0.341 0.339 0.324 0.335
0.167 0.175 0.184 0.207 0.253 0.358
1.56 1.13 0.94 0.76 0.65 0.60 0.57 0.55
0.95 1.41 1.31 0.88 0.65 0.54 0.49 0.47

1.126 0.40 0.497 0.357 0.296 0.237 0.201 0.181 0.169 0.161
0.354 0.302 0.274 0.243 0.210 0.200 0.191 0.179
0.124 0.128 0.133 0.143 0.162 0.190 0.240 0.379
2.03 1.46 1.21 0.97 0.82 0.74 0.69 0.66
0.98 1.61 1.74 1.39 1.00 0.81 0.73 0.68

2.232 0.60 0.404 0.289 0.238 0.188 0.158 0.140 0.129 0.121
0.322 0.292 0.245 0.190 0.162 0.144 0.134 0.126
0.082 0.083 0.085 0.089 0.096 0.103 0.113 0.126
3.08 2.20 1.82 1.44 1.20 1.07 0.98 0.92
1.01 1.83 2.26 2.38 1.92 1.50 1.24 1.10

3.197 0.70 0.349 0.249 0.205 0.161 0.134 0.118 0.108 0.101
0.304 0.315 0.268 0.188 0.143 0.123 0.112 0.105
0.061 0.062 0.063 0.065 0.068 0.072 0.076 0.081
4.31 3.07 2.52 1.99 1.65 1.46 1.33 1.24
1.02 1.97 2.54 3.10 ,2.96 2.46 2.02 1.70

4.965 0.80 0.284 0.202 0.166 0.130 0.107 0.094 0.085 0.079
0.282 0.353 0.333 0.244 0.160 0.115 0.094 0.083
0.040 0.041 0.041 0.042 0.043 0.045 0.046 0.048
7.31 5.20 4.26 3.34 2.76 2.42 2.19 2.03
0.99 2.14 2.89 3.90 4.52 4.50 4.10 3.60

i0.00 0.90 0.201 0.142 0.116 0.091 0.074 0.065 0.058 0.054
0.237 0.369 0.409 0.393 0.323 0.251 0.191 0.146
0.020 0.020 0.020 0.021 0.021 0.021 0.021 0.022
20.06 14.22 11.64 9.06 7.45 6.49 5.84 5.37
0.86 2.20 3.33 5.04 6.55 7.69 8.50 8.95

20.00 0.95 0.142 0.100 0.082 0.064 0.052 0.045 0.041 0.037
0.186 0.321 0.390 0.445 0.448 0.421 0.382 0.340
0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010
56.64 40.10 32.78 25.46 20.85 18.11 16.25 14.88
0.68 1.93 3.20 5.59 8.08 10.06 11.69 13.08

;System unstable

First we assert that when MP is not small, Pr{ff 0]w 0} 0.5, i.e., in hypo-
thesis testing terms, the Type I error rate is about 50%. This assertion follows from
the relations

Pr{ff 0[zv 0) Pr{n _< g(0) w 0} Pr{n _< E(nl) w 0) ,, 0.5,

where the approximation follows from the central limit theorem.
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Alternatively, when 0 < w < 1, we seek conditions under which 0 < ff < 1. Ap-
pealing again to the central limit theorem for nl,

Pr{0 < ff < 1] w} Pr{g(0)- MP < nI MP < M(1 P) lw}

X/-(1V/e;s(:-=-e w)-,xsw)_
1 ) ct(M, AS,

--, 1 (M--, c for fixed P),

where (I) denotes the standard Gaussian distribution function with zero mean and unit
variance. Table 2 gives the least values of M required to ensure that
c(M,,S,w) >_ 0.95 for a represcntative set of values of ,S and w (w and riS are
related as at (5.2)).

Table 2
Critical values of M for a(M,S, va)- 0.95

rlS w AS 0.10
01215 0.i0 25710
0.464 0.20 574.4
0.761 0.30 224.6
1.126 0.40 114.1
1.594 0.50 78.9
2.232 0.60 72.3
3.197 0.70 89.0
4.965 0.80 133.9
10.00 0.90 269.1
20.00 0.95 539.5

0.20 0.30 0.50 0.75 1.00 1.25 1.50
1361.8 960.7 646.7 499.8 436.2 407.8 398.6
305.4 216.5 147.0 114.7 100.9 95.0 93.5
119.9 85.4 58.4 46.0 40.8 38.7 38.3
60.3 42.7 29.1 22.9 20.5 19.5 19.4
40.7 28.0 18.2 13.6 11.7 11.0 10.9
36.4 24.5 15.1 10.6 8.6 7.5 7.0
43.9 28.9 17.0 11.2 8.4 6.9 6.0
66.3 43.8 25.7 16.7 12.2 9.5 7.8

134.0 88.9 52.8 34.7 25.7 20.3 16.7
269.3 179.1 106.9 70.8 52.8 42.0 34.7

5. Distinguishing Between Balking and Reneging

Depending on whether the balking or reneging model is assumed, the moment esti-
mates ff and are determined either by one of the extremes at (3.3), or else by solv-
ing either

gB ffz nB P or gR( riB1P (5.1)

as appropriate. This equation begs the question as to which model is appropriate
while showing that these estimates are functionally related: in the simplest case,
when S S (all i) as in an M/D/1 queueing system, the equations at (5.1) yield

exp(- ,(1 (C))S) exp (5.2)

so the relationship is independent of ,, and equivalent to
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ff--l-l-e-s S (5’)2

+.... (5.3)S 2 3

This relation is not the same one as that existing between equivalent w and r/ in

MIMIc systems with the same arrival rate, service rate, and customer rate loss as
discussed around Figure 1 and equation (3.7) in Daley and Servi [7].

