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Collective risk theory is concerned with random fluctuations of the total
assets and the risk reserve of an insurance company. In this paper we con-
sider self-similar, continuous processes with stationary increments for the
renewal model in risk theory. We construct a risk model which shows a

mechanism of long range dependence of claims. We approximate the risk
process by a self-similar process with drift. The ruin probability within
finite time is estimated for fractional Brownian motion with drift. A
similar model is applicable in queueing systems, describing long range de-
pendence in on/off processes and associated fluid models. The obtained re-

sults are useful in communication network models, as well as storage and
inventory models.
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1. Introduction

Consider a company which only writes ordinary insurance policies such as accident,
disability, health and whole life. The policyholders pay premiums regularly, and at
certain random times report claims to the company. A policyholder’s premium, the
gross risk premium, is a positive amount composed of two components. The net risk
premium is the component calculated to cover the payments of claims on the aver-

age. The security risk premium, or safety loading, is the component which protects
the company from large deviations of claims from the average, and also allows an

accumulation of capital. When a claim occurs, the company pays the policyholder a

positive amount called the positive risk sum.
As a mathematical model for this situation, we shall assume that claims occur at
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jumps of a point process (N(t):t > 0). While most work in collective risk theory
assumes that N(t) is a Poisson process, this restrictive assumption plays no role in
our analysis. The successive risk sums (Yk:k ) are assumed to form a sequence
which is stationary and strongly dependent, with E[Yk] # > 0. Furthermore, we

shall assume that the initial risk reserve of the company is u > 0, and that the
policyholders pay a gross risk premium of c > 0 per unit time. Thus, the risk process
has the form: N(t)

R(t) u + ct- E Yk" (1)
k=l

We define the ruin time T as the first time the company has a negative risk reserve:

T inf{t > 0: R(t) < 0}

if the set is nonempty, and T- otherwise. In order to avoid T < cx, a.s. we

E(t)
assume the net profit condition limt__.o > 0 holds. The principal problems of
collective risk theory have been to calculate the ruin probability (u)= P{T <
cx] R(0)= u}. Many of the results for these distributions are complicated expres-
sions which have been obtained using analytical methods. For a comprehensive treat-
ment of the theory up to 1955, the reader should consult Cramer [8]. A more recent
account of the theory is available in Chapter 7 of Takcs [44], Grandell [17], and As-
mussen [3].

By 1940, Hadwiger [19] was already comparing a discrete-time risk process with a

diffusion. This can be viewed, though theoretically not comparable with the modern
approach as the first treatment of diffusion approximations in risk theory. A more
modern version, based on weak convergence, is due to Iglehart [20], Grandell [17],
and Furrer, Michna and Weron [16]. The basic premise is to let the number of
claims grow in a unit time interval, and to make the claim sizes smaller in such a

way that the risk process converges weakly to a self-similar process. The idea is to
approximate the risk process with a self-similar process with drift. While the classical
theory of risk processes requires independence of claims, this assumption can be drop-
ped in our approach. A dependence of claims can guarantee that this model may be
similar to a risk model with heavy-tailed claims. As an example of a risk process
with such dependence, we construct a risk model in which claims appear in good and
bad periods (e.g., good weather and bad weather). We assume that claims in bad per-
iods are bigger than claims in good periods (e.g., the expected value of the claims in
bad periods is bigger than the expected value of the claims in good periods). Under
natural assumptions on the structure of the good and bad periods, we compute that
the claims are strongly dependent.

The use of the results obtained in this paper is motivated by communication net-
work models, as well as storage and inventory models. Traffic on the data networks
(e.g., Ethernet LANs) has characteristics substantially different from those of tradi-
tional voice traffic. An important feature of data traffic lies in its dependence struct-
ure; traditional models are based on assumptions of short-range dependence, while
recent measurement and analysis of data traffic has produced strong indications of
long-range dependence and self-similarity. Several empirical studies present statisti-
cal evidence for existence of these non-standard dependence structures: see for exam-
ple Heath, Resnick and Samorodnitsky [18]; Leland [24]; Leland and Wilson [25];
Leland, Taqqu, Willinger and Wilson [26, 27]; Norros [30-32]; Willinger, Taqqu,
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Leland and Wilson [47]; Crovella and Bestavros [9]; and Cunha, Bestavros and
Crovella [10]. In Norros [30-32], the cumulative traffic process (i.e., the amount of
traffic arriving between 0 and t) is modeled with fractional Brownian motion (the
self-similarity parameter H > 1/2).

