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Consider the tesselation of a plane into convex random polygons
determined by a unit intensity Poissonian line process. Let M(A) be the
ergodic intensity of random polygons with areas exceeding a value A. A
two-sided asymptotic bound

exp{ 2v/A/Tr + CoAll6} < M(A) < exp{ 2v/A/ + ClAll6}

is established for large A, where co > 2.096, C < 6.36.
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1. The Problem Statement and Main Results

This paper is devoted to the discussion of a problem posed by D.G. Kendall in his
foreword to the book [9]. The problem concerns the investigation of the tail of the
distribution of the area of a random polygon.

Consider a unit intensity Poissonian line process in %2. Such a process can be
determined by a planar Poissonian process of points (Pi, Pi), with a planar intensity
1/ in the band %+ x (0,2), in such a way that each of the points generates a ran-
dom line with polar coordinates (Pi, ai) for the foot of the perpendicular from the ori-
gin O to the line. Processes of this kind have been investigated thoroughly by Miles
[6-8] and others. (Miles uses an equivalent definition" Pi E %, a E (0,).) The line
processes determines the tesselation of the plane into convex random polygons.

Consider the ergodic intensity M(A) of random polygons with areas exceeding a
value A.
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It is necessary to specify a precise definition of ergodic intensities for random poly-
gons. The simplest way to do this is a reduction to the ergodic intensity of an appro-
priate point process. Evidently, all the sides of a random polygon have different
lengths (almost surely). Thus every random polygon K can be associated with a
well-defined point PK, namely, its vertex such that, when running along the contour
of K in the positive direction, the greatest of its sides has PK as its endpoint.

We define the function M(A) as the ergodic intensity of the planar point process
of random points PK considering only random polygons K with areas A(K) > A. In
turn, the ergodic intensity of a planar point process is defined as the mean number of
random points in a unit area. From the Korolyuk theorem [3], for a simple station-
ary point process, the probability that a random point falls into an area element is
equivalent to the ergodic intensity of the point process multiplied by the area.

Two asymptotic bounds are established for M(A), as follows.
Theorem 1: The bound

M(A) > exp{- 2v/A/" + coA/6(1 + o(1))} (1)

holds for a constant co > 2.096 as Aoo.
Theorem 2: The bound

M(A) < exp{ 2v/A/" + CLA1/6(1 + o(1))} (2)

holds for a constant c: < 6.36 as A---oc.

2. Proof of Theorem 1

Consider an event fr: {no random line crosses the circle Cr of the radius r, with the
center in the origin}. Evidently, P{fr}- e-2r" If the event fr occurs then the
circle Cr is surrounded by a random polygon K, (a so-called Crofton cell).

Let {(r + X(t), t), 0 < t <_ 2r} be the graph of g, in polar coordinates. Then

271"

0

(r + X(t))2dt. (3)

It is convenient to consider the positive square root a(K) of the area A(K) of a poly-
gon K. By the Bounjakowsky (Cauchy) inequality,

2rr / X2(t)dt >_ X(t)dt
0 0

Thus equation (3) implies the bound

1 X()d (4)a(Kw)>_rv/- 1 + -- 0
provided mr occurred.

From Miles’ theory, the probability of a random line not crossing a convex figure
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equals e-s/, where S is the perimeter of the figure. The event rgl {X(t)> x}
means no crossing by a random line of the convex hull of Cr completed by the point
(r+x,t). The perimeter of the hull equals 2r(r+tana-a), where a-

arccos(r/(r + x)). Hence,

P{X(t) > x I} exp{ 2r(tan a- ")/).
It is convenient to introduce a monotonic transformation c(t)- arccos(r/(r +

X(t))). Since {X(t) > x} {a(t) > a}, the lefthand side of equation (5) is just
P(a(t) > a fr}. Moreover, consider truncated random variables

a(t) if a(t) < ao,
(t)-

0 ir (t) > o

and X(t) r((1/cos (t)- 1). Thanks to equation (5), the conditional p.d.f, f(a) of
the random variable (t) has the form

f(a) (2r/r)tan2 a exp{ 2r(tan a
inside the interval (0, ao) provided fir occurred. Choose ao as ao -(ln r/r)l/31nln r.
It can be easily seen that, tan a- a - a3/3, tan a a uniformly in the interval {0 <
a < a0}; hence

a0

Em(tlflr) - (2r/Tr) / am + 2exp{ 2ra31(3r)}da; as r--.cx3

0

for any positive m. Moreover, the correspondin[g integral over the interval
can be proved to decrease more rapidly than r- for a given N; therefore,

E " (2v/r) / a’ + 2exp{ 2ra3/(3r)}da, as r--OOo

0
In particular,

E{a(t) r} (3r/(2r))2/r(5/3) as r--,; (6)

E{c4(t) fr} - O(r-4/3) as r---,.