We turn to the more substantive question of distinguishing between the two
models, i.e., is one model to be preferred because it explains the data better than the
other? We show that in principle, we can make the distinction provided that both
the set {S/i } is varied enough and M is large enough.

To do so, we recast our estimation procedure above into a likelihood setting that
is simpler than that in Daley and Servi [5]. We use the lengths {Sil } of the initial
inter-departure intervals of the busy periods, and indicator r.v.s I defined by

1 if N 1,
Ii

0 ifNi_>2
(i- 1,..., M).

Then the likelihood of the dataset {(Si, Ii):i 1,...,M} equals
M

H p(w Si)Ii[1 p(w Si)]
1 Ii (5.4)

i=1

for the balking case and a similar expression in the reneging case (cf. Cox [2] for
binary data regression approaches to such datasets). The MLE of w based on this
likelihood function, ’ say, satisfies the equation

M ASi[ii_ p(,lSi)Z l_p(’lSi)
-0.

i--1

Now
that

1 p(’[Si) < ASi(1- ’) and E ili /11 ? lP( IS/), SO it follows

M M

i=1 i=1

Since p(wlS is monotically increasing in w, we have that ’ < ff, whenever they lie
in the interior of (0, 1).

In the reneging case, the MLE " based on the analogue of (.4) satisfies the equa-
tion

M AS[li_p(,[Si) 1-(1 +’Si)e -’SiZ l_p(’]Si) (,Si)2
-0.

i=1

We simulated initial inter-departure intervals S of M 100 busy periods of an

M/M/1 system with A 1 #, and simulated 100 random variables uniformly distri-
buted on (0,1) so as to determine two sets of indicator variables Ii, one set
determined by probabilities pR(wlSi) with balking probability w- 0.5, and the
other by probabilities pB(rllSi) with reneging rate r]- 1. Each of the two resulting
datasets {(Si, Ii): 1,100} was fitted to both the balking and reneging models, both
by moment estimation and by maximum likelihood, and the log likelihoods
evaluated. This experiment suggested two conclusions, neither of them surprising:
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1) the moment and likelihood estimators of the loss parameters are closer
when the correct loss model is used; and

2) the log likelihood of the correct model is generally larger than that of the
incorrect model, but the margin is not necessarily large enough to discrimi-
nate between the models.

We repeated this experiment 19 times. For the log likelihood difference (True-
False), we obtained values in the range (-1.08, 4.82), with median 2.02, for data
generated by the balking model, and in the range (- 1.10, 5.35), with median 3.20,
for data from the reneging model. For 19 such experiments with M 400, the corres-

ponding ranges and medians were (2.77, 20.16) and 8.19 (balking model), and
(-1.72, 20.14) and 11.10 (reneging model). These results suggest that the models
are not distinguishable, on likelihood alone, unless M is around 100 or more.

A proper question to ask of a real dataset is Whether arrivals balk or renege or
both. Analysis in Daley and Servi [7] and above suggests that observation would be
better than indirect inference!

6. Comparison of with ML Estimator

We attempt in this section to compare our estimator ff described below (3.2) with
the ML estimator given in Daley and Servi [5], namely, for an interval of length
T- TI + = 1Zj where there is a total idle time TI and M busy periods of dura-
tions Zj (j- 1,...,M) determined by Nj inter-departure intervals,- 1-

E j(Nj-1) T1 (6.1)Y jZj NI"
We base our comparison on the asymptotic standard deviations of the estimators.

Recall that L, the log likelihood function from which the MLE is deduced, is
given by

L ,TI + Nllog(,kTi) (1 w) E jZj + E j(Nj 1)log((1 w) E jZj) + const.,

where the constant term is independent of A and w. The Fisher information matrix
is thus the expectation of the second derivatives, i.e., of the matrix

NI / E j(Nj-1)
(6.2)

Here we are faced with a dilemma: how should we compare (asymptotic) variances
based on rather contrasting data, namely {nBIP, Sjl(j 1,...,M)} for the moment
estimator and (Nj, Zj) (j 1,...,M) for the MLE. We do so on the basis of expecta-
tions on the assumption that M is not small. Then each busy period, without know-
ing Nj, has expected duration ES/[1- (1- va)ES] where ES denotes an expected
inter-departure interval, while the determinant of the matrix at (6.2) equals
ENIE j(Nj- 1)/[A(1- w)]2. Combining this with the expectation of (6.2) gives
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var E I
1 )EEj(Nj-1) (l-w)2,

ES(1 w) ) )2 (1 w)2

I+I_ES(I_w) (1-w -M[I_AES(I_w)]. (6.3)

In the third of each set of five lines in Table 1, we evaluate this approximation to
facilitate comparison with the approximate and exact standard deviation of .
Neither the moment estimator nor the MLE is uniformly better.
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