To study the total traffic for all source-destination network pairs, Willinger, et al.
[47] first studied the asymptotic behavior of the integral of the covariance function
for one such pair. Their methods (Laplace transform and Tauberian theorem) yield
the interesting result that the superposition of a large number of suitably scaled,
source-destination pairs is approximately a fractional Brownian motion. In Heath et
al. [18], one can find an explanation for the observed long range dependence and self-
similarity in a simple on/off model applied in communication network models, as

Well as storage and inventory models.
In applications involving source-destination network pairs, one defines the process

N(t)
s(t) ct,

k=l

with N and (Yk: k E ) as above. Consider the process V(t) suP0 < s < tS(s) as the
workload process of a queueing system, with N representing the tirffe-rversed point
process of arrivals of customers, and (Yk:k ) representing service time in reverse

order. Then V(t) is the workload process. We assume that V is generated by a sta-
tionary, marked point process M ((Tk, Uk): k G ), such that Tk is the time of arri-
val of the customer, and Uk is his service time. By a standard procedure we can ex-

tend M to a stationary, marked point process ((Tk, Uk): k Z), with doubly infinite
time.

In this paper, in contrast to the classical, independent, identically distributed
assumptions, we are interested in the case where (Yk:k G ) are strongly dependent.
In queueing systems, the relevance of such dependence assumptions is currently receiv-
ing much attention as we mentioned above. As an example of a mechanism generat-
ing such dependence, one can consider, the aforementioned alternating environment.

The paper is organized as follow: Section 2 contains some preliminaries on weak
convergence of stochastic processes in the Skorokhod topology and on self-similar pro-
cesses; in Section 3, we define a sequence of risk processes and show that it converges
weakly to a self-similar process with drift; Section 4 deals with the convergence of
functionals of the risk process, showing that the finite-time passage probabilities con-

verge; in Section 5, we briefly discuss our approximation when the claim arrival pro-
cess is a renewal process; and in Section 6, we consider fractional Brownian motion as

an example in risk theory. We give an approximation to the ruin probability when
the initial capital is sufficiently large.

2. Preliminaries

In this section, we assemble those concepts and results from weak convergence theory
as those apply to collective risk theory. Furthermore, we define a class II of process-
es.

Denote by D the space of all cadlag (i.e., right-continuous with left-hand limits)
functions on [0, oe) endowed with the Skorokhod topology (see Ethier and Kurtz
[4]). D[0, o)is a complete and separable metric space. All stochastic processes in
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this paper are assumed to be in D.
Definition 1: A sequence (X(n):n E N) of stochastic processes is said to converge

weakly in the Skorokhod topology to a stochastic process X, if for every bounded con-
tinuous functional f on D, it follows that:

nlrnE[f(X(n))] E[f(X)].

In this case, one writes X(’)X.
One of the most useful results in weak convergence theory is the continuous mapp-

ing theorem. Let h be a measurable mapping of S into another metric space S’ with
a-field f’ of Borel sets. Each probability measure P on (S,b’) induces on (S’,f’) a uni-
que probability measure Ph-I(A)- P(h-1A) for A E b". Let Dh be the set of dis-
continuities of h. Then we have:

Proposition 1: (Billingsley [7]) /f Pn and P are probability measures on (S,f)
such that Pn=P and P(Dh) O, then Pnh- l=:Ph- 1.

In collective risk theory, we are interested in sums of a random number of ran-
dom variables. We also need a general theorem of random change of time. Let I
denote the identity function.

Proposition 2: Let (Bn:n e N) be processes in D[0, oc), B be a process with con-
tinuous sample paths, and suppose that Bn==B. Let (Nn:n N) be a sequence of pro-
cesses with nondecreasing sample paths starting from 0 such that Nn=I > O.
For each n N, Bn and Nn are assumed to be on the same probability space. Then:

Bn(Nn)B(I). (3)

Proof: The process B has continuous sample paths so the assertion is an imme-
diate application of the method used in Billingsley [7].

