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This paper is concerned with elementary methods for evaluating the distri-
bution of the time to system failure, following a particular sequence of
events from a Markov chain. After discussing a simple example in which
a specific sequence from a two-state Markov chain leads to failure, the
method is .generalized to a sequence from a (k > 2)-state chain. The ex-

pectation and variance of the time T to failure can be obtained from the
probability generating function (p.g.f.) of T. The method can be extended
to the case of continuous time.
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1. Introduction

In many processes arising in reliability theory, a system may at any time t-
0,1,2,..., be in one of k_> 2 states A1,A2,...,Ak, the sequence of which forms a
Markov chain. While this chain can be simple or of order r >_ 2, we restrict ourselves
here to simple Markov chains; any chain of higher order can be reduced to a simple
chain by redefining the states.

A system usually fails after it has passed through a particular sequence

All, Ai2,.. ., Aim of m states (m _> k, or < k) at the times T- m + 1, T- m + 2,

...,T, with possible repetitions of states, before failure at T >_ m. We wish to study
the distribution of the failure time T.

In order to formulate the problem clearly and solve it, we rely on the approaches
of Blom and Thorburn [1], Fu and Koutras [3], and Gani [4]. In a sense, the methods
used are an extension of the theory of runs first studied by Mood [6] and Feller [2,
Chapter 2]. These methods have been considered by Gmbas and Odlyzko [5], and are

applied here to Markov chains rather than independent trials. While our results can-
not claim great originality, they have the virtue of being elementary, thus making
them readily accessible to engineers and operations researchers.
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2. The Case of the 2-State Chain

When k- 2, we may for simplicity label the states A1,A2 as 0, 1, forming the simple
Markov chain with transition probability matrix

Xn+ 1 0 1

0

Xn PO0 POl
1

PlO Pll

and initial probabilities [Po, Pl] where P{Xo -O} Po, P{Xo- 1} Pl"
Let us assume that failure occurs when the sequence 010 arises for the first time.

We now form an augmented transition probability matrix for the states O, 1, 01,010,
this last being an absorbing state:

Xn+ 1

1

1

01

010

0 1 01 010

PO0 0 P01 0

PlO Pll 0 0

0 Pll 0 PlO

0 0 0 1

(2.2)

If we denote the initial probability vector by p’-[P0Pl 0 ], we can readily see that

the failure time T010 will have the probability distribution

P{Tolo n} p,pn-2Q, n >_ 2, (2.3)
where in fact this probability is 0 for n < 3.

The probability generating function (p.g.f.) of Tmo is

f010(0) E P’O(PO)n-2QO, 0 < 0 <_ 1.
n--2

This can be derived explicitly as

1f010(O) p’O[I PO]- 1QO -[.o0 pl0 o
PO[

021 Pll0 PolP11 PolO(1 PllO) 0

Plo0 1 Poo0 PolPlo02 0

02 (1 PooO)Pll0 (1 PooO)(1 Pll 0 o0PloP11 Pl

(2.4)

03[PoPolPlO + O(PlPolPo PoPo1P10P11)]
02 03"1 (Po0 + P11)0 -[- PooP11 Po1P10P11
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One can easily find the expectation and variance of TOlo from (2.5) as

E(Tolo) f)lO(1), V(Tolo) flo(1) + f)lO(1) (f)lO(1))2.

Such calculations can be tedious if the full notation is retained, but become simpler if
specific values are used for the probabilities, as in the following example.

Example 2.1: Let Po-P1-0"5, Poo-0"7 and POl-0"3, PLO-0"4 and P11--
0.6; we then find from (2.5) that

03[0.06 -0.120]"fl(0)
1 1.30 4- 0.4202 0.07203,

0210.18 0.2040 + 0.07202 0.0!00803.4- 0.00086404] (2.7)fl(0)
[1 1.30 4- 0.4202- 0.07203]2

flo(0 0[0.36 0.6120 4- 0.40202 0.1000803 4- 0.00043204 0.001859205]

It follows that

[1 1.30 + 0.4202 0.07203]3

E(Tolo) f’olo(1) 16.8333,

V(Tolo) f1o(1) +/1o(1)- (/1o(1))2 205.5788,
(2.8)

so that r(Too)= 14.3380.
This indicates how large the variation can be in the time To1o until failure

occurs; the range of E(Tolo) + r(Tolo) is 2.4953 to 31.1713, with To1o _> 3. It should
be pointed out that if the sequence required for failure had been 000, the augmented
transition probability matrix would have been

Xn + 1 0 1 O0 000

O0

000

PlO

PO1 PO0

Pll 0

PO1 0

0 0 0

Poo
(2.9)

with the same transition probabilities as in (2.1), and the same initial probabilities Po
and Pl" The submatrices P, Q of (2.9) are now different from those in (2.2), with the
result that the p.g.f, fooo(O) of Tooo differs from folo(0) of (2.5), as do also the
relevant expectation and standard deviation.