As (1/cosz) > 1 + z2/2 for any z:0 < z < r/2, we have the inequality

Y((t) > r2(t)/2. (8)
From Equations (8), (6) and (4),

E{a(Kw) lr} > rv/(1 /1/2 (37r)2/3r(5/3)(1 + o(1)))as r---,.

Note that cov( (t), (-))- 0 as soon as the angle distance between t and 7 exceeds
2a0. Applying also equation (7), one obtains the bound

Var{ S 8(t)dt If’It -O(r-5/3(lnr)l/31nlnr)"
0

(9)
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Equations (9), (8), (6) and (4)imply the bound

P a(gw) >_ r 1 + 2\- F(5/3)(1 -5) ]r ---*1 as r---cx

for any 5 > 0.
Choose r as follows:

where
C r(3/2)2/3r(5/3)/2.

(10)

(11)

(12)

Then equation (10) implies the bound

and hence
P{a(Kw) > a r}---l as

P{r n {a(Kw) > a}} P{r} e- 2r.

(13)

(14)

Inserting r, defined by equation (11), into equation (14), and changing a2 to A leads
to the following bound:

P{Cr C Kw;A(Kw) > A} > exp{ 2v/AIr + coA1/6(1 + o(1))}

with c0 -(3/2)2/3V/-F(5/3 > 2.096.
To make a passage from probabilities to ergodic intensities, we will prove that a

typical Crofton cell lies inside a certain circle of the radius 3r, provided the event r
occurred. Consider three concentric circles Cr, C2r C3r of the radii r, 2r, 3r, res-
pectively. The event r n {X(t) > 2r} implies the event r n {X(v) > r,r E At}
where A is an interval of a positive length. If N is large enough then

N-1

r n {X(’r)> r,’r e At} C U r n {X(2rk/N) > r}
k=0

o every t, 0 < t < . Thror, du to qutio (5) with /3,

P{mxX(t) > 2r flr} <_ N exp{- 2r(v/ r/3)/r} o(1) as r---oo.

We have the relation

since

we have

r n {mxX(t)_ 2r} C Ftrn{PKwG_ C3r};
A(C3r 9rr2,

9zr2M(A) >_ P{Qrrh{mxX(t) <_ 2r}} 9rr2p{Qr}.

Equations (11-15)imply the relation in equation (1).

(15)
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3. A Bound for Ergodic Intensities Mn(A)

Evidently, oo

M(A)- E Mn(A)’
n--3

where Mn(A is the contribution of n-gons to M(A). The following lemma presents
bound for Mn(A);_ we set A- a2.an upper

Lemma 1" A bound

holds true with

Mn(a2) < (2n c---n3)!a(2r)2nLn- 1 (16)

Yi > O, Yl +’’" + Yn > 2a(1 + .)Iv
where Yn is a function of the remaining Yi’S;

Yn > (Yl +"" -[- Yn- 1)/(r 1), (18)

A
n --(-fan-)1/2 1. (19)

Proof: Let K be a random n-gon such that its vertex PK (see Section 1 for a de-
finition) falls into the circle Cp of a small radius p, with center at the origin. Denote
vertices of K by P1,...,Pn in the positive direction; for definiteness, set Pn- PK
(i.e., the endpoint of the side of the greatest length). Also, denote the exterior angle
of K corresponding to the vertex Pi by Oi, and set X1 [PnPI[; x -Pi_lPi},
2 < < n. For simplicity, we will also give the line Pi-1Pi the name Xi. An n-gon
g can be coded as (0, x), where 0-(01,...,0n_2) and z-(Zl,...,zn_l). Given a

position of the line X1, these parameters determine xn and On_ 1 uniquely as p0.
For example, xn- IOPn_l[ in the limit. By definition, see Section 1, xn
max {xi). It is well known that the perimeter of an n-gon K does not exceed the

l<i<n

perimeter of a regular n-gon, given a value of the area. Thus, z1 +...+zn >
2av/-(1 +An) as soon as A(K)> a2. These notes explain the bounds for Vi in
equations (17-19), where Vi- zi/Tr. Consider the probability of the occurrence of a
random polygon in elementary volumes dO, d:r, and 7rp

2 for parameters, 0, z, and
PK, respectively. This differential probability can be considered as the product of
the following expressions"

(i) 2p the probability of a random line X crossing Co;
(ii) (27r)- n + dO1...dOn_

_
the probability of the choice of the directions of

random lines X2, Xn 1;
(iii) 2n sin OldZl. .sin On 2dzn the probability of the crossing of X by