The concept of semi-stability was introduced by Lamperti [22]. Mandelbrot and
Van Ness [29] call it self-similarity when appearing in conjunction with stationary in-
crements as it does here.

Definition 2: A process ZH possesses properties II (i.e., ZH II), if for some

0<H<I:
1. Zu(O 0 a.s.

2. ZH has strictly stationary increments, that is the random function

Uh(t ZH(t + h)- ZH(t), h > O, is strictly stationary.
3. Zh is self-similar of order H (H- ss), that is:

ZH(ct) d cHZH(t)
in the sense of finite-dimensional distributions.

14. EZH(t 0 and E ZH(t) " < cx3 for 7 < .
5. ZH is a.s. continuous.
Examples of such a process are fractional Brownian motion [Gaussian process]

and the Rosenblatt process [non-Gaussian process] (see Mandelbrot and Van Ness [29]
and Rosenblatt [35]). If not stated otherwise explicitly, we make the following
assumptions for the rest of the paper.

Assumption 1" The parameter of self-similarly satisfies"

1<H<I.
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3. Weak Convergence of Risk Reserve Processes

We shall now construct a sequence of risk processes and show that it converges to a

process ZH with drift where ZH E II.
The sequence (Q(n):n N) of risk processes is given as follows: for every n G N

let u(n) > 0 denote the initial risk reserve, c(n)> 0 the premium rate, and N(n) the
corresponding point process. The claim sizes are denoted by (yn): k e N). Then:

N(n)(t)
+

k=l
(4)

We assume that the claims are of the form yn)_ 1 y
k, where (Yk:k N) is a sta-

tionary sequence with common distribution function F and mean # such that"

[nt]
(5)

where (n)- hilL(n), and the function L is slowly varying at infinity. To construct
such a sequence (see Taqqu [46]), let us take a stationary Gaussian sequence (Xk:
k N) with E[Xi]- 0 and E[X’]- 1. Let G be a real-valued measurable function
such that G(Xi) has mean 0 and finite variance. As mentioned above, We shall focus
on values of H satisfying < H < 1. We assume E[XiX + k]
for some slowly varying function L and some constant D > 0. H > arises when
D < , where m, the Hermite rank of G, is the index of the first non-zero coefficient
in the Hermit polynomials expansion of G. Under these assumptions,= 1E[G(Xi)G(Xi + k)] , and the sequence (G(Xi): N) is so strongly depen-
dent that the limit of

1 G(Xk) (6)z(n)(t) () k

may not be Gaussian.
Now we construct an insurance model, which as assumed above, produces strong-

ly dependent claims.
We assume that we have good periods and bad periods when we observe arriving

claims (e.g., periods ofood weather and periods of bad weather). These two periods
Galternate. Let (T ,Tn,n N) be independent, identically distributed non-negative

random variables representing good periods; similarly, let (SB, SBn, n N) be indepen-
dent, identically distributed non-negative random variables representing bad periods.
The T’s are assumed independent of the S’s, the common distribution of good periods
is FG, and the distribution of bad periods is FB. We assume both Fa and FB have
finite means uG and UB, respectively, and we set u ua + UB"

Consider the pure renewal sequence initiated by a good period
(0, E= I(T + S), n N). The interarrival distribution is Fa,FB and the mean
interarrival time is u. This pure renewal process has stationary version (see Asmus-
sen [2]) [D, D + E 7= I(T + S), n N], where D is a delay random variable. How-
ever, by defining the initial delay interval of length D this way, the interval does not
decompose into a good and a bad period the way subsequent interarrival intervals do.
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Consequently, we turn to an alternative construction of the stationary renewal pro-
cess (see Heath et al. [18]).