3. An m-Sequence of States for k > 2

Let us now suppose that the sequence of states leading to failure is AilAi2...Aim
where these m states (mk k, or < k) are selected from among the k > 2 states
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A2,...,Ak. These form a Markov chain with transition probability matrix

Xn + A1 A2

A1 Pll P12

P21 P22

Pkl Pk2

Ak

Plk

P2k (3.1)

and initial probabilities Pi- P{Xo- i}, i- 1,...,k.
transition probability matrix for the states A1, A2,... Ak, A Ai2, AilAi2Ai3,..1

AilAi2...Aim this last being an absorbing state"

Pkk

We consider the augmented

Xn + 1 AI"" "All’" "Ai2"" "Ai3"" "Ak AiI Ai2 AiI Ai2 Ai3"" "All"" "Ai

Xn
A1

Ai1

Ai2

Ak

AilAi2

AilAi2Ai3

All"" "Aim
All...Aim

Pll PliI Pli2 Pli3 Plk 0 0

Pill PillI 0 Pill3 Pilk Pill2 0

Pi21 Pi2iI Pi2i2 Pi2i3 Pi2k 0

Pk1 PkiI Pki2 Pki3 Pkk 0 0

0 Pi2i3
(See text for positioning of probabilities)

0... 0... 0... 0... 0
Pim_lim

(3.2)

We note that in the submatrix for the states A1,...,Ail,...,Ai2,...,Ai3,...,Ak, all

probabilities except Pili2 are positioned as in (3.1), but P{Ail--,AilAi2} is Pqi2 posi-

tioned at (il, ili2) so that P{AilAi2}-O at (i1,i2). Next, P{AilA.2-4
AilAi2Ai3}-Pi2i3 is positioned at (ili2, ili2i3) so that P{AilAi2---.Ai3}-O at

(ili2, i3). Also, if AqAi2 is AilAil and the next state is also Ail, then AilAi2Ail
AilAilAil with the last 2 states overlapping the first two. In this case

P{A All }- (3.3)
1 "*AilAil Pilil
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is positioned at (ilil,ilil) with P{AilAil---Ail}- O.

We outline a general method for allocating the transition probabilities in the
lower part of the matrix (3.2) for the states AilAi2,.. All..A Suppose we are

in the state Xn Ail...Aij then Xn + will be one of Ail...AijA1, Ail...AijA2,...
All’" "AijAij + 1’ "’ All’" "AliAk. Clearly

P{Ai" "’Aij-Ail"’AijAij +1}- Pijij +1 (3.4)

will be positioned at (i1. .ij, 1. .ijij + 1) with P{Ail...Aij--Aj. + 1} 0 at

(il’"ij, ij + 1)" For all other states of Xn + 1 not ending with Aij + 1’
we have in the

position (ill2. .ij,1) the probability

At} Pijl (l ij (3.5)P{Ai1. .Aij- +

with the following exceptions. For some values of r (2

_
r

_
j) there may be an

overlap between the first and last j + 2- r states of AilAi2...Air...A .At, so that
3

AilAi2""Aij -[- 2 r Ai "’AijAl" (3.6)

In this case, the probability Pijl is allocated to the position (il...ij, il...ij + 2- r) with

the consequence that P{Aq...AijAI}- O.

Once the matrix (3.2) is fully defined, we have that the time to failure Tili2...imfollows the distribution

P{Tqi2...im n} p,pn-2Q, n >_ 2. (3.7)

Here p’ [Pl P2 Pk 0...0] is the 1 (k + rn- 2) vector of initial probabilities, P is
the (k + m- 2) (k + m- 2) matrix in (3.2) and Q the (k + m- 2) 1 column vector
with zero components, except for the last row whose entry is Pi ira. Note that

m--1Til...im

_
m.

The p.g.f, fil." .ira(O) of Til...im is

fil. .im(O p’O[I PO]- 1QO

which can, in principle, be evaluated if the structure of P is known. But it is clearly
not possible to give an explicit result which will hold generally.