X + in the intervals dzi, given Oi;
(iv) 2pinO,_xdz,,_a/(r.)- the probability of the occurrence of a random

line crossing both an interval dzn 1 of the line Xn_ 1 and the circle
and

(v) exp{- (z1 + + Zn)/Tr } -the probability of no random line crossing the
polygon K. [The above formulation is close to that of Miles [6-8]].
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Applying a usual principle

j f(O,z)dOdz <_ J dO/ supf(O,z)dz
o

we may integrate in 0 separately:

/ / sin Ol. .sin On l (dO. .dOn 2)

< /’"jO1...On_2(27r--O1 -On_2)dO1...dOn_ 2

= (2r)2n 3/(2n 3)!. (20)

Having collected expressions (i) to (v), the bound in equation (20), applying the
inequality :ca > (zI +...+ zn)/n > 2avZ-/n and also having divided by rp2, one
obtains the bound in equations (16) and (17) directly.

4. A Proof of Theorem 2

Let Ln_ 1 denote the contribution of the domain {Yl +’" + Yr6- 1 < 2a(1 -4- An)/V/-}
1 Ln- 1 Due to equationto the integral L,_ 1 [see equation (17)]; L,_ 1 -Ln 1

(16), we have

Mn(a2) <_ Mn(a2) + Mln(a2)

where M(a2) is defined as the righthand side of equation (16) with Ln_ 1 changed
by L_ 1 (J O, 1). We have

Ln exp{ 2a(1 J /-1 < -k" An)/V} dYl "’dun- I

Yi > O, Yl +"" + Yn- 1 < 2a(1 + An)/

(2a(1 + A.)/v/)" lexp{ 2a(1 + Ar,)lv}l(n 1)!. (21)
N

Equation (21)implies the bound E Mn(a2) -O(-2a(1 +e)/V/ as a-cx3 for a
n=3

given N; thus, only the case of large n should be investigated. Applying Stirling’s
formula to the factorials and also applying the relation

An - r2/(6n2) o(1/n),
one obtains the bound

Mn(a2) < cl(n4/a2)(2r3/2e3a/n3)nexp { 2a(1 + 7r2/(6n2))/Z-n2)}.
To apply a usual asymptotic analysis, see Dingle [2], introduce a variable

X n/(27r3/2e3a)1/3
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and search the maximum of the expression

ln(exp{- 2aAn/x/r}/x3n)

{ 18.211xln x- 0.0504x- 2}al/3.

As the result of computations, the value 6.36 is obtained as an upper bound. By a
standard argument in Dingle [2] it can be shown that

M(a2) < exp{ 2a/v + 6.36a1/3}
for large a.

As for M1(a2 consider two cases:

(i) n >_ a/ln a.

(ii) n < a/ln a.

In the case (i) it is sufficient to note that Lln_ 1 < 1 whereas

En (2n n_ 3)/(2r)2n. O(e- 2(1 -5)a) aS a---<x

(22)

for a given 5 > 0, and thus

E Mln(a2) < exp{ 2a/v} (23)

for large a. In case (ii), we omit the factor (1 / An)in equation (17) and note that

/.../ e (Yl + + Yn)dYl. ..dYn < (ex/n)ne x

Yi > O, Yl +’’" -k Yn > x

as soon as n < x. Hence,

M1n
c(n+ l) [ 2ae n+ l(a2) < a(2n-1)! v/n)

x (27r)2n + 2exp{ 2a(1 q- 1/n)/rr1/2} Q,n(a), say. (24)

From equation (24), we have a relation

Qn + l(a)/Qn(a) 2ar3/2n-3exp{2a(1 + o(1))/(n2rrl/2)} (25)

for large n. The righthand side of equation (25) is large as n < a(1 -e)/2 and small as

n > a1/2 Hence argmaxQn(a a0 where (1- )/2 < 0 < 1/2. For such n, equation
(24) implies the relation

Mn + l(a2) < exp{ 2(a + al/2)/rrl/2};
hence,

M (a2) < exp{- 2a/Trl/2}. (26)En < a/lna n + 1

Combining the bounds in equations (22), (23) and (26)leads to the desired equation
(2).
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5. Remarks

The problem considered here is closely related to a "long-standing conjecture of D.G.
Kendall" concerning shapes of random polygons. In a version suggested by Miles [8],
this conjecture is as follows: Let #(A)dA be the ergodic intensity of random polygons
of the type considered as above, and #e(A)dA be the ergodic intensity of those con-

tours which, moreover, are surrounded by concentric circles of radii v/A/r(1 :t: ).
Then:

#(A)/#(A)I as A--, (27)

for a given > 0. For two different proofs of equation (27), both based on an inequa-
lity of Bonnesen [1], see Kovalenko [4, 5].
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