Define three independent random variables B, ToG and S0G, which are

independent of (SB, Tan San n G N) as follows" B is a Bernoulli random variable with
values in {0, 1} and mass functions

zGP{B -1} --- I P{B O}

and (x > 0), where

P{TGo > x}- f1- Fa( )
ua ds 1 FGO (X),

x

p{SBo > x} F1 uBrB(s).ds 1 FBo (x).
x

Define a delay random variable DO by

DO (TGo + SB)B + (1 B)SBo

and a delayed renewal sequence by

(Sn, n >_ 0): (Do, DO +
n

(T7 + n >_ o).
i=1

One can verify that this delayed renewal sequence is stationary (see Heath et al. [18]).
We now define L(t) to be 1 if falls in a good period, and L(t)- 0 if t is in a

bad period. More precisely, the process (L(t), t >_ 0) is defined in terms of (Sn, n >_ O)
as follows:

L(t) BI[o, Tao )(t + I a
n=0 [Sn<-t<Sn+Tn+l)" (7)

Proposition 3: The process (L(t), t > O) is strictly stationary and

P{L(t) 1} EL(t)

Proof: See Heath et al. [18], Proposition 2.1.
Let (Yan,n _> 0) be independent, identically distributed random variables repre-

senting claims appearing in good periods (e.g., Yna describes a claim which may
appear at the nth moment in a good period). Similarly, let (YBn,n >_ 0) be indepen-
dent, identically distributed random variable representing claims appearing in bad
periods (e.g, yB describes a claim which may appear at the nth moment in a bad
period). We assume that a B(Yn,n > 0), (Yn,n > 0) and (L(t), t > 0) are independent,
E[YGo] g and E[YBo]- b (g < b), and the second moments of Y0G and Y0B exist.
Then the claim Yn appearing at the nth moment (n > 0) is

Yn L(n)YG + (1 L(n))YBn. (8)
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The sequence (Yn, n > 0) is stationary.
Proposition 4: Assume that

1 FG(t) t-(D + 1)K(t), t---cx, (9)

0 < D < 1, where K is slowly varying at infinity. Assume, moreover, that

1 FB(t) o(1 FG(t)), t--oc, (10)

and there is an n >_ 1 such that (FG,FB)n* is nonsingular. Then

Cv(Yo, Yn)
u2B(b g)2 DK(n)
Du3 n

when n--oo.
Proof: Let us notice that

(11)

Cv(Yo, Yn) (b g)2Cov(L(O), L(n)),

and

t]
2

Cov(L(O) L(n)) "B n- Dg(n),D3
when n---,c (see Heath et al. [18], Theorem 4.3). From this, (11) follows.

We assumed that the good period dominates the bad period but one can
approach the problem reversely, (e.g., the bad period can dominate the good period).
One can see the symmetry of this good and bad period characteristics in the covar-
iance function (see Heath et al. [18]). This same argument can be used on/off models
and associated fluid models.

Let us determine the limiting process of Z(n) given in (6). It is sufficient to
study the convergence of the finite-dimensional distributions of process Z(n), when
G Hm, where Hm denotes the Hermite polynomial of order m.

()When m = 1, Z converges weakly to fractional Browman motion BH with
parameter 1/2 < H- 1- < 1. This limiting process is Gaussian, with zero mean and
E IBH(t)-BH(s)I 2- t-sl 2H. The process is defined for 0<H<I. It is
Brownian motion when H- 1/2. For a detailed treatment of BH, see Mandelbrot and
Van Ness [29], and Samorodnitsky and Taqqu [36].

When m-2, Z(n) converges weakly to the non-Gaussian process called the
Rosenblatt process (see Rosenblatt [35]).

Partial results for m- 3, where the limiting process is not Gaussian, are given in
Taqqu [45].

We put Yk G(Xk) + # for k E
We define the process (Q(t): t _> 0) by

Q(t) u + ct- HZH(t), (12)

where u and c are positive numbers, and (ZH(t)’t >_ 0) is a process endowed with pro-
perties II(H). Here is some positive constant which will be specified in the next
theorem. The following theorem shows that the sequence (Q(n):n N) converges
weakly to the process in (12)"
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Theorem 3:
sequence of point processes such that

N(nl(t)-nt
--0

in probability in the Skorokhod topology for some positive constant
that

Let the sequence (Yk:k E N) be as above and let (N(n):n ) be a

(13)

Assume also

and

lim u(n) u. (15)

Then
N(n)(t)

u(n) + c(n)t 1 E Yk::vu + ct- IHZH(t (16)99(rt) k 1

in the Skorokhod topology as
Proof: Let us write the process Q()(t) in the following form"

Q(n)(t u(n) + c(n)t
N(n)(t)