Perhaps the procedure is best illustrated by an example for a Markov chain with
k 3 states A1,A2, A3, and a sequence of m--3 states, say A2A2A3, leading to
failure. The basic transition probability matrix is

Xn + 1 A1 A2 A3

A1 Pll P12 P13

Xn- A2 P21 P22 P23

A3 P31 P32 P33

(3.9)
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with initial probabilities P{X0 Ai} pi, i- 1, 2,3. The augmented matrix for the
states A1, A2, A3, A2A2, A2A2A3 is given by

Xn + 1 A1 A2 A3

A1

A2

A3

A2A2

A2A2A3

Pll P12 P13

P21 0 P23

P31 P32 P33

P21 0 0

A2A2 A2A2A3

0 0

P22
0

P22
0 0 0 0

P23
1

P

011 (3.10)

Note that P{A2-,A2A2} P22 with the consequence that P{A2--A2} 0; also, in
going from Xn -A2A2 to Xn + 1- A2A2A2, since the last A2A2 of Xn + 1 overlap
the A2A2 of Xn, we have P{A2A2A2A2} = P22 with P(A2A2--,A2} O.

Exactly as in (3.7), the distribution of the failure time T223 is

P{T223 -n}- [Pl P2 P3 0] P"-2Q, n _> 2, (3.11)

where this probability is 0 for n < 3. The p.g.f, of T223 is

f223(0) E [Pl0 P20 P30 O](PO)n-2QO,
n--2

p’O[I-PO]-IQO, 0<0<1.
(3.12)

In its explicit form, this is

1f223(0) [plY9 p20 p30 0] PO[

A14
A24
A34

P230

(3.13)

where the dots indicate that the values of these elements are irrelevant to our calcula-
tions. We find that

2A14 --0 [P13 P22 P32 0 "4-P12 P22 (1- P330)],

A24 0[P22(1 Pll 0) (1 P330) P13 P22 P3102],

A34 02[P12 P22 P310 + P22 P32( 1 P110)], (3.14)

II- POI (1 p220)[(1 p110)(1 P330)

--02{P13 P31 + P12 P21( 1 P330) -f P23P32( 1 P110)}

03--03(P12 P23 P31 + P13 P21 P32)] P22 P21 [P13 P320 A-P12(1- P330)].
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This finally yields

f223(0) P23PlO2A14 + P23P202A24 + P23P302A34
]I- PO (3.15)

where the numerator is 03 times a quadratic polynomial, and ]I-PO] is a quartic
polynomial. Once again, we use specific values of the probabilities to illustrate our

procedure by an example.
Example 3.1" Let Pl- P2- P3- 0.3333, and the matrix (3.7) be

0.4 0.3 0.3

0.6 0.3 0.1

0.5 0.2 0.3

It follows from (3.13) that

f223(0) 0.0099903[ 1 0.20 + 0.0102]
1 0 0.0202 + 0.02603 + 0.002104.

By differentiating f223(0) and its first derivative, we obtain

(3.16)

(3.17)

E(T223) f23(1) 120.3857,

V(T223) f’23(1) + f23(1)- (f23(1))2 13960.5636,
(3.18)

so that tr(T223)- 118.1548.
Once again, as in Example 2.1, the variation in T223 is very large; the range of

E(T223)-4-r(T223) is 2.2309 to 238.5405, with T223 _> 3.

4. The Continuous Time Case

In most reliability problems, events occur in continuous time t >_ 0, with changes of
state arising at points arriving in a Poisson process with parameter A. The discrete
time process of Section 3 may be regarded as one embedded in the Poisson process.
In this case, the probability that the failure time Tili2...im lies in (t,t +St) after

states AilAi2...Aim have occurred in this sequence for the first time, will be
c _,t(At)n-1g(t)St P{t < Til...im < + St} E e -----. A[p’P 2Q]St, (4.1)
n:2 (n-1

where p’ [Pl P2" "Pk 0 0...0] is a 1 (k + m- 2) vector of initial probabilities, P is
the (k/m-2) x(k+m-2) matrix in (3.2) and Q the (k+m-2)l column
vector whose single non-zero entry is Pim_lim in the last row.

It is simpler to deal with the Laplace transform in (4.1); this is given by

n 2 (n 1)! A[P’Pn- 2Q]dt’ Re s >_ O,



318 J. GANI

n= 2 + s
p,pn-2Q . I-.+ s,+s p’ P Q"

We proceed to illustrate its use by an example.
Example 4.1: We refer to the Example 2.1, which we now reconsider in contin-

uous time, the changes of state occurring at the points of a Poisson process with
parameter . The Laplace transform of the failure time T010 in this case is

( )3 0.06 0.012 / s (4.3)
1 1.3),+ + 0.42(+) -0.072 (+)a

Thus, the distribution of T010 is an infinite sum of gamma type variables starting
with those having Laplace transforms

0.06 ( + -0.012 (+s
or probability density functions

0.06 A(A2t!)2e )t -0.012 3t!)3e t. (4.4)

The next set of terms will be

0.078 ()t3t!)3e-’Xt 0 0156 A(’t)4
4!

e- ,Xt, (4.5)

as we begin to expand the denominator of (4.3). While the method is simple to des-
cribe, it is rather intractable when k and m are large.
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