(n) k 1
Yk

( n) N()(t)-nt 1u(n) + c(n) Anp -# p(n) (n) (Yk- #)"

From the assumption in (13), we obtain

(N(n)(t) -nt)# (n)
0

in probability in the Skorokhod topology as n. From (13) and Proposition 2 we
obtain that

(’)(t)
1

1

in the Skorokhod topology as n--,cx. Because

u(n)+t c(n)-)n

converges to u / ct in probability in the Skorokhod topology, the proof is complete. [:]

The distribution of a risk process can be approximated by the distribution of
process in (12).
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4. The Convergence of Functionals of Risk Processes

Collective risk theory has mainly been concerned with functionals which represent the
total assets of the insurance company at time t, namely Q(n), and with the ruin time
T(n), which is defined as T(n) T(Q(n)), where

T(x)- inf{t > 0: x(t) < 0} (17)

if the set {t > 0:x(t) < 0} is not empty, and / cx otherwise. We need a theoretical
result which permits us to approximate the finite-time ruin probability by the ruin
probability of the corresponding process Q. The process given in (12) has continuous
Sample paths. It is known that the convergence to a continuous function in the Sko-
rokhod topology is equivalent to uniform convergence on compacts. Using
Proposition 1, we get:

Proposition 5: Let T be the functional defined in (17). If Q(n)=Q, with Q being
given in (12), and

P{ inf Q(s)- 0}- 0 (18)
0<s<t

for all t > O, then

T(Q(n))=T(Q). (19)

Proof." Let xn converge to x in the Skorokhod topology, where x is a continuous
trajectory of the process Q. Then xn tends to x uniformly on compacts. First
assume that T(x)- c. This means that x(t)> 0 for all t> 0 because we assumed
that P{inf0<s<tQ(s)-O}-O for all t>0. Let N be such that, for sufficiently
large n, xn(t- 0 for all 0 _<t_< N. Letting Noc, we obtain that T(xn)---<x as

Now let T(x)< cxz, and assume that T(xn)T and T > T(x)(more precisely
there is such a subsequence of {T(xn)}). Then there is 6 > 0 such that x(T(x)+
6) < 0 and T(x)+ 6 < T. Since xn(T(x + 5) < 0 for sufficiently large n, this is a con-

tradiction.
Remark: Proposition 3 shows that the finite-time ruin probabilities converge"

dkmP{T(Q()) <_ t} P{T(Q) <_ t},

or equivalently,

limP{ inf Q(n)(s)<O}-P{ inf Q(s)<0}.n--,cx 0 < s < 0 < s <

Hence, we can approximate the finite-time ruin probabilities by the probability of the
first 0-downcrossing of the process in (12). However, it is not clear whether the
convergence of the infinite-time ruin probabilities holds, i.e., whether:

In Proposition 3, we proved much more (i.e., we proved that if Qn converges almost
surely to Q then T(Q,)T(Q) a.s.).
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5. A Renewal Type Model

To construct an example of risk processes which converge to a self-similar process, we

have to check the conditions of Theorem 3. We consider the case where the
occurrence of the claims is described by a renewal process N:

N(t) max n" Tk <_
k=l

The inter-occurrence times (Tk:k E ) are assumed to be independent, positive ran-
dom variables. We define

N(n)(t)- N(nt). (20)

Let B (B(t):t _> 0)denote standard one-dimensional Brownian motion. Then the
following proposition holds:

Proposition 6: Let (N(t): t > 0) be a renewal process with inter-occurrence times

(Tk:k 5d), and assume that there exists a positive constant such that

in the Skorokhod topology as n--,oc, where (n)- nl/2L(n) (L is slowly varying at
infinity). Then, for 1/2 < H < 1, we have:

N(nt)-nt
nH

in probability in the Skorokhod topology.
Proof: It suffices to check that

P{ sup
O<s<t

converges to 0 as ncxz. If

sup
O<s<t

N(ns)-Ansl > e,
nH

then there exists s such that 0 < s < t and

N(ns)- ns > cn (23)

or

N(ns)- )ns < crtH. (24)

From the inequality in (23) we obtain

[,kns + enH

Tk <ns.
k=l

Let us define u such that nu Ans + nH. Then
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Therefore,
k=l

1sup
H-1 nH0 < u < ,kth-n

Let us notice that if 0 < H < 1, then the above supremum is attained on bounded
intervals. Because H > 1/2, the assumption in (21) implies that

nH k__ l(Tk --) n-- 0 (25)

in probability in the Skorokhod topology. In the second case (see (24)), we obtain

,kns enH

E Tk> ns.
k--1

For nu- Ans- nH we have

Thus,

1sup nH0 < u < ,kt- cnH 1

Finally, from(25) we have

O < s < n
g > e n 0

and the proof is complete.
Note that (21) is true in the ordinary renewal theory situation where (Tk) is a se-

quence of independent, identically distributed random variables with mean and var-
iance r2. In this case, we have

N(nt)-nt=:er/3/2B(t). (26)

(see Billingsley [7]).

6. An Example: Fractional Brownian Motion

First we recall the following definition"
Definition 3: A stochastic process BH--(BH(t):t >_0)is called fractional

Brownian motion if
0

BH(t)- CH[ / {(t-y)H-1/2-(-y)H-1/2}dB(y)+ / (t y)H 1/2dB(y)],
-J o (27)
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where 0 < H < 1, H is the parameter of self-similarity, CH is a real constant depend-
ing on H, and B is a standard Brownian motion defined on the whole real line.

1 is Brown-The process BH possesses properties II. Observe that BH with H-
Jan motion, and that in general, the process BH has stationary, but not independent
increments. The fractional Brownian motion process BH is a very important generali-
zation of Brownian motion because BH is the only Gaussian H- ss process with sta-
tionary increments. The fractional Brownian motion has expectation El_BIt(t)] 0

1(y2 { 2H 2H 2H}, whereand covariances E[BH(t)BH(S)] t + s t-s
E[B/(1)]-r2. For more details, see Mandelbrot and Van Ness [29] and
Samorodnitsky nd Taqqu [36].

We shall use the standard notation (I)(z) and (z) for the standard normal distri-
bution and density functions, respectively. We recall the elementary relation:

1-O(x)..x-(x) (28)

for x---oc, and
+ (29)

for y fixed and x-cx.
Let us define

Q(t) u + ct- HBH(t), (3o)

where u and c and A are positive constants. Recall that we assume 1/2 < H < 1. Our
main aim is to find the ruin probability of the process in (30). We need bounds or
limit theorems for the ruin probability of process BH because we do not know the
exact form of this probability. This will be made by applying the easy consequence
of the Normal Comparison Lemma (Slepian [42], see also Corollary 4.2.3 in Lead-
better et al. [23]) and the continuity of the sample paths.

Lemma 1: Let X1 and X2 be Gaussian continuous processes. Suppose that for
T > 0 we have E[XI(s)XI(t)]

_
E[X2(s)X2(t)] E[XI(t)]- O, E[X2(t)]- O, and

E[X(t)] E[X(t)] when 0 <_ s, t <_ T. Then

P{ sup (Xl(S)-CS)>U}_P{ sup (X2(s)-cs)>u}. (31)
0<s<T 0<s<T

Proof: This follows from Corollary 4.2.3 of Leadbetter et al. [23] and continuity
of sample paths. V]

We give another lemma:
Lemma 2: Let B be a standard Brownian motion, and u >_ O, c >_ O. Then

P{ si}fo(U + cs + B(s)) < 0} exp(- 2uc). (32)

Proof: See Grandell [17]. El
Now we state a theorem which enables us to estimate the ruin probability of the

process in (30) for an arbitrary amount of initial capital:
Theorem 6: Let Q be the process given in (30). Then

P{T(Q) < < I-4P ( ff(+ ct)_,kt)H + exp{-2uct I1 ((u-ct (33)
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where the functional T is given in (17), and er2 E[B}/(1)].
Proof: For simplicity, assume E[B)_/(1)] 1 and A 1.

Brownian motion and define the Gaussian process
Let B be standard

(34)

fors>0. It is clear that

ElY(s)]- O, E[Y2(s)] s2H,

E[Y(s)Y(t)] s2H, O <_ s <_ t.
(35)

From the convexity of function 2H (1/2 < H < 1), it follows that

E[BH(S)BH(t)] >_ E[Y(s)Y(t)]. (36)

Hence, by Lemma 1 it follows from (36) and (35) that

O<s<t O<s<t

So we obtain

(37)

P{ inf + cs BH(S)) < O} < P{ inf + cs Y(s)) < O}o<,<,(,, o<,<,(

P{ inf H(U + cs2H + B(s)) < 0}
0<s<t2

1

-P inf +cs 2H + B(1/2)) < O
s>t -2

{ inf 1=--2H 0P (us + cs + sB(1/s)) <
s>t -2H

{ inf
H
(us

1 2H1 0P + c, + <
-2s>t

The last equality above follows since sB(1/s) is also a standard Brownian motion

(see Karatzas and Shreve [21]). Furthermore,

{ H
(1z8

11 } { }P inf + C8 2H + B(s)) < 0 < P inf (us + ct1 -2H _1_ B(s)) < 0
s>t_ 2 s>t_2H

P(v inf H(ctl_ 2H q_ ut- 2H q_ B(t- 2H))
s>t -2

+ B(s)- B(t- 2H) + u(s t- 2H)) < 0}
where the first inequality holds because 1/2 < H < 1. Using Lemma 2, the last ex-
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pression is equal to
ctI 2H_ ut- 2H

ctl 2H ut

t2Hx2

t2Hx2
2u(ct1 2H + ut 2H + x) 2 dx

= 1 O(ut- H + ct1 H) + exp( 2uct1 2H)[1 O(ut H ctI H)],

which completes the proof. []

An immediate consequence of Theorem 2 is the following result known for the
Lvy processes.

Corollary 1: Let BH be a fractional Brownian motion process defined in (27)
and u > O. Then

P{ sup BH(S) > u} < 2P{BH(t > u}. (38)
0<s<t

Proof: Take c 0 in Theorem 2.
The following theorem enables us to approximate the ruin probability of the pro-

cess in (30) for a sufficiently large initial capital.
Theorem 6: Let Q (Q(t):t > 0) be the process defined in (30). Then for every

t>O,

lim
P{(Q) -< t}

1, (39)u--*P{HBH(t > u + ct}
where the functional T is given in (17).

Proof: For simplicity, assume A- 1 and E[B/(1)]- 1.
The numerator in (39) is clearly greater than or equal to the denominator. Thus

it suffices to show that

P{T(Q)<t}
lim sup_. < 1. (40)--, PtBH(t) > u + ct}-

Let us notice that for r > 0,

P{T(Q) <_ t}

_< P{ sup
O<s<t-u2r(BH(S)-CS)>u}+PI t---<s<trSUp

< P{ O < s < tSup
u2r(BH(s)-cs)>u}

+ P{ t--<_s<_trsup BH(S > u + c(t- flu2)

(BH(S) -cs) > u}

First we show that’
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lim sup P{BH(t)>u+ct}
Using Theorem 2, we may write"

_< 2exp( rHt- 2H 1). (41)

P{sup < s < -r---(BH(S)-CS)u2 >u}
< 1 --r- / exp 1 (

(t--j) (t- (t---

(42)

Write"

u2[(t__)H_ tH]’(t -5)" 1 +

(43)

and note that (1 + y)-1_ 1-y + O(y2) for y-0. Then the right-hand member of
(43) is equal to:

u + c(t---) u2[(t_ __)Hu tH] (t 2’
tH 2

tH 1
u2tH + 0 u2tH

which, by the existence of the derivative of tH, is equal to

r r

tH
+ u2tH + -}- O (44)

As a consequence of the estimate in (43) of (42), and (29), it follows that

(t_5)H

,,I-P
tH

u exp
-2H-1 2

-rHt u

(45)

as u---,c. Let us notice that (using (28)),

exp ( r) I2uc(t -)
(t --r2)2H 1 (

r

1. c( -j)
(t --H--j)

is asymptotically equal to
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( + c(t j)
1 -(b

(t_H
tt
2

as u---cx. So by (42) and (45) we obtain (41).
Now we prove that

P{suPt--- <_ s <_ BH(s) > u + c(t
limsup u

u--,o P{BH(t > u + ct}
< 1. (46)

For the purpose of establishing (46), note that the event in the numerator in (46) is
included in the union of the following three events"

BH(t > u + c t---- (47)

and

sup BH(S > u + c(t-),t--<_s<_t
BH(t < 0; (48)

(sup BH(S) > U+C t- r O < BH(t)u+c t- .,
t--<_s<_t

u

(49)

Using the method given in Berman [6], verification of (2.6) (see also Berman [5]), we
get that the probability of the events in (48) and (49) are of smaller order than
1-(u....+ct The probability of (47)is asymptotically equal to P{BH(T > u + ct}H J"

as uoc, which completes the proof of the theorem. E!
So for sufficiently large u, we may write:

P{ o <infs< (u + cs AHBH(S)) < 0} P{AHBH(t) > u + ct}. (50)

Let us notice that in the case when we approximate risk process by Brownian motion
with drift (see Iglehart [20]), then

P{inf0 <s < t(u + cs- $l/2B(s)
\

< 0}}
lim 2, (51)u--, P{A1/2B(t) > u + ct}

where B is a Brownian motion. In the model with dependent claims, the situation is
changing drastically, and the ruin probability is greater than in the Brownian case,
that is,

P{AHBH(t) > u + c.t} > 2p{A1/2B(t) > u + ct} (52)

for all > o where to > 0.
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7. Numerical Results

In order to get some appreciation of the behavior of the process Q defined in (30), we

compute the ruin probability for fractional Brownian motion using the simple Monte
Carlo method and compare it with the upper bound given in (33). The lower bound,
which should be closer to the real ruin probability, is also considered. Fractional
Brownian motion was simulated with the well-known and reliable method of
Cholesky factorization (see Rice [34]). This method can be used for estimation of
continuous functionals of a sample (e.g., extremes) with a predetermined error. One
should write that for continuous but nondifferentiable Gaussian processes, the method
needs a fine grid (leading to long execution times) for reliable results (see Seleznjev
[40]). But is was shown in Seleznjev [39], that for general classes of random processes
with incremental variance,

E[(X()- X())] _< C I- ", C > O,. > O, (5)

with the best rate of approximation in the quadratic mean being n- c/2, where n is a

number of used linear functionals (e.g., values of the process X(tk) k 1,..., ).
Let

(u, t) P{ inf (u + cs kHBH(S)) < 0} (54)
O<s<t

assume r2- E[B2H(1)] and

u U, t -1- 4; ((+ CH)+At ( -2uct ) [1-exp
r2(At)2H

([" u ct

which is the upper bound to (u, t). The lower bound is

L(u,t)--1-- (-u;+Cr). (56)
\r()--jAr

In Table 1, we have presented some numerical values for illustrative purposes. In our

simulations, H 0.6, 0.8, 0.9, the latter values are t- 5, c- 1, A- 1, r- 10. we

divided the interval [0, t] according to 1500 points (e.g., we took 1500 random varia-
bles to compute the ruin probability). We ran 40000 simulations in order to estimate

(u, t). The half-width of the asymptotic 95% confidence interval is denoted by e.

As has been shown in Theorem 6, it follows from our simulations that the ruin
probability for fractional Brownian motion is very close to the lower bound. The
upper bound also gives a good approximation. For large u, the upper bound behaves

u+ctlike 2(1-(I)( .H, whxch the numermal results show.

The ruinr(r:)b 1/
p a)ility is strongly dependent on the parameter H of self-similarity,

and the ruin probability is larger when the dependence of increments (or claims) is

stronger.
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3O

60

100

3O

6O

100

3O

6O

100

H qt(u,t)

0.6 0.1456

0.6 0.0098

0.6 5.0000.10 5

0.8 0.1938

0.8 0.0382

0.8 0.0019

0.9 0.2168

0.9 0.0639

0.9 0.0069

0.0913

0.0067

3.1984.10 5

0.1671

0.0364

0.0019

0.2055

0.0634

0.0068

0.2018

0.0143

6.6963.10 5

0.3621

0.0773

0.0039

0.415

0.1339

0.0142

0.0035

9.6662.10 4

6.9296.10 5

0.0039

0.0019

4.1828.10 4

0.0040

0.0024

8.1125.10 -4

Table 1: Comparison of the finite-time ruin probabilities of the fractional
Brownian motion (A- 1, c- 1, r- 10) with the upper and lower bound.

The time horizon t equals 5.
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